October 2007

doc.: IEEE 802.11-07/2649r0

IEEE P802.11
Wireless LANs

	Key Hierarchy Nonce Update

	Date: 2007-10-16

	Author(s):

	Name
	Affiliation
	Address
	Phone
	email

	Tony Braskich
	Motorola
	1301 E Algonquin Rd, Schaumburg, IL 60196
	+1-847-538-0760
	Tony.Braskich@motorola.com

	Steve Emeott
	Motorola
	1301 E Algonquin Rd, Schaumburg, IL 60196
	+1-847-576-8268
	Steve.Emeott@motorola.com

· Management frame body components

· Fields that are not information elements

· Mesh Key Transport Control field

Modify the text in 7.3.1.35 as shown using tracked changes.

The Mesh Key Transport Control field is used in the Multihop Action frames that implement the Mesh Key Transport protocol (see 7.4b.1).

The Mesh Key Transport Control field is 58 octets in length and is defined in Figure s8A.

	Octets: 4
	6
	16
	32

	Replay Counter
	SPA
	PMK-MKD
Name
	MKD-Salt

	· Mesh Key Transport Control field

The Replay Counter field contains a sequence number, represented as an unsigned binary number, used to detect replayed frames.

The SPA field contains the MAC address of the supplicant MP that, during its Initial MSA Authentication, created the PMK-MA that is the subject of the Mesh Key Transport Protocol message.

The PMK-MKDName field contains the identifier of the PMK-MKD that was used to derive the PMK-MA that is the subject of the Mesh Key Transport Protocol message.

The MKD-Salt field contains the pseudo-random value selected by the MKD and used in the derivation of the PMK-MKD identified in the PMK-MKDName field.

· Security

· Keys and key distribution

· EAPOL-Key frames

Modify Table 8-4 (KDE) by adding an additional entry as shown with tracked changes, and changed the Reserved row as required:

	· KDE

	

	OUI
	Data Type
	Meaning
	

	00-0F-AC
	9
	Mesh GTK Delivery KDE
	

	00-0F-AC
	10
	MKD Salt KDE
	

	00-0F-AC
	911-255
	
	

Insert the following text and Figure after Figure s52 in 8.5.2:

The format of the MKD Salt KDE is shown in.
	MKD-Salt

	32 octets

	Figure A–MKD Salt KDE format

· Key distribution for MSA

· PMK-MKD

Modify the text in 8.8.4 as shown using tracked changes.

The first level key of the mesh key hierarchy link security branch, PMK-MKD binds the SPA, MKD domain identifier, MKD-NAS-ID, and Mesh ID with the keying material resulting from the negotiated AKM. The PMK-MKD is the top level 256-bit keying material used to derive the next level keys (PMK-MAs):

PMK-MKD = KDF-256(XXKey, “MKD Key Derivation”, MeshIDlength || MeshID || NASIDlength || MKD-NAS-ID || MKDD-ID || SPA || MKD-Salt)

where

· KDF-256 is the KDF function as defined in 8.8.3 used to generate a key of length 256 bits.

· If the AKM negotiated is 00-0F-AC:5, then XXKey shall be the second 256 bits of the MSK (MSK being derived from the IEEE 802.1X authentication), i.e., XXKey = L(MSK, 256, 256). If the AKM negotiated is 00-0F-AC:6, then XXKey shall be the PSK.

· “MKD Key Derivation” is 0x4D4B44204B65792044657269766174696F6E.

· MeshIDLength is a single octet whose value is the number of octets in the Mesh ID.

· Mesh ID is the mesh identifier, a variable length sequence of octets, as it appears in the Beacon frames and Probe Response frames.

· NASIDlength is a single octet whose value is the number of octets in the MKD-NAS-ID.

· MKD-NAS-ID is the identifier of the MKD sent from the 802.1X Authenticator MP to the 802.1X Supplicant MP during Initial MSA Authentication.

· MKDD-ID is the 6-octet MKD domain identifier field from the Mesh security capability information element that was used during Initial MSA Authentication.

· SPA is the supplicant MP’s MAC address.

· MKD-Salt is an unpredictable 256-bit pseudo-random value generated by the PMK-MKD holder (MKD), delivered along with PMK-MA to the MA, and provided by the MA to the supplicant MP during Initial MSA Authentication.

The PMK-MKD is referenced and named as follows:

PMK-MKDName = Truncate-128(SHA-256(“MKD Key Name” || MeshIDlength || MeshID || NASIDlength || MKD-NAS-ID || MKDD-ID || SPA || MKD-Salt))

where

· “MKD Key Name” is 0x4D4B44204B6579204E616D65.

· Truncate-128(-) returns the first 128 bits of its argument, and securely destroys the remainder.

· PTK

Modify the text in 8.8.6 as shown using tracked changes.

The third level key of the mesh key hierarchy link security branch is the PTK. This key is mutually derived by the Supplicant MP and the MA with the key length being a function of the negotiated cipher suites as defined by Table 8-2 in 8.5.2.

The PTK derivation is as follows:

PTK = KDF-PTKLen(PMK-MA, “Mesh PTK Key derivation”, MPTKSNonce || MPTKANonce || MA-ID || SPA || PMK-MAName)

where

· KDF-PTKLen is the KDF function as defined in 8.8.3 used to generate a PTK of length PTKLen.

· PMK-MA is the key that is shared between the Supplicant MP and the MA

· “Mesh PTK Key derivation” is 0x4D6573682050544B204B65792064657269766174696F6E.

· MPTKSNonce is a 256 bit pseudo-random bit string contributed by the Supplicant MP

· MPTKANonce is a 256 bit pseudo-random string contributed by the MA

· SPA is the Supplicant MP’s MAC address

· MA-ID is the MAC address of the MA.

· PMK-MAName is defined in 8.8.5

· PTKlen is the total number of bits to derive, e.g., number of bits of the PTK. The length is dependent on the negotiated cipher suites as defined by Table 8-2 in 8.5.2.

Each PTK has three component keys, KCK, KEK, and TK, derived as follows:

The KCK shall be computed as the first 128 bits (bits 0-127) of the PTK:

KCK = L(PTK, 0, 128)

where L(-) is defined in 8.5.1.

The KCK is used to provide data origin authenticity between a supplicant MP and the MA when used in EAPOL-Key frames defined in 8.5.2.

The KEK shall be computed as bits 128-255 of the PTK:

KEK = L(PTK, 128, 128)

The KEK is used to provide data confidentiality between a supplicant MP and the MA when used in EAPOL-Key frames defined in 8.5.2.

Temporal keys (TK) shall be computed as bits 256-383 (for CCMP) or bits 256-511 (for TKIP) of the PTK:

TK = L(PTK, 256, 128), or

 TK = L(PTK, 256, 256)

The temporal key is configured into the Supplicant MP through the use of the MLME-SETKEYS.request primitive. The MP uses the temporal key with the pairwise cipher suite; interpretation of this value is cipher-suite specific.

The PTK is referenced and named as follows:

PTKName = Truncate-128(SHA-256(“Mesh PTK Name” || PMK-MAName || MPTKSNonce || MPTKANonce || MA-ID || SPA))

where

· “Mesh PTK Name” is 0x4D6573682050544B204E616D65.

· MKDK

Modify the text in 8.8.7 as shown using tracked changes.

The first level key of the key distribution branch, MKDK binds the MA-ID (the MAC address of the MP establishing the MKDK to become an MA), MKD domain identifier, and Mesh ID with the keying material resulting from the negotiated AKM. The MKDK is used to derive the MPTK-KD.

MKDK = KDF-256(XXKey, “Mesh Key Distribution Key”, MeshIDLength || MeshID || NASIDlength || MKD-NAS-ID || MKDD-ID || MA-ID || MKD-Salt)

where

· KDF-256 is the KDF function as defined in 8.8.3 used to generate a key of length 256 bits.

· If the AKM negotiated is 00-0F-AC:5, then XXKey shall be the second 256 bits of the MSK (MSK being derived from the IEEE 802.1X authentication), i.e., XXKey = L(MSK, 256, 256). If the AKM negotiated is 00-0F-AC:6, then XXKey shall be the PSK.

· “Mesh Key Distribution Key” is 0x4D657368204B657920446973747269627574696F6E204B6579.

· MeshIDLength is a single octet whose value is the number of octets in the Mesh ID.

· Mesh ID is the mesh identifier, a variable length sequence of octets, as it appears in the Beacon frames and Probe Response frames.

· NASIDlength is a single octet whose value is the number of octets in the MKD-NAS-ID.

· MKD-NAS-ID is the identifier of the MKD sent from the 802.1X Authenticator MP to the 802.1X Supplicant MP during Initial MSA Authentication.

· MKDD-ID is the 6-octet MKD domain identifier field from the Mesh security capability information element that was used during Initial MSA Authentication.

· MA-ID is the MAC address of the MP establishing a security association with the MKD in order to become configured as an MA.

· MKD-Salt is identical to the value used to derive the PMK-MKD, as described in 8.8.4.

The KDK is referenced and named as follows:

MKDKName = Truncate-128(SHA-256(“MKDK Name” || MeshIDLength || MeshID || NASIDlength || MKD-NAS-ID || MKDD-ID || MA-ID || MKD-Salt))

where

· “MKDK Name” is 0x4D4B444B204E616D65.

· Truncate-128(-) returns the first 128 bits of its argument, and securely destroys the remainder.

· Mesh key holders

· PMK-MA distribution within an MKD domain

Modify the text in 8.8.9.3 as shown using tracked changes.

An MKD domain is identified by the MKD domain identifier (MKDD-ID). An MKD domain contains a single MKD and at least one MA which has established a security association with the MKD.

An MP creates its mesh key hierarchy during the Initial MSA Authentication, utilizing information forwarded from the MKD by the MA. During the Initial MSA Authentication, the MKD derives the PMK-MKD from the MSK acquired during IEEE 802.1X authentication, when the negotiated AKM is 00-0F-AC:5, or from the PSK, when the negotiated AKM is 00-0F-AC:6.

Additionally, the MKD is responsible for deriving a PMK-MA for each MA within the MKD domain. The MKD is responsible for transmitting the derived PMK-MA keys securely to those key holders, along with the PMK-MAName, the key lifetime, the PMK-MKDName used to derive the PMK-MA, and the MKD-Salt used in the derivation of the PMK-MKD.

The secure transmission of keys and key information from MKD to MA shall be through the use of the mesh key transport protocol described in 11A.4.2.2.

Each MA shall derive the PTK mutually with the supplicant MP.

· MSA establishment procedure

· MSA 4-way Handshake

Modify the text in 11A.4.2.2.6 as shown using tracked changes.

The MP shall initiate MSA 4-Way Handshake after it has established a link instance with the peer MP and a PMK-MA has been installed for the link instance. The EAPOL-Key frame notation is defined in 8.5.2.1.

Authenticator -> Supplicant: Data(EAPOL-Key(0, 0, 1, 0, P, 0, KeyRSC, MPTKANonce, 0, DataKD_M1)) where DataKD_M1 = PMKID KDE, MKD Salt KDE.

Supplicant -> Authenticator: Data(EAPOL-Key(0, 1, 0, 0, P, 0, KeyRSC, MPTKSNonce, MIC, DataKD_M2)) where DataKD_M2 = (RSNIE, MSCIE, MSAIE, GTK KDE).

Authenticator -> Supplicant: Data(EAPOL-Key(1, 1, 1, 1, P, 0, 0, MPTKANonce, MIC, DataKD_M3)) where DataKD_M3 = (RSNIE, MSCIE, MSAIE, GTK KDE, Lifetime KDE).

Supplicant -> Authenticator: Data(EAPOL-Key(1, 1, 0, 0, P, 0, 0, 0, MIC, DataKD_M4)) where DataKD_M4 = 0.

The message sequence is similar to that of 8.5.3. The contents of each message shall be as described in 8.5.3, except as follows:

· Message 1: The Key Data field includes a PMKID KDE, containing the PMK-MAName that identifies the result of the key selection procedure. The Key Data field also includes the MKD Salt KDE, which contains the MKD-Salt value received by the Authenticator from the MKD during PMK-MA delivery.

· Message 2: The Key RSC field shall contain the starting sequence number that the Supplicant MP will use in MPDUs protected by the GTK included in this message. The RSNIE, MSCIE, and MSAIE shall be the same as those contained in the peer link confirm message sent by the Supplicant. The GTK KDE shall contain the GTK of the supplicant MP. The Key Data field shall be encrypted.

· Message 3: The RSNIE, MSCIE, and MSAIE shall be the same as those contained in the peer link confirm message sent by the Authenticator. The Lifetime KDE shall contain the lifetime of the PMK-MA.

The processing, upon reception, of Message 1 of the 4-way handshake shall be as described in 8.5.3.1 (following “Processing for PTK Generation”).

The processing of Message 2 is as described in 8.5.3.2 (following “Processing for PTK Generation”), except that verification of the Message 2 MIC (step b) shall be as follows: If the calculated MIC does not match the MIC that the Supplicant included in the EAPOL-Key frame, the Authenticator silently discards Message 2. If the MIC is valid, the Authenticator checks that the RSNIE, the MSCIE, and the MSAIE each bit-wise match those sent by the Supplicant in its peer link confirm message. The Authenticator also unwraps the supplicant’s encrypted GTK. If any of these comparisons fail, or if the unwrapping of the GTK failed, the Authenticator shall close the link.

The processing of Message 3 is as described in 8.5.3.3 (following “Processing for PTK Generation”), except that step (a) is replaced with the following: Verifies that the RSNIE, the MSCIE, and the MSAIE each bit-wise match those sent by the Authenticator in its peer link confirm message. If any of these comparisons fail, the Authenticator shall close the link.

The processing of Message 4 is as described as in 8.5.3.4 (following “Processing for PTK Generation”), except that step (b) contains the following additional action: If the MIC is valid, the Authenticator uses the MLME-SETKEYS.request primitive to configure the GTK received in Message 2 into the IEEE 802.11 MAC.

During processing of the 4-way handshake, the PTK shall be calculated by both MPs according to the procedures given in 8.8.6.

Following a successful MSA 4-way handshake, the IEEE 802.1X controlled port shall be opened at both MPs (for communication with the peer). Each MP shall use the Group Key Handshake (see 11A.4.5) to provide the peer MP with an updated GTK, as required, during the lifetime of the link. Subsequent EAPOL-Key frames shall use the Key Replay Counter to ensure they are not replayed. Unicast data traffic exchanged between MPs shall be protected with the PTK and shall use the Pairwise cipher suite given in the MSAIE of the peer link confirm frames exchanged as part of the MSA Authentication mechanism.

· Mesh Key Transport Protocols

Within 11A.4.6, replace all instances of “MPTKANonce” with “MKD-Salt”

Abstract

This document repairs a problem with the creation of the mesh key hierarchy that was identified during analysis of MSA (see 11-07/2436r0), which is called for in CIDs 1323, 1986, 3984, and 4031. In the current draft, the MKD contributes a nonce into the derivation of the PMK-MKD and the MKDK, when the key hierarchy is created during an MP’s Initial MSA Authentication. However, the MA communicates this nonce to the authenticating MP during the first message of the MSA 4-way handshake (as MPTKAnonce). This prevents the MA from making a random contribution during the derivation of the PTK.

This submission creates a new name for the MKD’s contribution (MKD-Salt), so that MPTKAnonce is simply a nonce generated by the authenticator MP. This submission updates Message #1 of the MSA 4-way handshake so that both of these values may be sent.

These improvements aim to partially resolve CIDs 1323, 1986, 3984, and 4031.

Baseline D1.07

�If 11-07/2648 has not been adopted, replace "The Key Data field is empty" with "The Key Data field includes the MKD Salt KDE, which contains the MKD-Salt value received by the Authenticator from the MKD during PMK-MA delivery" instead of adding this sentence.

Submission
page 1
Tony Braskich, Motorola

