November 2007

doc.: IEEE 802.11-07/2855r0

IEEE P802.11
Wireless LANs

	A More Efficient KDF

	Date: 2007-11-13

	Author(s):

	Name
	Affiliation
	Address
	Phone
	email

	Dan Harkins
	Aruba Networks
	1322 Crossman ave, Sunnyvale CA
	+1 408 227 4500
	dharkins@arubanetworks.com

	Meiyuan Zhao
	Intel Corporation
	RNB-6-61, 2200 Mission College Blvd, Santa Clara, CA 95054 USA
	+1-408-653-5517
	meiyuan.zhao@intel.com

	Jesse Walker
	Intel Corporation
	JF3-206

2111 N.E. 25th Ave

Hillsboro, OR 97124

	+1 503-712-1849

	jesse.walker@intel.com

The current KDF derivation in the draft uses HMAC-SHA256. SHA256 by itself is a computationally intensive hashing algorithm (roughly twice as slow as SHA-1). Using it in HMAC form requires two SHA256 operations and is therefore even more computationally intensive.

A straight-forward extension of the main result of [4] shows that a block cipher in CMAC mode is a PRF. A PRF is a function whose output is infeasible to distinguish from the equivalent-length output of a truly random function. There is a theorem from Goldreich, Goldwasser and Micali that says a cryptographically secure pseudorandom function can be constructed from cryptographically secure pseudorandom bit generators. This proposal defines using AES-CMAC as a KDF.

Recent work by Phillip Rogaway and Thomas Shrimpton on cryptographic key-wrapping introduces a technique of applying a PRF to a vector of strings (they call it a vPRF) instead of to a single string (which they denote an sPRF). This results in a much more efficient construct. Efficiency is gained through the observation that constants over several iterations of the PRF need only be computed once. For example, an MKD can take advantage of the fact that only one string changes between PMK-MA derivations and after computing the first PMK-MA it need only compute a single sPRF(“MA-ID”) for all subsequent PMK-MAs. In addition the vectorized input of a vPRF obviates the need to encode the length of variable length inputs.
It has been shown that a vPRF-based KDF using AES-CMAC as the underlying sPRF is up to four times faster than a similar KDF based on HMAC-SHA256.

A random function is defined to create key names, NDF (Name Derivation Function). The output of this function is indistinguishable to an attacker from the equal length output of a random number generator.

Proposed normative text:
8.8.3 Key derivation function

Replace with:

The key derivation function for the mesh key hierarchy, KDF, is defined as follows:

Output = KDF-Length(KEY, X1, X2, … Xn) where

Input:
KEY, a variable length key derivation key of at least 128 bits

X1, X2, … Xn a variable number of variable-length strings

Output: a Length-bit derived key

K = L(KEY, 0, 128)

result (“”

iterations ((Length + 127)/128

do i = 1 to iterations

result (result || vPRF(K, Length, X1, X2, … Xn,, i)

od

return first Length bits of result, and securely delete all unused bits.

where vPRF(K, P1, P2, … Pm) is defined as

if m = 0 then return AES-128-CMAC(K, 0x01)

S (AES-128-CMAC(K, 0x00)

do j = 1 to m – 1

S (Double(S) (AES-128-CMAC(K, Pj)

od

if |Pm| (128 then T (S (-end Pm else T (Double(S) (Pm10*

return AES-128-CMAC(K, T)

and

N = NDF(S)

Where Input: S, a single string of variable length

Output: N = {0, 1}128, a key name, each possible name in the name space having an equal probability of being output. It uses internal three variables all four (4) octets in length: result, iterations, and n. It uses an internal string variable that is either four (4) or eight (8) octets in length greater than the input string.
 result (0x67452301 || 0xEFCDAB89 || 0x98BADCFE || 0x10325476

n (|S|

S’ (pad(S) || n

iterations (|S’|/128

S’1, …, S’m (S’

do i = 1 to iterations

result = AES-ECB-encrypt(S’i, result) (result

od
return result

where:

· L(-) is defined in 8.5.1.

· Double(S) means a multiplication of 2 and S modulo the irreducible polynomial x128 + x7 + x2 + x + 1. This can be easily implemented as a left shift and if the bit being shifted off is 1 then exclusive-oring the result with the string 012010000111.

· (is the exclusive-or operation

· N (-end X is an exclusive-or operation of the n-bit string N onto the end of string X which has at least n bits.

· X10* signifies padding of string X with a 1 and as many 0s as necessary to bring the length of the padded string to 128 bits
· Pad(X).signifies padding zero or more bits of value 0 onto a string such that the length in bits of the padded string is a multiple of 128.
· i and Length are encoded as 16 bit unsigned integers, represented using the bit ordering conventions of 7.1.1.
Informative Note:

The vPRF construct allows for various implementation optimizations. For example, if P1, P2, and P3 are passed to a vPRF with the same key and P1 and P2 are constants it is possible to calculate an S value after running the vPRF algorithm through P1 and P2 and stopping before the final calculation of T. This value can be cached and for subsequent calls to vPRF the final T value can be calculated from the cached S and P3. If Pj is a constant over several invocations of the vPRF with the same key it is also possible to calculate the intermediate value AES-128-CMAC(K, Pj) to avoid duplicate work.

8.8.4 PMK-MKD
Replace:

PMK-MKD = KDF-256(XXKey, “MKD Key Derivation”, MeshIDlength || MeshID || NASIDlength || MKD-NAS-ID || MKDD-ID || SPA || MPTKANonce)

With

PMK-MKD = KDF-256(XXKey, “MKD Key Derivation”, MeshID, MKD-NAS-ID, MKDD-ID, SPA, MPTKANonce)

Replace

PMK-MKDName = Truncat-128(SHA-256(“MKD Key Name” || MeshIDlength || MeshID || NASIDlength || MKD-NAS-ID || MKDD-ID || SPA || MPTKANonce))
With

PMK-MKDName = NDF(“MKD Key Name” || MeshIDlength || MeshID || NASIDlength || MKD-NAS-ID || MKDD-ID || SPA || MPTKANonce)

8.8.5 PMK-MA
Replace:

PMK-MA = KDF-256(PMK-MKD, “MA Key Derivation”, PMK-MKDName || MA-ID || SPA)

With

PMK-MA = KDF-256(PMK-MKD, “MA Key Derivation”, PMK-MKDName, MA-ID, SPA)

Replace

PMK-MAName = Truncate-128(SHA-256(“MA Key Name” || PMK-MKDName || MA-ID || SPA))
With

PMK-MAName = NDF(“MA Key Name” || PMK-MKDName || MA-ID || SPA)

8.8.6 PTK
Replace

PTK = KDF-PTKLen(PMK-MA, “Mesh PTK Key derivation”, MPTKSNonce || MPTKANonce || MA-ID || SPA || PMK-MAName)

With

PTK = KDF-PTKLen(PMK-MA, “Mesh PTK Key derivation”, MPTKSNonce, MPTKANonce, MA-ID, SPA, PMK-MAName)

Replace

PTKName = Truncate-128(SHA-256(“Mesh PTK Name” || PMK-MAName || MPTKSNonce || MPTKANonce || MA-ID || SPA))
With

PTKName = NDF(“Mesh PTK Name” || PMK-MAName || MPTKSNonce || MPTKANonce || MA-ID || SPA)

8.8.7 MKDK
Replace

MKDK = KDF-256(XXKey, “Mesh Key Distribuiton Key”, MeshIDLength || MeshID || NASIDlength || MKD-NAS-ID || MKDD-ID || MA-ID || MPTKANonce)

With

MKDK = KDF-256(XXKey, “Mesh Key Distribution Key”, MeshID, MKD-NASID, MA-ID, MPTKANonce)

Replace

MKDKName = Truncate-128(SHA-256(“MKDK Name” || MeshIDLength || MeshID || NASIDlength || MKD-NAS-ID || MKDD-ID || MA-ID || MPTKANonce))

With

MKDKName = NDF(“MKDK Name” || MeshIDLength || MeshID || NASIDlength || MKD-NAS_ID || MKDD-ID || MA-ID || MPTKANonce)

8.8.8 MPTK-KD
Replace

MPTK-KD = KDF-256(MKDK, “Mesh PTK-KD Key”, MA-Nonce || MKD-Nonce || MA-ID || MKD-ID)

With

MPTK-KD = KDF-256(MKDK, “Mesh PTK-KD Key”, MA-Nonce, MKD-Nonce, MA-ID, MKD-ID)
Replace

MPTK-KDName = Truncate-128(SHA-256(MKDKName || “MPTK-KD Name” || MA-Nonce || MKD-Nonce || MA-ID || MKD-ID))

With

MPTK-KDName = NDF(MKDKName || “MPTK-KDName” || MA-Nonce || MKD-Nonce || MA-ID || MKD-ID)

11A.4.3.6 Keys and Key Derivation Algorithm
Replace

AKEK || AKCK (PRF-256(PMK-MA, “AKCK AKEK Derivation”, 0512 || Selected AKM Suite || min(localMAC, peerMAC) || max(localMAC, peerMAC))

With

AKEK || AKCK (KDF-256(PMK-MA, “AKCK AKEK Derivation”, Selected AKM Suite, min(localMAC, peerMAC), max(localMAC, peerMAC))

Replace

TK (PRF-X(PMK-MA, “Temporal Key Derivation”, min(localNonce, peerNonce) || max(localNonce, peerNonce) || Selected AKM Suite || min(localMAC, peerMAC) || max(localMAC, peerMAC))

With

TK (KDF-X(PMK-MA, “Temporal Key Derivation”, min(localNonce, peerNonce), max(localNonce, peerNonce), Selected AKM Suite, min(localMAC, peerMAC), max(localMAC, peeerMAC))
Replace

TKName = PRF-128(PMK-MAName, “TK Name”, min(localNonce, peerNonce) || max(localNonce, peerNonce) || Selected AKM Suite || min(localMAC, peerMAC) || max(localMAC, peerMAC))

With

TKName = NDF(PMK-MAName || “TK Name” || min(localNonce, peerNonce) || max(localNonce, peerNonce) || Selected AKM Suite || min(localMAC, peerMAC) || max(localMAC, peerMAC)

References:
1. JH Song, et al, The AES-CMAC Algorithm, RFC4493.

2. P. Rogaway and T. Shrimpton, Deterministic Authenticated-Encryption, Advances in Cryptology – EUROCRYPT ’06, St. Petersburg, Russia, 2006.

3. O. Goldreich, S. Goldwasser, and S. Micali, How to construct random functions, Journal of the ACM, vol 33, no. 4, pp. 210-217, 1986.

4. M. Bellare, J. Killian, and P. Rogaway, The Security of the Cipher Block Chaining Message Authentication Code, CRYPTO 2004

Abstract

This document proposes a more efficient KDF for use in 802.11s.

Submission
page 1
Dan Harkins, Aruba Networks

