March 2008

doc.: IEEE 802.11-08/0299r1

IEEE P802.11
Wireless LANs

	Password Authentication for Mesh Points

	Date: 2008-03-03

	Author(s):

	Name
	Affiliation
	Address
	Phone
	email

	Dan Harkins
	Aruba Networks
	1322 Coleman ave, Sunnyvale, CA 94089
	+1 408 227 4500
	dharkins@arubanetworks.com

	Malik Audeh
	Tropos Networks
	555 Del Rey Avenue, Sunnyvale, CA 94085
	+1 408 331 6800
	audeh@tropos.com

5.4.3.1 Authentication

Change third paragraph to: “IEEE Std 802.11 defines three authentication methods: Open System authentication, Shared Key authentication, and Simultaneous Authentication of Equals (SAE). Open System authentication admints any STA to the DS. Shard Key authentication relies on WEP to demonstrate knowledge of a WEP encryption key, and SAE uses finite field cryptography to provide mutual authentication between two STAs using a shared key or password.”

5.4.3.2 Deauthentication

Change first sentence to: “The deauthentication service is invoked when an existing Open System, Shared Key, or SAE authentication is to be terminated.”

7.2.3.10 Authentication frame format

Change: “Only Authenticaiton frames with the authentication algorithm set to Open System authentication or Fast BSS Transition authentication may be used within an RSNA.” To “Only Authentication frames with the authentication algorithm set to Open System authentication or Fast BSS Transition authentication or SAE authentication may be used within an RSNA.”

Insert the following new rows into table 7-16:

	Order
	Information
	Notes

	9
	Scalar
	An unsigned integer encoded as described in section 11B.2.6.3

	10
	Element
	A field element from a finite field encoded as described in section 11B.2.6.3

	11
	Confirm
	An unsigned integer encoded as described in section 11B.2.6.4

	12
	Token
	A random bit string used for anti-clogging purposes as described in section 11B.2.6.5

Insert the following new rows into table 7-17:
	Authentication Algorithm
	Authentication transaction sequence number
	Status Code
	Presence of fields 4-12

	SAE
	1
	Status
	Scalar is present if Status is zero.

Element is present if Status is zero.

If Status is 52 Token is present.

If frame is in response to a previous rejection with Status 52 Token is present.

	SAE
	2
	Status
	Confirm is present if Status is zero.

7.3.1.9 Status Code field

Replace the last row of table 7-23 with the following new rows:

	Status Code
	Meaning

	52
	Authentication is rejected because an anti-clogging token is required.

	53-65535
	Reserved

7.3.12.1 Authentication algorithm number field

Insert after “Authentication algorithnm number = 2”

“Authentication algorithm number = 32768-65535: Simultaneous Authentication of Equals (SAE)
If the high-order bit of the Authentication algorithm number field is set it indicates SAE authentication with the finite cyclic group being determined by the low-order fifteen (15) bits. The group definition is from the IANA registry for RFC2409 “Diffie-Hellman groups”.

Make new section 11B.2, move existing 11B.2 to 11B.3, 11B.3 to 11B.4, etc. Increment figure number for figures s53 through and including s67.

11B.2 Mesh Authentication Using a Pre-Shared Key (SAE)
11B.2.1 Overview

When a Certification Authority (CA) infrastructure is not available for authentication of mesh points it can be desirable to authenticate mesh points to each other by proving possession of a pre-shared key (PSK). An authentication protocol has to be resistant to various attacks and one that employs PSKs for authentication must be resistant to a specific type of attack unique to PSK authentication: an offline dictionary attack.
Simultaneous Authentication of Equals (SAE) is used by mesh points to authenticate with a PSK; it has the following security properties:

· Its successful termination results in a secret key shared between the two mesh points.

· An attacker is unable to determine either the PSK or the resulting shared key by passively observing an exchange or by interposing itself into the exchange by faithfully relaying messages between the two mesh points.

· An attacker is unable to determine either the PSK or the resulting shared key by modifying, forging, or replaying frames to an honest, uncorrupted mesh point.

· An attacker is unable to make more than one guess at the PSK per attack. This implies that the attacker cannot make one attack and then go offline and make repeated guesses at the password until successful. In other words, SAE is resistant to dictionary attack.

· Compromise of a shared key from a previous run of the protocol does not provide any advantage to an adversary attempting to determine the PSK or the shared key from any other run.

· Compromise of the PSK does not provide any advantage to an adversary in attempting to determine the shared key from previous runs.

SAE uses a finite cyclic group in which group membership (elements) and operations made on members of the group are well-defined. This group can be based on elliptic curves or on more traditional exponentiation modulus a prime number.

Unlike other authentication protocols SAE does not have a notion of an “initiator” and “responder” or of a “supplicant” and “authenticator”. The parties to the exchange are equals, with each side being able to initiate the protocol and even for each side to initiate simultaneously such that each side views itself as the “initiator” for a particular run of the protocol. This requirement is necessary to address the unique nature of mesh networks.
11B.2.2 Assumptions on SAE

SAE uses various functions to accomplish its task and assumes certain properties with each function. These are:

· H is a “random oracle” whose output is indistinguishable from a random source by an attacker that is given access to the input to and output from H.

· H is a one-way function such that given the output it is computationally infeasible to determine the input.

· H maps an input string of indeterminate length onto a fixed string—i.e. H: (0,1)* ((0,1)k
· For any given input to H each of the 2k possible outputs are all equiprobable.

· Solving the discrete logarithm problem in the finite cyclic group is computationally infeasible..
· In addition, finite cyclic groups based on an elliptic curve make use of a bijective function, F, which maps an element from the group to a scalar value.

Function H is instantiated as the doubling of input to SHA-256—i.e. H(x) = SHA-256(x | x).. Function F is instantiated by returning the x-coordinate of a point—i.e. if P = (x,y) then F(P) = x.
11B.2.3 Authentication Procotol

The parties involved will be called MP-A and MP-B. They are identified by their MAC addresses, MP-A-MAC and MP-B-MAC, respectively. Upon configuration of a PSK a “password element” is derived using the finite cyclic group. MPs begin the protocol when they discover a peer or receive a SAE frame from a peer.

The protocol consists of two message exchanges, a commitment exchange and a confirmation exchange.

When a party has sent its message in the commit exchange it is said to have committed and when it has sent its message in the confirmation exchange it has confirmed. The following rules can be ascribed to the protocol:

· A party can commit at any time

· A party can confirm after it has committed and its peer has committed
· A party can accept authentication after a peer has confirmed
· The protocol successfully terminates after each peer has confirmed.

11B.2.3.1 Elliptic Curve Finite Cyclic Groups

Elements in these groups are represented as points (x,y) on an elliptic curve. The convention used herein represents a point with an upper-case name and a scalar value with a lower-case name.

The group operation in an elliptic curve group is multiplication of a scalar value by a point on the curve resulting in another point on the curve. For example, the point G is multiplied by the scalar q to derive the point Q:

Q = q * G

11B.2.3.1.1 Generation of the Password Element

The Password Element of an elliptic curve group is called PWE and is generated in a random hunt-and-peck fashion. A counter is used with the password to generate a seed value. This counter, represented as a single octet, is initially set to one (1). Then the password seed is stretched using the KDF function from section 8.8.3 to the length of the prime number from the group definition with the string “SAE Hunting and Pecking”. The resulting password value is then reduced modulo the prime. The reduced password value is then used as the x-coordinate of a curve and the y-coordinate is determined by solving for y using the equation of the curve. There are two possible solutions for y, one positive and one negative. If the password seed is odd (i.e. if the low-order bit is set) then the point is (x, -y) otherwise if the password seed is even the point is (x,y). The point is checked to see whether it lies on the curve. If it does not the counter is incremented, a new password seed is derived and the hunting-and-pecking process continues. If it does lie on the curve this point becomes PWE.

 Algorithmically this process can be described thusly:

found = 0;

counter = 1

z = len(prime)

do {

 pwd-seed = H(PSK | counter)

 pwd-value = KDF-z(pwd-seed, “SAE Hunting and Pecking”) % prime
 x = pwd-value

 y = solve_equation(curve, x)

 if (is_odd(pwd-seed))

PWE = (x,-y)

 else

PWE = (x,y)

 Fi

 if (on_curve(PWE))

found = 1

 fi

 counter = counter + 1
} while (found=0)

11B.2.3.1.2 Construction of a commit
Upon discovery of a peer a secret element is derived from PWE based on the identities of the two MPs.

 m = H(MAX(MP-A-MAC, MP-B-MAC), MIN(MP-A-MAC, MP-B-MAC))

N = m * PWE
An MP generates a secret value, rand, and a temporary secret value, erasor, which are chosen randomly between 1 and the order, r, of the elliptic curve group produced by the defined generator. A commit message consists of a scalar and an element produced thusly:

commit-scalar = (rand + erasor) modulo r

commit-element = -(erasor * N)

These messages are transmitted to the peer as described in section 11B.2.6.

11B.2.3.1.3 Processing of a Peer’s commit
Upon receipt of a peer’s commit message a shared secret value, k, is derived using the scalar and element (peer-commit-scalar and peer-commit-element, respectively) from the peer’s commit message and the MP’s secret value:

K = rand * (peer-commit-scalar * N + peer-commit-element))

k = F(K)
11B.2.3.1.4 Construction of a confirm
A peer generates a confirm message by passing the shared secret value concatenated with the messages exchanged in the commit messages to the random function H.

confirm = H(k | commit-scalar | commit-element | peer-commit-scalar | peer-commit-element)

The message is transmitted to the peer as described in section 11B.2.6.
11B.2.3.1.5 Processing of a Peer’s confirm
Upon receipt of a peer’s confirm message a verifier is computed which is the expected value of the peer’s confirmation, peer-confirm. If the verifier equals peer-confirm the MP accepts the peer’s authentication.

If the verifier differs from the peer-confirm the MP rejects the peer’s authentication.

verifier = H(k | peer-commit-scalar | peer-commit-element | commit-scalar | commit-element)

11B.2.3.1.6 Generation of the Shared Secret

If the MP accepts the peer’s authentication a shared secret, ss, for use with the MSA 4-way handshake is derived using the random function H and the order of the group, r:

ss = H(k | (commit-scalar + peer-commit-scalar) modulus r |
 F(commit-element + peer-commit-element))
11B.2.3.2 Prime Modulus Finite Cyclic Groups

Elements in a prime modulus finite cyclic group are represented as numbers less than the prime modulus.
Since elements in the group are numbers there is no need for a bijective function with prime modulus groups. The group operation is exponentiation of one number by another modulus the prime:

y = gx mod p
Some prime modulus groups do not have an order as part of their definition. For these groups the order, r, will be computed as (p – 1)/2, where p is the prime modulus.

11B.2.3.2.1 Generation of the Password Element
The password element in a prime modulus group is called pwe and is generated directly (i.e. without hunting-and-pecking) by generating a password seed and exponentiating it to a number based on the prime, p, and the order of the group.

pwd-seed = H(PSK)

pwe = pwd-seed(p-1)/r mod p
11B.2.3.2.2 Construction of a commit
Upon discovery of a peer a secret element is derived from pwe based on the MAC addresses of the two MPs.
 m = H(MAX(MP-A-MAC, MP-B-MAC), MIN(MP-A-MAC, MP-B-MAC))

n = pwem mod p
An MP generates a secret value, rand, and a temporary secret value, erasor, which are chosen randomly between 1 and the order of prime modulus group. A commit message consists of a scalar and an element produced thusly:

commit-scalar = (rand + erasor) modulo r

commit-element = n -erasor modulo p

These messages are transmitted to the peer as described in section 11B.2.6.
11B.2.3.2.3 Processing of a Peer’s commit
Upon receipt of a peer’s commit message a shared secret value, k, is derived using the scalar and element (peer-commit-scalar and peer-commit-element, respectively) from the peer’s commit message and the MP’s secret value:

k = (n peer-commit-scalar moduluo p * peer-commit-element) rand
11B.2.3.2.4 Construction of a confirm
Construction of a confirm message for a prime modulus group is identical as for an elliptic curve group, according to 11B.2.3.1.4

11B.2.3.2.5 Processing of a Peer’s confirm
A peer’s confirm message for a prime modulus group is processed identically as for an elliptic curve group, according to 11B.2.3.1.5.

11B.2.3.2.6 Generation of the PMK
If the MP accepts the peer’s authentication a shared secret, PMK, for use with the MSA 4-way handshake is derived using the random function H and the order of the group, r:

PMK = H(k | (commit-scalar + peer-commit-scalar) modulus r |

 (commit-element + peer-commit-element))

When used with the Abbrieviated Handshake (see section 11B.5.3) this key shall be used as the PMK-MA.

11B.2.4 Anti-Clogging Tokens

An MP is required to do a considerable amount of work upon receipt of a commit message. This opens up the possibility of a distributed denial-of-service attack by flooding an MP with bogus commit messages from forged MAC addresses. To prevent this from happening an MP maintains a counter in its SAE state machine indicating the number of open and unfinished protocol instances. When that counter hits or exceeds dot11MeshSAEThresh the MP responds to each commit message with a rejection that includes an anti-clogging token statelessly bound to the sender of the commit message. The sender of the commit message must then include this anti-clogging token in a subsequent commit message.

The anti-clogging token is a 32-bit value which stateless binds the MAC address of the sender of a commit message.
Informative Note:

A suggested method for producing anti-clogging tokens is to generate a random secret value each time the state machine variable hits dot11MeshSAEThresh and hash that secret and the MAC address of the sender of the commit message to generate the token.

As long as the state machine variable is greater than dot11MeshSAEThresh all commit messages that do not include an anti-clogging token must be rejected with a request to repeat the commit message and include the token.
Since the anti-clogging token is a fixed size and the size of the peer-commit-scalar and peer-commit-element can be inferred from the finite cyclic group being used, it is straightforward to determine whether a received commit message includes an anti-clogging token or not.
11B.2.5 SAE Finite State Machine
The SAE finite state machine describes the protocol. The protocol starts in a certain state and upon the receipt of events changes to a different state. The protocol ends by transitioning, either successfully or unsuccessfully, to a terminal state.

11B.2.5.1 States
The finite state machine for SAE has the following five (5) possible states:

1. Idle—in the Idle state, the finite state machine only responds to events generated by the IEEE 802.11 SME. The Idle state is for explanatory purposes only and it is not necessary for a compliant state machine to implement it.

2. Listening—in the Listening state, the finite state machine is passively waiting to receive a commit message from a peer.

3. Committed—in the Committed state, the finite state machine has sent a commit message to, and is waiting for a commit message from, a peer.

4. Confirmed—in the Confirmed state, the finite state machine has sent a confirm message to, and is waiting for a confirm message from, a peer.

5. Accepted—in the Accepted state, the finite state machine has both sent and received a confirm message and the protocol has finished.

11B.2.5.2 Events
Events in the finite state machine can come from three (3) different sources: the IEEE 802.11 SME; received frames, timers.

The IEEE 802.11 SME can signal the following events to the SAE finite state machine:

1. Lstn—an MLME-SAE-Listen.request event is used to put the finite state machine in Listening state.

2. Init—an MLME-SAE-Init.request event is used to direct a protocol instance to begin SAE with a designated peer.

3. Kill—an MLME-SAE-Kill.request event is used to remove an instance of a peer which authenticated using SAE. This results in a releasing of all state created to manage this connection.

Frames containing SAE messages can signal the following events to the SAE finite state machine:
1. Recv_Com—this event indicates that a frame containing a commit message has been received from a peer MP.
2. Recv_Con—this event indicates that a frame containing a confirm message has been received from a peer MP.
3. Rej—this event indicates that a commit or confirm message has been rejected.

4. Req—this event indicates that a commit message requesting an anti-clogging token has been received.

Timers can signal the following events to the SAE finite state machine:

1. Rtrns—this event indicates expiry of T0, a retransmission timer. The last transmitted frame is retransmitted. The default value of this timer is dot11MeshSAERetransTime.
2. Stale—this event indicates expiry of T1, a timer indicating state for a peer MP must be deleted. The default value of this timer is dot11MeshSAEStalePMK.
Actions performed in response to events are:

1. Snd_Com—this indicates that the protocol instance sends a commit message to a peer.

2. Snd_Tok—this indicates that the protocol instance sends a commit message with an anti-clogging token.

3. Snd_Con—this indicates that the protocol instance sends a confirm message to a peer.

4. Snd_Rej—this indicates that a rejection message (of a commit or confirm) is sent to the peer.

5. Snd_Req—this indicates that a protocol instance sends a request to a peer to repeat a commit message with an anti-clogging token.

6. set T0—this indicates setting of the T0 (retransmission) timer to dot11MeshSAERetrans

7. reset T0—this indicates setting of the T0 (retransmission) timer to do11MeshSAERetrans and incrementing the Resend counter.

8. cancel T0—this indicates cancelling of the T0 (retransmission) timer.

9. set T1—this indicates setting of the T1 (stale state) timer to <PMK-lifetime>.

11B.2.4.3 Variables
The SAE finite state machine maintains the following variables:

1. Rsyn—the number of state resyncronizations for a particular run of the protocol. When the value of this variable reaches a threshold of dot11MeshSAEMaxRsync the state for the particular instance of the protocol is deleted.
2. Resend—the number of times a frame has been resent due to expiry of a retransmission timer.
3. Open—the number of open and unfinished protocol instances.

4. Limit—this is for descriptive purposes only and indicates that the number of protocol instances of SAE has surpassed dot1xMeshSAEThresh.
5. BadAlg—this is for descriptive purposes only and indicates that the authentication algorithm in the commit message is unsupported.

6. BadAuth—this is for descriptive purposes only and indicates that a received confirm message could not be verified.

[image: image1.jpg]

Figure s53: Finite State Machine for SAE
11B.2.5.3 Behavior of State Machine

State machine behavior is shown in Figure s53.

11B.2.5.3.1 Idle State

Idle state indicates a quiescent state of the state machine. In Idle state only events from the SME are responded to. Those events are Init and Lstn.

Upon receipt of an Init action the Send_Com action is performed, the retransmission timer, T0, is set to the value of Dot11MeshSAERetransTime, the Rsync counter is initialized to zero (0), the Open counter is incremented and the state machine transitions to Committed state.
Upon receipt of a Lstn action the Rsync counter is initialized to zero and the state machine transitions to Listening state.

11B.2.5.3.2 Listening State

Listening state indicates a state in which the protocol is passively listening for SAE messages from other peers. Valid events in Listening state are Recv_Com, and Kill.

Upon receipt of a Recv_Com action the protocol instance checks the Authentication Algorithm of the 802.11 authentication frame. If the Authentication Algorithm is not supported the Rej action is taken and the state machine remains in Listening state.

Otherwise value of Open is checked. If it is less than dot11MeshSAEThresh the Send_Com and Send_Con actions are performed, the retransmission timer, T0, is set to the value of Dot11MeshSAERetransTime, the Rsync counter is set to zero (0), the Cpen counter is incremented, and the state machine transitions to Confirmed state.

If Open is greater than or equal to dot11MeshSAEThresh the commit message is checked for the presence of an anti-clogging token. If an anti-clogging token does not exist the protocol instance performs the Req action and the state machine remains in Listening state. If an anti-clogging token exists its value is checked. If the value is incorrect the commit message is silently dropped and the state machine remains in Listening state. If the value of the anti-clogging token is correct the Send_Com and Send_Con actions are performed, the restransmission timer, T0, is set to the value of Dot11MeshSAERetransTime, the Rsync counter is set to zero (0), the Open counter is incremented, and the state machine transitions to Confirmed state.
If the protocol instance receives a Kill action from the SME it transitions to Idle and terminates.

11B.2.5.3.3 Committed State

Committed state indicates a state in which the protocol instance has sent a commit message to a peer. Valid events in Committed state are Recv_Com, Recv_Con, Req, Rtrns, Rej, and Kill.
Upon receipt of a Recv_Com action the protocol instance checks the Authenticaiton Algorithm of the 802.11 authentication frame. If the Authentication Algorithm is not supported the frame is silently dropped, the reset T0 action is performed, and the state machine remains in Committed state. If the Authentication Algorithm is correct, the cancel T0, Snd_Con, and set T0 actions are performed and the state machine transitions to Confirmed state.
Upon receipt of a Recv_Con action the protocol instance checks the value of Rsync. If it is greater than dot11MeshSAESyncError the protocol instance decrements the Open counter, transitions to Idle state and terminates. If it is not, the protocol instance performs the Snd_Com, and reset T0 actions and the Rsync variable in incremented.
Upon receipt of a Req action the protocol instance performs the Snd_Tok and set T0 actions and remains in Committed state.

Upon receipt of a Rtrns action the Snd_Com and reset T0 actions are performed and the protocol instance remains in Committed state.

If the protocol instance receives a Kill or Rej action it decrements the Open counter, transitions to Idle state and terminate.

11B.2.5.3.4 Confirmed State

Confirmed state indicates a state in which the protocol instance has sent a confirm message (which implies it has also sent a commit message) to a peer. Valid events in Confirmed state are Recv_Con, Recv_Com, Rtrns, and Kill.
Upon receipt of a Recv_Con action the protocol instance verifies the contents of the commit message. If the message cannot be verified the protocol instance decrements the Open counter, transitions to Idle state and terminates. If the message can be verified the cancel T0 and set T1 actions are performed, the Open counter is decremented, and the protocol instance transitions to Accepted state.

Upon receipt of a Recv_Com action the protocol instancechecks the value of Rsync. If it is greater than dot11MeshSAESyncError the protocol instance decrements the Open counter, transitions to Idle state and terminates. If it is not, the protocol instance perfoms the Snd_Com, Snd_Con, and set T0 actions, increments the value of Rsync, and remains in Confirmed state.

Upon receipt of a Rtrns action the Snd_Con and reset T0 actions are performed and the protocol instance remains in Committed state.

Upon receipt of a Kill action from the SME the protocol instance decrements the Open counter, transitions to Idle state and terminate.

11B.2.5.3.5 Accepted State

Accepted state indicates that a confirm message from a peer has been received and verified. Due to the nature of the state machine it also implies that the protocol instance has also confirmed and therefore this is the final state of the state machine. A PMK can be generated and delivered for use with the MSA 4-way handshake. Valid events in Accepted state are Recv_Con, Kill and Stale.

Upon receipt of a Recv_Con action the value of the Resend variable is checked. If it is greater than dot11MeshSAEResend the state machine transitions to Idle and terminates. If it is not, the protocol instance performs the Snd_Con action and increments the Resend variable.

Upon receipt of either a Kill or Stale action the protocol instance transitions to Idle and terminates.

11B.2.6 Framing of SAE

commit and confirm messages are sent and received by a SAE protocol using 802.11 authentication frames.
11B.2.6.1 Authenticaiton Algorithm for SAE

SAE authentication is indicated by an Authentication Algorithm Number with the high-order bit set. The low-order fifteen (15) bits indicate the finite cyclic group to use. The numberspace from which the finite cyclic group is drawn is Group Description for RFC2409 maintained by IANA. IANA has reserved numbers 1-32767 for definition of Group Description therefore IEEE 802.11 Authentication Algorithms 32769-65535 correspond to SAE using the Group Description of 1-32767. An Authentication Algorithm number of 32768 is reserved for private finite cyclic groups used among cooperating peers. A method of deriving and sharing a private use group is outside the scope of this standard.
11B.2.6.2 Authenticaiton Transaction Sequence Number for SAE

A commit message uses Authentication Transaction Sequence Number one (1). A confirm message uses Authentication Transaction Sequence Number two (2).
11B.2.6.3 Encoding of commit Messages

A commit message is encoded as an 802.11 Authentication frame with a Transaction Sequence Number of one (1) and a Status Code of zero (0). Non-zero status codes indicate a rejection of a peer’s commit message and are described in section 11B.2.6.5.
The contents of the commit message are the scalar followed by the field element. If the commit message is in response to an anti-clogging token request (see Section 11B2.6.5) the contents of the commit message are the token followed by the scalar and then the field element. The scalar and element are encoded as follows:
Scalar values are integers less than the order of the group and must have a bit length equal to the order of the group. This length is enforced, if necessary, by prepending the value with zero bits until the required length is achieved.

Encoding of a field element depends on the type of finite cyclic group. For prime modulus groups the field element is an integer less than the prime of the group. The bit length of the field element of a prime modulus group is equal to the length of the prime. This length is enforced, if necessary, by prepending the value with zero bits until the required length is achieved. For elliptic curve groups the field element is a point on the elliptic curve and consists of two components: an x-coordinate and a y-coordinate. Each component of a point on the curve must have a bit length equal to the field size of the group. This length is enforced, if necessary, by prepending the component with zero bits until the required length is achieved. The field element is represented as the x-coordinate followed by the y-coordinate, therefore elliptic curve field elements will have a bit length equal to twice the field size.

The lengths of all components of a commit message can be inferred by the specific finite cyclic group and therefore no explit length fields are required.

11B.2.6.4 Encoding of confirm Messages

A confirm message is encoded as an 802.11 Authentication frame with a Transaction Sequence Number of two (2) and a Status Code of zero (0). Non-zero status codes indicate rejection of a peer’s confirm message and are described in section 11B.2.6.5.

The contents of the confirm message is the output of the random function as described in section 11B.2.3.1.4. The bit length of this data must be equal to the block size of the random function. This length is enforced, if necessary, by prepending the value with zero bits until the required length is achieved.

11B.2.6.5 Status Codes

A commit message with a non-zero status code indicates that a peer rejects a previously sent commit message. An unsupported finite cyclic group is indicated with a Status Code of thirteen (13), “Requested authentication algorithm not supported”. An anti-clogging token is requested by transmitting a commit message with a Status Code of 52, “Anti-Clogging Token Requested”, with the anti-clogging token occupying the Token field of the Authentication frame.
A confirm message with a non-zero status code indicates that a peer rejects a previously sent confirm message. A confirm message that was not successfully verified is indicated with a Status Code of fifteen (15), “Authentication rejected; the response to the challenge failed”..

In old 11B.4, new 11B.5:
11B.4.1 MSA Services

In first paragraph, strike “through the use of a PSK or”.

11B.4.2.1 Overview of MSA authentication mechanism

Second paragraph, add “or SAE” to end of parenthetical comment. Remove last sentence in its entirety.

11B.4.2.2 MSA authentication mechanism

Second paragraph, strike “such as” from parenthetical comment.

11B.4.2.2.1 to 11B.4.2.2.6 add Peer Link Open frame contents “with MSA and 802.1X Authentication” to all section titles.

11B.4.3.1 Overview
Change end of last sentence from “via initial MSA authentication or via executing key transport protocol.” To “via initial MSA authentication, via executing key transport protocol, or via SAE.”

References:

Abstract

A protocol for authentication of mesh points using only a password is presented.

Submission
page 1
Dan Harkins, Aruba Networks

