November 2007

doc.: IEEE 802.11-07/2569r1

IEEE P802.11
Wireless LANs

	Text changes for relationship between peer link and physical link

	Date: 2007-11-14

	Author(s):

	Name
	Affiliation
	Address
	Phone
	email

	Michael Bahr
	Siemens Enterprise Communications
	Otto-Hahn-Ring 6
81730 München, Germany
	+49-89-636-49926
	bahr@siemens.com

	Meiyuan Zhao
	Intel Corporation
	RNB-6-61, 2200 Mission College Blvd, Santa Clara, CA 95054 USA
	+1-408-653-5517
	meiyuan.zhao@intel.com

	Guido R. Hiertz
	Philips
	ComNets, RWTH Aachen University, Kopernikusstr. 16,

52074 Aachen, Germany
	+49-241-802-5829
	hiertz@ieee.org

1. Related Comments

CIDs 418 and 465

	418
	The requirement of a secure link is too strict. In HWMP, it is only necessary to have a secure association between the MPs. The requirement is that the receiving MP can correctly decode the received frames.
	Change "… established a secure link." to "… established a secure association."
	transfer from RFI; Suggest counter with "established a security association".

	465
	A link is defined "connectionless" in the 802.11 MAC in a mesh environment. The successful DATA-ACK handshake defines an existing link, the unsuccessful DATA-ACK handshake a non-existing link. A "connection-oriented" link model might be useful in some cases, but is not necessary. Additionally, there is an association of STAs with APs. As a high level description, this ensures that STAs and APs are allowed to communicate with each other based on more or less strict requirements. It also makes clear that both belong to the same BSS or "network". The topology is implicit in the architecture: A STA communicates with an AP over a single hop, and it always communicates with its AP. All these 3 functionalities (link model, network association, and topology awareness) are also required for a WLAN mesh. The link model is given by using the 802.11 MAC in 11s. It is a "connectionless" link which is determined by the DATA-ACK exchange. Network association is more complicated, since there is no longer a single entity (AP) that defines the network. Network association is now achieved by security associations with all MPs of the WLAN Mesh which is defined by a unique Mesh ID. So, an MP belonging to a WLAN mesh can decipher mesh data frames and mesh messages from other MPs of the same WLAN mesh, but cannot decipher frames from a different WLAN mesh with which it is not associated. If no security is used, a simple association is used. The topology awareness is the task of the path selection protocol, which is a necessary part of a WLAN mesh network. This does not require an explicit mesh peer link establishment that leads to a "connection-oriented" link model. Since peer link establishment discovers (parts of) the topology of the mesh network, it should belong to the path selection protocol. In fact, the path selection protocol RA-OLSR defines its own peer link discovery (neighbor discovery) and the default path selection protocol HWMP does not need an explicit peer link establishment since the mechanisms of the routing protocol discover the links on-demand: if the routing messages of the route discovery can be transmitted, there are links, if not there aren't. If an explicit peer link establishment is needed for the link state, the peer link establishment should be combined with the path selection metric. There are path selection metrics possible which do not need an explicit peer link establisment, e.g. hopcount. A path selection metric has to provide its own means to do link state maintenance. An explicit peer link establishment and maintenance requires additional overhead. It introduces an additional control loop which produces messages and adds additional delay, especially if the topology is changing. Since a general, explicit peer link establishment is not necessary, and it only increases overhead and delay and therefore decreases performance and capacity of the WLAN mesh network, it should be removed.
	Remove mesh peer link establishment (clause 11A.1.5) and all occurrences and adapt all text that makes use of it. Remove clauses 7.3.2.46-48.
	Defer/Reject -- need rationale

2. Rationale of resolutions
2.1. CID 418

Change “secure link” to “peer link” for the following reasons:

· Secure operation of a mesh cannot be enforced.

· In a secure mesh, the peer link includes the security association.
· A peer link between neighboring MPs indicates that the neighboring MPs belong to the same mesh.
· the management of physical link connectivity is left to the specific mechanisms of the path selection protocols due to the concept of a peer link being a logical link.

2.2. CID 465

The mesh peer link management is necessary to set up the security association securely.
The counter solution is to decouple the logical concept of a peer link from the physical link:

· a peer link between two peer MPs indicates that

· the peer MPs belong to the same mesh

· the peer MPs have a valid security association, meaning that they can decode secured data from each other

· the peer MPs can exchange frames when the are in direct communication range

· a successful communication over a physical link requires an existing peer link between the communicating MPs

· a physical link between two MPs is necessary during peer link setup only

· loss of physical link between two peer MPs does not require to close the peer link

· increases adaptability to changing radio environment and mobility
· reduces number of packets for peer link setup

· the management of physical link connectivity is left to the specific mechanisms of the path selection protocols

For more discussion, see documents 11-07/0861r0 and 11-07/2572.
3. Overview of changes

· extend definitions to account for differences between peer MPs and neighbor MPs and between logical peer links and physical links

· make changes to use peer link, mesh link, peer MP, neighbor MP, neighbor peer MP in the right context throughout the document where appropriate

· change name of a few reason and status codes of mesh peer link establishment protocol starting with MESH_LINK_... to PEER_LINK_...

· removed strong coupling of logical peer link and physical link connectivity in introductory clause of mesh discovery (clause 11A.1.1)

4. Proposed changes to normative text
All proposed changes are based on draft version D1.07 of TGs. The changes in the snippets of normative text are marked with WinWord change tracking.
INSTRUCTION TO EDITOR: change the normative text as shown with the marked changes in the following snippets of the normative text
NEXT SNIPPET

3. Definitions

Insert the following new definitions alphabetically:

3.s1 candidate peer mesh point: a neighbor mesh point (MP) to which a peer link has not been established but meets eligibility requirements to become a peer MP.

3.s2 channel precedence: a criterion used to enable peer mesh points to coalesce to a common wireless medium communication channel.

3.s3 mesh: A network consisting of two or more mesh points communicating via mesh services.

3.s4 mesh access point (MAP): A mesh point that is collocated with one or more access point(s).

3.s5 mesh deterministic access (MDA): a coordination function for the mesh.

3.s6 mesh deterministic access opportunity (MDAOP): MDAOP is a period of time within every mesh DTIM interval that is set up between a transmitter and a receiver.

3.s7 mesh delivery traffic indication message (DTIM) interval: The value indicated by the mesh DTIM period subfield in the mesh TIM element in Beacon frames or Probe Response frames.

3.s8 mesh link: A link from one MP to a neighbor MP that has been established with the peer link management protocol.

3.s9 link metric: A criterion used to characterize the performance/quality/eligibility of a mesh link for use in a mesh path.

3.s10 mesh neighborhood: The set of all neighbor MPs relative to a particular MP.

3.s11 mesh path: A concatenated set of mesh links from a source mesh point to a destination mesh point.

3.s12 mesh path selection: The process of selecting a mesh path.

3.s13 mesh point (MP): An IEEE 802.11 entity that contains an IEEE 802.11-conformant medium access control (MAC) and physical layer (PHY) interface to the wireless medium (WM) that supports mesh services.

3.s14 mesh portal: A mesh point that is collocated with one or more portal(s).

3.s15 mesh services: The set of services defined in this standard that together with other 802.11 MAC services provide for the creation and operation of mesh networks using 802.11 PHY services (see 7.3.2.54).

3.s16 neighbor mesh point: An MP that has a link with another MP. Not all neighbor MPs are peer MPs.

3.s17 path metric: An aggregate multi-hop criterion used to characterize the performance/quality/eligibility of a mesh path.

3.sXX neighbor peer mesh point: An MP to which a peer link has been established and that has a link with its peer MP.

3.sXX peer link: A logical link from one MP to another MP that has been established with the mesh peer link management protocol.
3.s18 peer mesh point: MP to which a peer link has been established. Not all peer MPs are neighbor MPs.
3.s19 unified channel graph (UCG): A set of mesh point PHYs that are connected to each other via a common wireless medium communication channel.

NEXT SNIPPET

· General

The mesh header field is a 5to 23 octet field that includes:

· an 8-bit Mesh Flags field to control mesh header processing

· a time to live field for use in multi-hop forwarding to aid in limiting the effect of transitory path selection loops

· a mesh sequence number to suppress duplicates in broadcast/multicast forwarding and for other services

· and in some cases a 6, 12, or 18-octet mesh address extension field containing extended addresses enabling up to a total of 6 addresses in mesh frames

The Mesh Header field, shown in Figure s4, is present in Data frames if and only if they are transmitted between neighbor peer MPs with an established peer link. Data frames including the Mesh Header field are referred to as Mesh Data frames. The Mesh Header is also included in Management frames of subtype Multihop Action.

	Octets: 1
	1
	3
	0, 6, 12, or 18

	Mesh Flags
	Mesh Time To Live (TTL)
	Mesh Sequence Number
	Mesh

Address Extension (present in some configurations)

	· Mesh Header field

NEXT SNIPPET

· Reason Code field

Insert the following rows into Table 7-22 and change the last row (Reserved) as shown.

	· Reason codes

	Reason code
	Meaning

	·
	“PEER-LINK-CANCELLED”. IEEE 802.11 SME cancels the peer link instance with the reason other than reaching the maximum number of peer MPs

	·
	“MESH-MAX-PEERS”. The Mesh Point has reached the supported maximum number of peer MPs

	·
	“MESH-CAPABILITY-POLICY-VIOLATION”. The received information violates the Mesh Configuration policy configured in the Mesh Point profile

	·
	“MESH-CLOSE-RCVD”. The Mesh Point has received a Peer Link Close message requesting to close the peer link.

	·
	“MESH-MAX-RETRIES”. The Mesh Point has re-sent dot11MeshMaxRetries Peer Link Open messages, without receiving a Peer Link Confirm message.

	·
	“MESH-CONFIRM-TIMEOUT”. The confirmTimer for the peer link instance times out.

	·
	“MESH-SECURITY-ROLE-NEGOTIATION-DIFFERS”. The Mesh Point uses a different method for Role Negotiation, preventing MSA authentication from completing.

	·
	“MESH-SECURITY-AUTHENTICATION-IMPOSSIBLE”. No common PMK-MA exists, and Initial MSA Authentication is also impossible, since no connection to the MKD exists.

	·
	“MESH-SECURITY-FAILED-VERIFICATION”. The security-related information received in the peer link management message does not match the expected values.

	·
	“MESH-INVALID-GTK”. The Mesh Point fails to unwrap the GTK or the values in the wrapped contents do not match

	·
	“MESH-MISMATCH-GTK”. The MP that sends the GTK fails to verify that the same value is received by the peer MP

	·
	“MESH-INCONSISTENT-PARAMETERS”. The Mesh Point receives inconsistent information about the mesh paramters between Peer Link Management frames

	4655-65 535
	Reserved

NEXT SNIPPET

· AID field

Change the text in Clause 7.3.1.8 as shown:

The In case of BSS operation, the AID field is a value assigned by an AP during association that represents the 16-bit ID of a STA. In mesh operation, the AID field is a value assigned by an MP during peer link establishment that represents the 16-bit ID of a neighboring MP. The length of the AID field is 2 octets. The AID field is illustrated in Figure 7-26.

· Status Code field

Insert the following rows into Table 7-23 and change the last row (Reserved) as shown.

	· Status codes

	Reason code
	Meaning

	·
	“PEER-LINK-ESTABLISHED”. The peer link has been successfully established

	·
	“PEER-LINK-CLOSED”. The peer link has been closed completely

	·
	No listed Key Holder Transport type is supported.

	·
	The Mesh Key Holder Security Handshake message was malformed.

	·
	“MESH-LINK-MAX-RETRIES”. The MSA Abbreviated Handshake fails because no response after maximal number of retries.

	·
	“MESH-LINK-NO-PMK”. The Abbreviated Handshake fails because no shared PMK

	·
	“MESH-LINK-ALT-PMK”. The Abbreviated Handshake fails because no matching chosen PMK, but there exits an alternative choice.

	·
	“MESH-LINK-NO-AKM”. The Abbreviated Handshake fails because no commonly supported AKM suite for Abbreviated Handshake exists.

	·
	“MESH-LINK-ALT-AKM”. The Abbreviated Handshake fails because no matching chosen AKM, but there exists an alternative choice.

	·
	“MESH-LINK-NO-KDF”. The Abbreviated Handshake fails because no supported KDF. The peer MP supports a different KDF.

	·
	“MESH-LINK-MAX-RETRIES”. The MSA Abbreviated Handshake fails because no response after maximal number of retries.

	·
	“MESH-LINK-NO-PMK”. The Abbreviated Handshake fails because no shared PMK

	·
	“MESH-LINK-ALT-PMK”. The Abbreviated Handshake fails because no matching chosen PMK, but there exits an alternative choice.

	·
	“MESH-LINK-NO-AKM”. The Abbreviated Handshake fails because no commonly supported AKM suite for Abbreviated Handshake exists.

	·
	“MESH-LINK-ALT-AKM”. The Abbreviated Handshake fails because no matching chosen AKM, but there exists an alternative choice.

	·
	“MESH-LINK-NO-KDF”. The Abbreviated Handshake fails because no supported KDF. The peer MP supports a different KDF.

	5559-65 535
	Reserved

NEXT SNIPPET

· Mesh Capability

The mesh capability field comprises a set of values indicating whether an MP is a possible candidate for peer link establishment. The details of the mesh capability field are shown in Figure s14.

	B0
	B1
	B2
	B3
	B4
	B5
	B6
	B7
 B15

	Accepting Peer Links
	Power Save Support Enabled
	Synchronization Enabled
	Synchronization Active
	Synchronization Support Required from Peer MP
	MDA Enabled
	Forwarding
	Reserved

	Bits: 1
	1
	1
	1
	1
	1
	1
	9

	· Mesh Capability field

The “Accepting Peer Links” field is set to 1 if the MP is able and willing to establish peer links with other MPs and set to 0 otherwise.

The “Power Save Support Enabled” field is set to 1 if the MP is a power save supporting MP and capable of maintaining peer links with MPs in Power Save mode and set to 0 otherwise.

The “Synchronization Enabled” field is set to 1 if the MP supports timing synchronization with peer MPs and is set to 0 otherwise.

The “Synchronization Active” field is set to 1 if the MP is currently a synchronizing MP and set to 0 otherwise.

The “Synchronization Support Required from Peer” field is set to 1 if the MP requests peer MPs attempting to communicate with it to synchronize with it and set to 0 otherwise.

The “MDA Enabled” field is set to 1 if the MP supports MDA services and set to 0 otherwise.

The "Forwarding" field is set to dot11MeshForwarding.

NEXT SNIPPET

· Link metric report element

A link metric report element is transmitted by an MP to a neighbor peer MP to indicate the quality of the link between them. This information may be used to ensure that the link metric is symmetric for all mesh links if the path selection protocol so requires.

The contents of the element are shown in Figure s16.

	Octets: 1
	1
	variable

	ID
	Length
	metric M

	· Link Metric Report element

The Element ID is set to the value given in Table 7-26 for this information element. The length is set to the length of the metric field, as defined by the active path selection metric.

The metric M is the value of the link metric associated with the mesh link between the neighbor peer MP sending the link metric report and the local MP.

The link metric report element may be used in the generation of a link metric such as the airtime metric defined in 11A.7.

· Congestion Notification element

The Congestion Notification element, illustrated in Figure s17, is used in Congestion Control Notification frames transmitted by an MP to indicate to its neighbor peer MPs its congestion status per AC and the duration for which it expects the congestion to last.

	Octets: 1
	1
	2
	2
	2
	2

	ID
	Length
	Congestion Notification Expiration Timer (AC_BK)
	Congestion Notification Expiration Timer (AC_BE)
	Congestion Notification Expiration Timer (AC_VI)
	Congestion Notification Expiration Timer (AC_VO)

	· Congestion Notification element format

The Element ID is set to the value given in Table 7-26 for this information element. The length is set to 8.

The element contains four Congestion Notification Expiration Timer fields for the four EDCA access categories to indicate the estimated congestion duration per AC. The congestion notification expiration timer values are encoded as unsigned integers in units of 0.1 TUs.

· Peer Link Management element

The Peer Link Management element is transmitted by an MP to manage a peer link with a peer MP. The format of the Peer Link Management element is shown in Figure s18.

	Octets: 1
	1
	1
	2
	2
	2

	Element ID
	Length
	Subtype
	Local Link ID
	Peer Link ID
	Reason Code

	· Peer Link Management element

The Element ID is set to the value given in Table 7-26 for this information element.

The Subtype field specifies the type of the Peer Link Management element. There are three subtypes: Peer Link Open (0), Peer Link Confirm (1), and Peer Link Close (2). The values 3—28-1 are reserved.

The Peer Link Management element with subtype 0 is referred to as Peer Link Open element. The Peer Link Management element with subtype 1 is referred to as Peer Link Confirm element. The Peer Link Management element with subtype 2 is referred to as Peer Link Close element.

The value of the Length field varies depending on the subtype of the Peer Link Management element. The Length is 7 for Peer Link Close, 3 for Peer Link Open, and 5 for Peer Link Confirm.

The Local Link ID is the integer generated by the MP to identify the link instance. This field is present for all three types of Peer Link Management elements

.

The Peer Link ID is the integer generated by the peer MP to identify the link instance. This field is not present for the Peer Link Open subtype, is present for the Peer Link Confirm subtype, and may be present for the Peer Link Close subtype.

The Reason Code field enumerates reasons for sending a Peer Link Close. It is present for the Peer Link Close subtype and is not present for Peer Link Open or Peer Link Confirm subtypes. This field enumerates the following reasons:

· PEER-LINK-CANCELLED: IEEE 802.11 SME cancels the peer link instance.

· MESH-MAX-PEERS: The limit of maximum of peer MPs is reached.

· MESH-CONFIGURATION-POLICY-VIOLATION: The received request violates the MP’s Mesh Configuration.

· MESH-CLOSE-RCVD: The MP has received a correct Peer Link Close message (according to criteria defined in 11A.2.2).

· MESH-MAX-RETRIES: The limit of dot11MeshMaxRetries is reached.

· MESH-CONFIRM-TIMEOUT: The confirmTimer times out.

· Mesh Channel Switch Announcement element

The Mesh Channel Switch Announcement element is used by an MP in a Mesh to advertise to other MPs when it is changing to a new channel and the channel number and precedence value of the new channel (See 11A.3.3). The format of the Mesh Channel Switch Announcement element is shown in Figure s19.

	Octets: 1
	1
	1
	1
	4
	1
	6

	ID
	Length
	Channel Switch Mode
	New Channel Number
	New Channel Precedence Indicator
	Channel Switch Count
	Source Address

	· Mesh Channel Switch Announcement element

The Element ID is set to the value given in Table 7-26 for this information element. The length is set to 13 octets.

The Channel Switch Mode field indicates restrictions on transmission until a channel switch. An MP sets the Channel Switch Mode field to either 0 or 1 on transmission. A Channel Switch Mode set to 1 means that the MP to which the frame containing the element is addressed is advised to transmit no further frames on the current channel until the scheduled channel switch. A Channel Switch Mode set to 0 does not impose requirement on the receiving MP.

Values from 2 to 255 are reserved.

The New Channel Number field is set to the number of the channel to which the MP is moving.

The New Channel Precedence Indicator field is set to the channel precedence value of the channel to which the MP is moving.

See 11A.3 for more information on the channel precedence indicator.

The Channel Switch Count field is set to the time in TUs (in the range from 0-255) until the MP sending the Mesh Channel Switch Announcement element switches to the new channel.

The Source Address field is set to the address of the MP that originates the frame.

The Mesh Channel Switch Announcement element is included in Mesh Channel Switch Announcement frames.

· Mesh Neighbor List element

The Mesh Neighbor List element is used by an MP to advertise its neighbor peer MPs and their Power Management Mode. The element contains list of the MAC addresses of current neighbor peer MPs and information about their Power Management Mode. The MP Control field contains the connectivity reporting control information.

The format of the Mesh Neighbor List element is shown in Figure s20.

	Octets: 1
	1
	1
	1
	6
	6
	...
	6
	ceiling(n/8)

	ID
	Length
	MP control
	Neighbor peer MP Count
	MAC Address of neighbor peer MP 1
	MAC Address of neighbor peer MP 2
	...
	MAC Address of neighbor peer MP n
	Neighbor peer MP operating in power save mode (bitfield)

	· Mesh Neighbor List element

The Element ID is set to the value given in Table 7-26 for this information element. The length is set to 1 to 255 octets.

The format of the MP control field is shown in Figure s21.

	B1

 B3
	B4
	B5
	B6
	B7

	Connectivity Reporting Interval
	Reserved
	Reserved
	Reserved
	Power management mode of reporting MP

	Bits: 4
	1
	1
	1
	1

	· MP Control field

The Connectivity Reporting Interval specifies an integer value of the mesh DTIM Beacon frames between the Connectivity Report transmissions. Connectivity Reporting Interval set to zero indicates that connectivity reporting is not used.

The Power management mode of reporting MP field indicates the beacon broadcaster’s power management mode. If the Power management mode of reporting MP bit is set to 1, then the beacon broadcaster sends only Beacons sent with the Mesh DTIM count field in the Mesh TIM element set to 0. If the Power management mode of reporting MP bit is set to 0, then the beacon broadcaster is in active mode.

The MAC addresses of the neighbor peer MPs are set for the neighbor peer MPs, which are listed in the Connectivity Reports received by the BB within dot11BBConnectivityReportTimeout mesh DTIM intervals.

The neighbor peer MP operating in power save mode bitfield indicates the current power save mode of each neighbor peer MP list member. Each bit of this field indicates the power management mode of the corresponding neighbor peer MP list member. If a bit is set to 0, then the corresponding neighbor peer MP list member is in “active mode” and if a bit is set to 1, the corresponding neighbor peer MP list member is in “Power Save mode”. For example, if the Mesh Neighbor List element contains 8 MAC addresses and the neighbor peer MP operating in power save mode bitfield is ‘00110001’, then the MPs with MAC addresses in positions 3, 4, and 8 in the neighbor peer MP list are in the power save mode. The neighbor peer MP operating in power save mode bitfield length is zero-padded to an integer number of octets.

 The bits are in the same order as the MAC addresses. The length of the neighbor peer MP operating in power save mode field is the following number of octets: least integer greater than or equal to n divided by 8.

NEXT SNIPPET

· PREQ information element

The PREQ element is used for discovering a path to one or more destinations, building a proactive (reverse) path selection tree to the root MP, and confirming a path to a destination (optional).

The format of the PREQ element is shown in Figure s37.

	Octets:1
	1
	1
	1
	1
	4
	6
	4
	0 or 6
	4

	Element ID
	Length
	Flags
	Hopcount
	Time to Live
	PREQ ID
	Originator Address
	Originator Sequence Number
	Proxied Address
	Lifetime

	
	
	
	
	
	
	
	
	
	

	4
	1
	1
	6
	4
	...
	1
	6
	4
	

	Metric
	Destination Count
	Per Destination Flags #1
	Destination Address #1
	Destination Seq. Num. #1
	...
	Per Destination Flags #N
	Destination Address #N
	Destination Seq. Num. #N
	

	· PREQ element

The Element ID is set to the value given in Table 7-26 for this information element. The length is set to 37 to 255 octets.

The Flags field is set as follows. Bit 0: Portal Role (0 = non-portal, 1 = portal), Bit 1: (0 = group addressed, 1 = individually addressed) (see 11A.8.3), Bit 2: Proactive PREP (0 = off, 1 = on), Bit 3 – 5: Reserved, Bit 6: Address Extension (AE) (1= (destination count ==1 && proxied device address present), 0 = otherwise), Bit 7: Reserved.

The Hop Count field is coded as an unsigned integer and is set to the number of hops from the originator to the MP transmitting the request.

The Time to Live field is coded as an unsigned integer and is set to the maximum number of hops allowed for this element.

The PREQ ID field is coded as an unsigned integer and is set to some unique ID for this PREQ.

The Originator Address field is represented as a 48-bit MAC address and is set to the originator MAC address.

The Originator Sequence Number is coded as an unsigned integer and is set to a sequence number specific to the originator.

The Proxied Address field is the MAC address of a proxied entity (e.g. STA) in case the PREQ is generated because of a frame received from outside the mesh (e.g. BSS) and the proxied entity is the source of the frame. This field is only present if the AE flag is set to 1 and is represented as a 48-bit MAC address.

The Lifetime field is coded as an unsigned integer and is set to the time for which MPs receiving the PREQ consider the forwarding information to be valid. The lifetime is measured in TUs.

The Metric field is coded as an unsigned integer and is set to the cumulative metric from the originator to the MP transmitting the PREQ.

The Destination Count N field is coded as an unsigned integer and gives the number of Destinations (N) contained in this PREQ.

The format of the Per Destination Flags field is shown in Figure s38.

	B0
	B1
	B2 B7

	DO
	RF
	Reserved

	Bits: 1
	1
	6

	· PREQ Per-Destination Flags field format

Per Destination Flags are set as follows.

Bit 0: DO (Destination Only): If DO=0, an intermediate MP with active forwarding information to the corresponding destination responds to the PREQ with a unicast PREP; if DO=1, only the destination can respond with a unicast PREP. The default value is 1.

Bit 1: RF (Reply-and-Forward): The RF flag controls the forwarding of PREQ at intermediate MPs. When DO=0 and the intermediate MP has active forwarding information to the corresponding destination, the PREQ is not forwarded if RF=0 and forwarded if RF=1. The default value is 1. When DO=1, the RF flag has no effect.

Bit 2-7: Reserved

The Destination Address is represented as a 48-bit MAC address.

The Destination Sequence Number field is coded as an unsigned integer and is the latest sequence number received in the past by the originator for any path towards the destination.

Detailed usage of the PREQ element is described in 11A.8.5.

The PREQ element may be transmitted to a neighbor peer MP via either unicast or broadcast. A “unicast PREQ” is a PREQ element contained in a management frame that is unicast to a neighbor peer MP. A “broadcast PREQ” is a PREQ element contained in a management frame that is broadcast to all neighbor peer MPs.

NEXT SNIPPET

· Peer Link Confirm frame format

The Peer Link Confirm frame is used to confirm a peer link using the procedures defined in 11A.2. The frame body of a Peer Link Confirm frame contains the information shown in Table s13.

	· Peer Link Confirm frame body

	Order
	Information
	Notes

	·
	Category
	

	·
	Action Value
	

	·
	Capability
	

	·
	Status code
	

	·
	AID
	

	·
	Supported rates
	

	·
	Extended Supported Rates
	The Extended Supported Rates element is present whenever there are more than eight supported rates, and it is optional otherwise.

	·
	RSN
	The RSN information element is only present when dot11RSNAEnabled is set to TRUE.

	·
	EDCA Parameter Set
	

	·
	Mesh ID
	The Mesh ID information element is present when dot11MeshEnabled is true.

	·
	Mesh Configuration
	The Mesh Configuration information element is present when dot11MeshEnabled is true.

	·
	Peer Link Management
	The Peer Link Management information element is present only when dot11MeshEnabled is true. The subtype of the Peer Link Management Element is set to 1.

	·
	MSCIE
	The MSCIE element is present when dot11MeshEnabled is true.

	·
	MSAIE
	The MSAIE element is present when dot11MeshEnabled is true.

	·
	MIC
	This field is present when dot11MeshEnabled is true and the abbreviated handshake is enabled

	Last
	Vendor Specific
	One or more vendor-specific information elements may appear in this frame. This information element follows all other information elements.

The Category field is set to the value in Table 7-24 for category Mesh Peer Link Management.

The Action field is set to the value in Table s11 for this action frame type.

NEXT SNIPPET

· Link Metric Request frame format

The Link Metric Request frame is transmitted by an MP to a neighbor peer MP in a mesh to request metric information. This frame is transmitted in an individually addressed manner. The frame body of a Link Metric Request frame contains the information shown in Table s16.

	· Link Metric Request frame body

	Order
	Information

	·
	Category

	·
	Action Value

The Category field is set to the value in Table 7-24 for category Mesh Link Metric.

The Action field is set to the value in Table s15 for this action frame type.

· Link Metric Report frame format

The Link Metric Report frame is transmitted by an MP to a neighbor peer MP in a mesh to advertise metric information. This frame is transmitted in an individually addressed manner. The frame body of a Link Metric Report frame contains the information shown in Table s17.

	· Link Metric Report frame body

	Order
	Information

	·
	Category

	·
	Action Value

	·
	Local Link State Announcement Element

The Category field is set to the value in Table 7-24 for category Mesh Link Metric.

The Action field is set to the value in Table s15 for this action frame type.

NEXT SNIPPET

· Congestion Control Request frame format

The Congestion Control Notification frame uses the Action frame body format and is sent by an MP to its neighbor peer MP(s) to indicate its congestion status. The body is shown in Table s26.

	· Congestion Control Request frame body

	Order
	Information

	·
	Category

	·
	Action Value

	·
	Target Transmission Rate element

The Category field is set to the value in Table 7-24 for category Mesh Resource Coordination.

The Action field is set to the value in Table s25 for this action frame type.

The Congestion Control Elements field contains one or more congestion control related information elements. If the Congestion Control Mode signalled in the Mesh Configuration element is set to 0, the Congestion Control Elements field includes the Congestion Notification Element. The Congestion Notification Element field is set following the guidelines described in 11A.10.

· MDA Setup Request frame format

The Mesh Deterministic Access MDA Setup Request frame is used to request the setup of a set of MDAOPs. It is transmitted by an MDA-active MP to an MDA-active neighbor peer MP. This frame is transmitted using individual addresses. The frame body of a Mesh Deterministic Access MDA Setup Request frame contains the information shown in Table s27.

	· MDA Setup Request frame body

	Order
	Information

	·
	Category

	·
	Action Value

	·
	MDA Setup Request element

The Category field is set to the value in Table 7-24 for category Mesh Resource Coordination.

The Action field is set to the value in Table s25 for this action frame type.

The MDA Setup Request element is described in 7.3.2.64.

· MDA Setup Reply frame format

The Mesh Deterministic Access MDA Setup Reply frame is used to reply to an MDAOP Setup Request. It is transmitted by an MDA-active MP to an MDA-active neighbor peer MP. This frame is transmitted using individual addresses. The frame body of a Mesh Deterministic Access MDA Setup Reply frame contains the information shown in Table s28.

	· MDA Setup Reply frame body

	Order
	Information

	·
	Category

	·
	Action Value

	·
	MDA Setup Reply element

The Category field is set to the value in Table 7-24 for category Mesh Resource Coordination.

The Action field is set to the value in Table s25 for this action frame type.

The MDA Setup Reply element is described in 7.3.2.65.

· MDAOP Advertisement Request frame format

The MDAOP Advertisement Request frame is transmitted by an MDA-active MP to request MDA advertisements from neighbor peer MPs. The frame body of an MDAOP Advertisement Request frame is shown in Table s29.

	· MDAOP Advertisement Request frame body

	Order
	Information

	·
	Category

	·
	Action Value

The Category field is set to the value in Table 7-24 for category Mesh Resource Coordination.

The Action field is set to the value in Table s25 for this action frame type.

· MDAOP Advertisements frame format

The Mesh Deterministic Access MDAOP Advertisements frame is transmitted by an MDA-active MP to one or more MDA-active neighbor peer MPs. This frame may be transmitted using group addresses or individual addresses. The frame body of a Mesh Deterministic Access MDAOP Advertisements frame contains the information shown in Table s30.

	· MDAOP Advertisements frame body

	Order
	Information

	·
	Category

	·
	Action Value

	·
	MDA Advertisements element

The Category field is set to the value in Table 7-24 for category Mesh Resource Coordination.

The Action field is set to the value in Table s25 for this action frame type.

The MDAOP Advertisements element is described in 7.3.2.66.

· MDAOP Set Teardown frame format

The Mesh Deterministic Access MDAOP Set Teardown frame is transmitted by an MDA-active MP to one or more MDA-active neighbor peer MPs. This frame may be transmitted using group addresses or individual addresses. The frame body of a Mesh Deterministic Access MDAOP Set Teardown frame contains the information shown in Table s31.

	· MDAOP Set Teardown frame body

	Order
	Information

	·
	Category

	·
	Action Value

	·
	MDA Set Teardown element

The Category field is set to the value in Table 7-24 for category Mesh Resource Coordination.

The Action field is set to the value in Table s25 for this action frame type.

The MDAOP Set Teardown element is described in 7.3.2.67.

· Beacon Timing Request frame format

The Beacon Timing Request frame is used to request beacon timing information from neighbor peer MPs. This frame is transmitted using group addresses or individual addresses. The frame body of a Beacon Timing Request frame contains the information shown in Table s27.

	· Beacon Timing Request frame body

	Order
	Information

	·
	Category

	·
	Action Value

The Category field is set to the value in Table 7-24 for category Mesh Resource Coordination.

The Action field is set to the value in Table s25 for this action frame type.

NEXT SNIPPET

· MDA access fraction (MAF)

The MDA access fraction at an MP is the ratio of the total duration of its ‘Neighborhood MDAOP Times’ (see definition above) in a Mesh DTIM interval to the duration of the Mesh DTIM interval. This parameter may be used to limit the use of MDA in an MP’s mesh neighborhood to a certain fraction of the total channel time. The maximum value for MAF that is allowed at an MP is specified by the dot11MAFlimit parameter.

The dot11MAFlimit is copied into the MDA Access Fraction Limit field of the MDAOP Advertisements information element. Before attempting to set up an MDAOP Set with a neighbor peer MP, an MP is required to ensure that the new MDAOP set does not cause the MAF of its neighbor peer MPs to exceed their MAF Limit. An MDAOP setup request shall be refused by the intended receiver if the MAF limit of its own neighbors is exceeded due to the new setup.

· MDAOP setup procedure

The setup of an MDAOP set is initiated by the intended transmitter, and is accepted/rejected by the intended receiver. Once accepted, the transmitter is referred to as the owner of the MDAOP. The setup procedure for an MDAOP set is as follows:

· The MP that intends to be the transmitter in a new MDAOP set builds a map of Neighborhood MDAOP times in the Mesh DTIM interval after hearing Advertisements from all of its neighbor peer MPs that have MDA active. If no advertisement was heard from a neighbor peer MP in the last dot11MDAdvertPeriodMax, the MP may request the neighbor peer MP for MDAOP Advertisement.

· Based on traffic characteristics, it then chooses MDAOP starting times and durations in the Mesh DTIM interval that do not overlap with either its Neighborhood MDAOP Times or the Neighbor MDAOP Interfering Times of the intended receiver. It also avoids using times that are known to it as being used by itself or one of its neighbor peer MPs for other activities such as beacon transmissions.

· It then verifies that the new MDAOP Set will not cause the MAF limit to be crossed for its neighbor peer MPs. If MAF limit would be crossed for its neighbor peer MPs, due to the new MDAOP Set, it suspends the setup process.

· If the MAF limits at all neighbor peer MPs are respected despite the new MDAOP set, it transmits an MDAOP Setup request information element to the intended receiver with chosen MDAOP locations and durations.

· The receiver of the MDAOP Setup Request information element checks to see if the MDAOP times have overlap with its Neighborhood MDAOP Times. The receiver also checks if the new MDAOP Set will cause the MAF limit to be crossed for its neighbor peer MPs. The MDAOP Setup Reply information element is used to reply to a setup request.

· The receiver rejects the setup request if there are overlaps of the requested MDAOP set with its Neighborhood MDAOP Times, or other times that it knows are set to be used by itself or its neighbor peer MPs for activities such as beacon transmissions. It may suggest alternate times by including the optional field Alternate suggested MDAOP in the MDAOP Setup Reply element.

· The receiver also rejects the setup request if the MAF limit of itself or its neighbor peer MPs will be exceeded due to the new setup.

· If suitable, the receiver accepts the setup.

· MDAOP advertisements

Every MP that has MDA active is required to advertise TX-RX and Interfering times using the MDAOP Advertisements information element, at least once in dot11MDAdvertPeriodMax. These advertisements are always transmitted in group addressed frames; either in Beacon frames or MDA action frames. The advertised times include:

· TX-RX times report:

· All MDAOP times for which the MP is the transmitter or the receiver.

· All other times that it knows are busy/reserved such that it is either the transmitter or the receiver. A non exhaustive list includes expected HCCA times for an MAP and self or neighbor peer MP’s expected beacon times.

· Interfering times report:

· All TX-RX times reported by the MP’s neighbor peer MPs so that the MP is neither the transmitter nor the receiver during those times.

· MDAOP set teardown

An MDAOP set is successfully torn down once both the transmitter and the receiver stop advertising the set in their TX-RX times. Either the transmitter or the receiver may indicate a teardown by transmitting the MDAOP Set Teardown information element to the other communicating end (transmitter or the receiver). The teardown is assumed successful once the ACK is received, or maximum retry attempts are exceeded.

The transmitter assumes a successful teardown and stops using or advertising (in TX-RX times report) an MDAOP set if any of the following happens:

· Its MDAOP Set Teardown information element is successfully Acked.

· The maximum retries for the teardown information element it is transmitting are exceeded.

· The receiver’s advertisement does not include the MDAOP set

· The receiver is unreachable for greater than dot11MDAOPtimeout time

The receiver assumes a successful teardown and stops advertising an MDAOP set if any of the following happens:

· Its MDAOP Set Teardown information element is successfully Acked.

· The maximum retries for the teardown information element it is transmitting are exceeded.

· The transmitter’s advertisement does not include the MDAOP set.

· The transmitter is inactive for greater than dot11MDAOPtimeout time

The interfering times are directly derived from neighbor peer MPs’ TX-RX times report. The interfering times report reflects the latest TX-RX times reports from the neighbor peer MPs.

· Access during MDAOP

MDA-supporting MPs shall track Neighborhood MDAOP times when either they or their neighbor peer MPs are transmitters or receivers. The access behavior for MPs during the Neighborhood MDAOP times is described below.

· Access by MDAOP Owners

If an MP is the owner of an MDAOP and has an MSDU associated with an MDA session to transmit, it shall attempt to access the channel during the time set up for the MDAOP and obtain a TXOP using EDCA contention and backoff parameters for the Access Category of the MSDU as defined in 9.9.1.3.

An MP successfully obtains a TXOP when the MP completes a frame exchange with the receiver of the MSDU. If the MP successfully obtains a TXOP, it may transmit until the EDCA TXOP limit for the Access Category of the MSDU is reached. If the MP reaches the TXOP limit before the end of the MDAOP, the MP should attempt to transmit additional MSDU(s) associated with the MDA session, if any are ready to be transmitted, by accessing the channel again during the MDAOP to obtain a subsequent TXOP.

If an MP accesses the channel during the MDAOP but fails to obtain either an initial or a subsequent TXOP, the MP shall perform the backoff procedure specified in 9.9.1.5.

After an MP successfully obtains the TXOP, if there are multiple MSDUs to be transmitted, the transmission and retransmission rules for multiple MSDU transmission should use the rules specified in 9.9.1.4 and 9.9.1.6.

When an MP prepares to access the channel for a retransmission outside an MDAOP, the MP shall avoid access the channel during its neighbor peer MP's MDAOP times by setting its NAV during these times.

· Access by non-owners of MDAOP

All MDA supporting MPs other than the MDAOP owner shall defer initiating tranmissions during the TXOP initiated in the MDAOP. MDA MPs that are not the owner of the current MDAOP can start contending for access to the channel after the conclusion of the TXOP initiated in the current MDAOP.

NEXT SNIPPET

· Function

This primitive requests that the mesh entity starts the peer link establishment protocol passively.

· Semantics of the service primitive

The primitive parameters are as follows:

MLME-PassivePeerLinkOpen.request(

localLinkID

)

	Name
	Type
	Valid range
	Description

	localLinkID
	Integer
	 1—216-1
	Specifies the integer generated by the IEEE 802.11 SME in the effort of identifying the peer link instance about to be established with a neighboring mesh entity.

· When generated

This primitive is generated when the mesh entity wishes to establish a peer link with a neighbor mesh entity, but does not specify a particular neighbor.

· Effect of receipt

This primitive initiates a peer link instance and corresponding finite state machine. The MLME subsequently issues an MLME-PassivePeerLinkOpen.confirm that reflects the results.

· MLME-PassivePeerLinkOpen.confirm

· Function

This primitive reports the results of a passive open attempt.

· Semantics of the service primitive

The primitive parameters are as follows:

MLME-PassivePeerLinkOpen.confirm(

Local Link ID

)

	Name
	Type
	Valid range
	Description

	local Link ID
	Integer
	1—216-1
	Specifies the integer identifying the peer link instance about to be established with a neighboring mesh entity.

· When generated

This primitive is generated as a result of an MLME-PassivePeerLinkOpen.request.

· Effect of receipt

The SME is notified of the results of the passive open procedure.

· ActivePeerLinkOpen

The following primitives describe how a mesh entity actively starts a peer link management procedure with a specified peer MAC entity that is within a mesh entity.

· MLME-ActivePeerLinkOpen.request

· Function

This primitive requests that the mesh entity starts the peer link management procedure actively with a specified peer MAC entity that is within a mesh entity.

· Semantics of the service primitive

The primitive parameters are as follows:

MLME-ActivePeerLinkOpen.request(

peerMAC,

localLinkID

)

	Name
	Type
	Valid range
	Description

	PeerMAC
	MAC Address
	Valid individual MAC address
	Specifies the address of the peer MAC entity with which to perform the peer link management procedure.

	local Link ID
	Integer
	1—216-1
	Specifies the integer identifying the peer link instance about to be established with a neighboring mesh entity.

Additional parameters needed to perform active open procedure are not included in the primitive parameter list since the MLME already has that data (maintained as internal state).

· When generated

This primitive is generated when the mesh entity wishes to establish a peer link with a neighbor mesh entity.

· Effect of receipt

This primitive initiates a peer link management procedure. The Peer Link Open message is transmitted. The MLME subsequently issues an MLME-ActivePeerLinkOpen.confirm that reflects the results.

· MLME-ActivePeerLinkOpen.confirm

· Function

This primitive reports the results of an active peer link open attempt.

· Semantics of the service primitive

The primitive parameters are as follows:

MLME-ActivePeerLinkOpen.confirm(

PeerMAC,

local Link ID

)

	Name
	Type
	Valid range
	Description

	PeerMAC
	MAC Address
	Valid individual MAC address
	Specifies the address of the peer MAC entity with which to perform the peer link establishment process.

	local Link ID
	Integer
	1—216-1
	Specifies the integer identifying the peer link instance about to be established with a neighbor mesh entity.

· When generated

This primitive is generated as a result of an MLME-ActivePeerLinkOpen.request.

· Effect of receipt

The SME is notified of the results of the active peer link open procedure.

· SignalPeerLinkStatus

The following primitives report the link status to the mesh entity as the result of peer link management.

· MLME-SignalPeerLinkStatus.indication

· Function

This primitive indicates that the mesh entity has finished the peer link establishment procedure with a specified peer mesh entity and reports the status of the peer link.

· Semantics of the service primitive

The primitive parameters are as follows:

MLME-SignalPeerLinkStatus.indication(

local Link ID,

Status

Code,

KeyInfo,

AKMInfo,

KDFInfo

)

	Name
	Type
	Valid range
	Description

	local Link ID
	Integer
	1—216-1
	Specifies the integer generated by the local mesh entity to identify this peer link instance

	StatusCode
	Enumeration
	PEER-LINK-ESTABLISHED,

PEER-LINK-CLOSED, MESH-LINK-MAX-RETRIES, MESH-LINK-NO-PMK, MESH-LINK-ALT-PMK, MESH-LINK-NO-AKM, MESH-LINK-ALT-AKM, MESH-LINK-NO-KDF
	Indicates the status of the peer link establishment procedure

	KeyInfo
	Integer
	0—2128-1
	Specifies the PMKID of the alternative PMK-MA chosen by the candidate peer MP, if the StatusCode value is “MESH-LINK-ALT-PMK”. Otherwise, set to 0.

	AKMInfo
	Integer
	0—232-1
	Sepcifies the AKM suite selector of the alternative AKM suite as the result of AKM suite selection, if the StatusCode value is “MESH-LINK-ALT-AKM”. Otherwise, set to 0.

	KDFInfo
	Integer
	0—232-1
	Sepcifies the KDF selector of the KDF that the candidate peer MP supports, if the StatusCode value is “MESH-LINK-NO-KDF”. Otherwise, set to 0.

· When generated

This primitive is generated when the mesh entity finishes the peer link management procedure, either when the peer link is established, or when it is closed.

· Effect of receipt

This primitive enables the mesh entity to handle the peer link instance status.

· CancelPeerLink

This mechanism supports the process of cancelling the peer link instance with a specified peer mesh entity.

· MLME-CancelPeerLink.request

· Function

This primitive requests the peer link instance with a specified peer mesh entity be cancelled.

· Semantics of the service primitive

The primitive parameters are as follows:

MLME-CancelPeerLink.request(

local Link ID,

ReasonCode

)

	Name
	Type
	Valid range
	Description

	local Link ID
	Integer
	1—216-1
	Specifies the integer generated by the local mesh entity to identify the peer link instance

	ReasonCode
	Enumeration
	MESH-MAX-PEERS
	Reason that the peer link instance is cancelled.

· When generated

This primitive is generated by the SME to cancel a peer link instance.

· Effect of receipt

This primitive sets the mesh entity to get ready to close the peer link with the specified peer mesh entity. The MLME subsequently issues a MLME-CancelPeerLink.confirm to reflect the results.

· MLME-CancelPeerLink.confirm

· Function

This primitive reports the result of cancel peer link request.

· Semantics of the service primitive

The primitive parameters are as follows:

MLME-CancelPeerLink.confirm(

local Link ID,

ResultCode

)

	Name
	Type
	Valid range
	Description

	local Link ID
	Integer
	1—216-1
	Specifies the integer generated by the local mesh entity to identify the peer link instance

	ResultCode
	Enumeration
	SUCCESS

,

FAILURE-NOT-FOUND
	Indicates the result of the cancel peer link request. The result is either success or failure when the peer link instance is not found.

· When generated

This primitive is generated by the MLME as the result of an MLME-CancelPeerLink.request.

· Effect of receipt

The SME is notified of the results of the cancel peer link procedure.

NEXT SNIPPET

· General

Mesh discovery and peer link management require that MPs have sufficient information about themselves and potential neighbors. This process requires detection of potential mesh neighbors through Beacons or through active scanning using Probe Requests.
NEXT SNIPPET

· Candidate peer MP discovery

The purpose of this procedure is to discover candidate peer MPs and their properties, covering cases both before and after an MP is a member of a mesh network.

A configured MP, by definition, has at least one mesh profile. If the MP is a member of a mesh, exactly one mesh profile is active.

An MP performs passive or active scanning to discover neighbor MPs. In case of passive scanning, an MP shall be considered a neighbor MP if and only if all of the following conditions are met (a similar mechanism with probe response can be used for active scanning):

· A beacon is received from that MP.

· The received beacon contains a Mesh ID that matches the Mesh ID of the MP’s active mesh profile or that matches the Mesh ID of at least one of the MP’s mesh profiles if the MP is not currently a member of a mesh.

· The received beacon contains a Mesh Configuration element (see 7.3.2.54) that contains

· A supported version number

· A path selection protocol identifier and metric identifier matching the MP’s active mesh profile or matching at least one of the MP’s mesh profiles if the MP is not currently a member of a mesh.

· A congestion control mode identifier matching the MP's active congestion control mode or matching at least one of the MP's congestion control modes if the MP is not currently a member of a mesh.

A neighbor MP shall also be considered a candidate peer MP if and only if, in addition:

· The beacon contains an Mesh Configuration element (see 7.3.2.54) with the “Accepting Peer Links” field set to 1.

The MP attempts to discover all candidate peer MPs, and maintains the neighbor MP information indicating the MAC address of each MP, the most recently observed link state parameters, the received channel number and state.

If an MP is unable to detect neighbor MPs, it may adopt a Mesh ID from one of its mesh profiles, and proceed to the active state. This may occur, for example, when the MP is the first MP to power on (or multiple MPs power on simultaneously). Peer links are established later as part of the continuous mesh discovery procedures.

Note--Identification of candidate peer MPs with whom to form links is out side the scope of this standard.

· Mesh peer link management

· Overview

The Mesh Peer Link Management protocol is used to establish and close peer links between MPs. 11A.2.3 specifies the protocol details. The following summarizes the protocol operations.

MPs shall not transmit data frames or management frames other than the ones used for discovery and peer link management until the peer link has been established.

An MP shall be able to establish at least one peer link with a candidate peer MP, and may be able to establish many such links simultaneously, if the maximum number of peer MPs is not reached. The procedure of discovering a candidate peer MP from a set of neighbor MPs to establish a peer link is specified in 11A.1.4.

MP peer link management uses link instances. A link instance is a logical entity that the MP uses to handle a peer link or an attempt of establishing a peer link. Its behavior is governed by a peer link management finite state machine defined in 11A.2.3.

The MP shall identify a link instance with the peer MP. The link instance identifier is defined as <localMAC, peerMAC, localLinkID, peerLinkID>. localMAC is the MAC address of the MP. peerMAC is the MAC address of the peer MP or the candidate peer MP. localLinkID is an integer generated by the MP. peerLinkID is an integer generated by the peer MP or the candidate peer MP. The localLinkID shall be unique among all link identifiers used by the MP for its current peer link instances. The MP selects the localLinkID to provide high assurance that the same number has not been used to identify a recent link instance. The peerLinkID shall be supplied by the peer MP or candidate peer MP in Peer Link Open and Confirm frames. The link identifiers are transmitted via peer link management frames.

The MP shall keep information of link instance identifier and the respective policy as the link state of the link instance. The actual method of handling the link state is out of the scope this specification.

The MP shall start the peer link management protocol in either of the following two cases. In case one, the IEEE 802.11 SME instructs the MP to passively listen to incoming requests from candidate peer MPs. The SME issues the MLME-PassivePeerLinkOpen.request(localLinkID) primitive to create a finite state machine to handle peer link establishment attempts initiated by other MPs. The MP shall issue the MLME-PassivePeerLinkOpen.confirm(localLinkID) primitive to inform the completion of creating the finite state machine. The localLinkID identifies the link instance.

The SME issues a MLME-ActivePeerLinkOpen.request(peerMAC, localLinkID) primitive to create an instance of a finite state machine establishing a peer link with the candidate peer MP whose MAC address is peerMAC. The MP shall issue the MLME-ActivePeerLinkOpen.confirm(peerMAC, localLinkID) primitive to inform the completion of creating the finite state machine.

A link instance ends when the peer link is closed. The peer link close can be caused by either an internal event or an external event. The specification of internal events is beyond the scope of this standard.

The IEEE 802.11 SME can close the link instance identified by the instance identifier localLinkID by issuing the MLME-CancelPeerLink.request(localLinkID, ReasonCode) primitive. The MP shall issue MLME-CancelPeerLink.confirm(localLinkID, ResultCode) to inform the SME the completion of closing the peer link. Upon closing the peer link completely, the MP shall issue the MLME-SignalPeerLinkStatus.indication(localLinkID, statusCode) primitive to report the result of the close.

Receiving of a correct Peer Link Close frame or a failure of processing the incoming peer link management frame shall close the link instance. Such events are external events.

The behavioral details of closing a link instance are specified in 11A.2.3.

The MP uses the peer link management frames to manage a link instance.

A Peer Link Open frame requests that a peer link instance be established between the Peer Link Open sender and the receiver. The MP shall send a Peer Link Confirm frame in response to the Peer Link Open frame if the link instance proceeds with the protocol. The Peer Link Close frame is used to inform the receiver to close the peer link. The protocol succeeds in establishing a peer link when the following requirements are satisfied: 1) both MPs have sent and received (and correctly processed) a Peer Link Open frame regarding this peer link; 2) both MPs have sent and received (and correctly processed) a corresponding Peer Link Confirm frame regarding this peer link.

The protocol has a retry mechanism. The retryTimer controls the maximum time the link instance waits for a Peer Link Confirm frame responding to any Peer Link Open frame the link instance has sent. The MP sets the retryTimer when it sends a Peer Link Open frame. If the MP does not receive a corresponding Peer Link Confirm frame before the retryTimer expires, the link instance shall retry the request by sending the same Peer Link Open frame. The MP shall clear the retryTimer when it receives a corresponding Peer Link Confirm frame or when the link instance is closed. If the MP does not receive a Peer Link Confirm frame after re-sending the Peer Link Open frame for dot11MeshMaxRetries times, the MP shall abort the attempt to establish a peer link instance with the candidate peer MP. The retryCounter is a variable in link state that keeps record of the number of Peer Link Open frames been re-sent for the link instance. It is initiated to zero when the first Peer Link Open frame is sent out for the link instance.

The protocol defines a confirmTimer to bound the time that the MP waits for a Peer Link Open frame after receiving a Peer Link Confirm frame. The MP sets the confirmTimer when the Peer Link Confirm frame is received but the corresponding Peer Link Open frame has not. If the Peer Link Open frame is not received when confirmTimer expires, the MP shall abort the attempt to establish a peer link with the candidate peer MP and send a Peer Link Close frame to close the link instance.

The protocol shall set the holdingTimer when the MP sends the first Peer Link Close frame for the link instance; this timer provides a grace period that prevents deadlock or livelock. Before the holdingTimer expires, the link instance shall respond to the incoming Peer Link Open frames associated with the link instance by sending the Peer Link Close frame. When the holdingTimer expires, the MP shall terminate the link instance completely and issue MLME-SignalPeerLinkStatus.indication(localLinkID, PEER-LINK-CLOSED) primitive to inform the IEEE 802.11 SME the result of the close.

· Processing Peer Link Management Frames

· Overview

The MP shall classify the incoming peer link management frames to decide either to accept, reject, or silently ignore the frame. If the frame contains a broadcast/multicast address in TA, it shall be silently ignored. The result of frame processing shall trigger an event accordingly (see 11A.2.3.2). The mechanism that is used to classify frames is beyond the scope of this standard.

The MP shall verify the link instance identifier in a peer link management frame determining whether the identifier identifies a known link instance, fails to match any instance, or is incomplete. The rules for verifying instance identifier are frame specific; see 11A.2.2.2, 11A.2.2.3, and 11A.2.2.4.

The MP shall also verify the configuration parameters, if present, conveyed in the Open and Confirm frames. The Mesh Configuration information element and Frame Control field supply the configuration parameters. If either is present in the Confirm, the MP shall verify that the parameters reported by the Candidate peer MP match those the MP has agreed to use for this link instance. In particular, the MP shall verify the following fields or subfields. This verification is needed to satisfy the consistency property, i.e., to guarantee that MPs agree on the configuration before establishing a peer link.

· Fields in Mesh Configuration element

· Active Path Selection Protocol ID field

· Active Path Selection Metric ID field

· Mesh Capability field, including the following subfields

· Accepting Peer Links

· Power Save Support Enabled

· Synchronization Enabled

· Synchronization Active

· Synchronization Support Required from Peer MP
· MDA Enabled

· Frame Control field

· Power Management field

MPs shall verify that the same Path Selection Protocol and the same Path Selection Metric are used.
The MP shall verify that it supports power save support services when the candidate peer MP sets the Power Management field of the Frame Control field to 1.

The MP shall verify that the candidate peer MP supports power save support when the MP intends to operate in Power Save mode.

The MP shall verify that it supports synchronization services when the candidate peer MP sets the “Synchronization Support Required from Peer MP” field to 1.

The MP shall verify that it supports MDA services when the candidate peer MP sets the “MDA Enabled” field to 1.

The MP shall ignore all security related parameters if the RSN information element is not present.

NEXT SNIPPET

· States

The finite state machine uses the following seven states:

· IDLE – In the IDLE state, the finite state machine only responses to events generated by IEEE 802.11 SME (see 11A.2.3.2). Other types of events are silently ignored. IDLE state is a terminal state. The IDLE state is for explanatory purpose, which enables complete specification of the finite state machine to avoid deadlock and livelock. It is not mandatory to implement the IDLE state.

· LISTEN – In the LISTEN state, the finite state machine is passively listening for an incoming Peer Link Open frame from a candidate peer MP.

· OPN_SNT – In the OPN_SNT state, the finite state machine has actively sent a Peer Link Open frame and is waiting for the incoming Peer Link Open and Peer Link Confirm frames from the candidate peer MP.

· CNF_RCVD – In the CNF_RCVD state, the finite state machine has received a Peer Link Confirm frame, but has not received a Peer Link Open frame; therefore the MP has not sent the corresponding Peer Link Confirm frame.

· OPN_RCVD – In the OPN_RCVD state, the finite state machine has received only the Peer Link Open frame but not the Peer Link Confirm. The MP has also sent a Peer Link Confirm frame upon receiving a Peer Link Open frame.

· ESTAB – In the ESTAB state, the finite state machine has received both the Peer Link Open and Peer Link Confirm frames. The MP has also sent both the Peer Link Open frame and Peer Link Confirm frame. The peer link is established and configured for exchanging frames with peer MPs in the ESTAB state.

· HOLDING  In the HOLDING state, the finite state machine is closing the peer link with the peer MP or the candidate peer MP.

· Events and Actions

The finite state machine uses three types of events: events created by IEEE 802.11 SME, external events generated by frame processing, and events associated internal timers.

IEEE 802.11 SME uses the following primitives to pass events to the finite state machine.

· CNCL -- MLME-CancelPeerLink.request(localLinkID, ReasonCode) event is used to instruct the link instance to cancel the peer link with the peer MP. The link instance uses MLME-CancelPeerLink.confirm(localLinkID, ResultCode) primitive to return the result to IEEE 802.11 SME.

· PASOPN -- MLME-PassivePeerLinkOpen.request event is used to instruct the link instance to passively listen to a peer link establishment frame from a candidate peer MP. The link instance uses MLME-PassivePeerLinkOpen.confirm(localLinkID) to return the result to IEEE 802.11 SME.

· ACTOPN -- MLME-ActivePeerLinkOpen.request(peerMAC) event is used to instruct the link instance to actively initiate the peer link establishment with the candidate peer MP whose MAC address is peerMAC. The link instance uses MLME-ActivePeerLinkOpen.confirm(peerMAC, localLinkID) primitive to return the result to IEEE 802.11 SME.

The events generated by frame processing are

· CLS_ACPT -- PeerLinkClose_Accept(peerMAC, localLinkID, peerLinkID, reasonCode) event indicates that a Peer Link Close frame meeting the correctness criteria of 11A.2.2.2 has been received from peerMAC for the link instance identified by localLinkID and peerLinkID. The reasonCode specifies the reason that causes the generation of the Peer Link Close frame.

· CLS_IGNR -- PeerLinkClose_Ignore(peerMAC, localLinkID, peerLinkID) event indicates that a Peer Link Close frame with mis-matched link identifiers, as specified in 11A.2.2.2, has been received from peerMAC for the link instance identified by localLinkID and peerLinkID.

· OPN_ACPT -- PeerLinkOpen_Accept(peerMAC, peerLinkID, Configuration) event indicates that a Peer Link Open frame meeting the correctness criteria of 11A.2.2.3 has been received from peerMAC for the link instance identified by localLinkID and peerLinkID. The Configuration is the set of information received in the Mesh Configuration information element.

· OPN_IGNR -- PeerLinkOpen_Ignore(peerMAC, peerLinkID) event indicates that a Peer Link Open frame with mismatched link identifiers, as specified in 11A.2.2.3, has been received from peerMAC for the link instance identified by locakLinkID and peerLinkID.

· OPN_RJCT -- PeerLinkOpen_Reject(peerMAC, peerLinkID, Configuration, ReasonCode) event indicates that a Peer Link Open frame with an invalid Configuration field, as specified in 11A.2.2.3, has been received from peerMAC for the link instance identified by localLinkID and peerLinkID. The Configuration is the set of information as received from Mesh Configuration element. The ReasonCode is set to MESH-CONFIGURATION-POLICY-VIOLATION.

· CNF_ACPT -- PeerLinkConfirm_Accept(peerMAC, localLinkID, peerLinkID, Configuration) event indicates that a Peer Link Confirm frame meeting the correctness criteria of 11A.2.2.4 has been received from peerMAC for the link instance identified by localLinkID and peerLinkID. The Configuration is the set of information as received from Mesh Configuration element.

· CNF_IGNR -- PeerLinkConfirm_Ignore(peerMAC, localLinkID, peerLinkID) event indicates that a Peer Link Confirm frame with mis-matched link identifiers, as specified in 11A.2.2.4, has been received from peerMAC for the link instance identified by localLinkID and peerLinkID.

· CNF_RJCT -- PeerLinkConfirm_Reject(peerMAC, localLinkID, peerLinkID, Configuration, ReasonCode) event indicates that a Peer Link Confirm frame with an invalid Configuration fields, as specified in 11A.2.2.4, has been received from peerMAC for the link instance identified by localLinkID and peerLinkID. The Configuration is the set of information as received from Mesh Configuration element. The ReasonCode is set to MESH-CONFIGURATION-POLICY-VIOLATION. This event is denoted as.

The internal events are as follows. The term Timeout(localLinkID, item) represents a timeout identified locally by item, for the link instance identified by localLinkID.

 Three types of timers are used by the finite state machine.

 The retryTimer triggers a re-send of the Peer Link Open frame when a Peer Link Confirm frame was not received as a response.

· TOR1 – This event refers to Timeout(localLinkID, retryTimer) and the dot11MeshMaxRetries has not been reached. The state machine shall resend the Peer Link Open frame.

· TOR2 – This event refers to Timeout(localLinkID, retryTimer) and the dot11MESHMaxRetries has been reached. The link instance shall be closed when TOR2 occurs.

· TOC – The Timeout(localLinkID, confirmTimer) event. The confirmTimer aborts a link establishment attempt if a Peer Link Open frame never arrives after receiving the Peer Link Confirm frame. TOC event occurs, the link instance shall be closed.

· TOH event – The Timeout(localLinkID, holdingTimer) event. The holdingTimer allows a grace period for closing the link instance; it is necessary to avoid deadlocks and livelocks that arise due to interactions between peer link establishment and termination. When TOH occurs, the link instance shall be closed completely and the finite state machine shall transition to IDLE state.

The finite state machine may take an action triggered by an event. It uses two types of actions: sending a peer link management frame and handling a timer.

Actions related to sending a peer link management frame:

· sndOPN -- The sendOpen(peerMAC, localLinkID, Configuration) is the action that the link instance takes to send a Peer Link Open frame to the candidate peer MP, whose MAC address is peerMAC. The frame shall carry localLinkID and the supported Mesh Configuration, as specified as Configuration.

· sndCNF -- The sendConfirm(peerMAC, localLinkID, peerLinkID, Configuration) is the action that the link instance takes to send a Peer Link Confirm frame to the candidate peer MP, whose MAC address is peerMAC. The frame shall carry localLinkID, peerLinkID, and the supported Mesh Configuration, as specified as Configuration.

· sndCLS -- The sendClose(peerMAC, localLinkID, peerLinkID, reasonCode) is the action that the link instance takes to send a Peer Link Close frame to the peer MP or candidate peer MP, whose MAC address is peerMAC. The frame shall carry localLinkID and peerLinkID. If the peerLinkID is unknown, it shall be set to zero. The reasonCode shall specify the reason that the Peer Link Close is sent, whose value shall be set to a value between 46 to 51 as specified in Table 7-22.

The actions on handling timers are setTimer(localLinkID, item, value) and clearTimer(localLinkID, item).

· The setTimer(localLinkID, item, timeout) action sets the timeout value specified by timeout to the timer specified by item. This action only sets the timer for one time for the link instance identified by localLinkID. When the timeout time has passed, the timer expires and the event Timeout(localLinkID, item) is triggered, after which the timer is no longer in effect.

The corresponding actions are denoted as setR, setC, setH, for timer retryTimer, confirmTimer, holdingTimer respectively.

Before setting the retryTimer, the finite state machine shall apply the default peer link open request backoff algorithm to compute the updated timeout value as the following:

timeout = return timeout + (getRandom mod timeout),

where getRandom routine generates a random value. The initial value of timeout shall be set to dot11MeshRetryTimeout. This function statistically increases the length of time for each Peer Link Open retry by 50%. The backoff was inserted into the design to recover from a “gold rush”, which could happen if several already-linked MPs simultaneously detected a new MP trying to enter the mesh network.

· The clearTimer(localLinkID, item) action clears the timer item for the link instance identified by localLinkID. The corresponding actions are denoted as clR, clC, clH, for timer retryTimer, confirmTimer, holdingTimer respectively.

NOTE -- The value of dot11MeshMaxRetries is under study. If zero is the appropriate value, the backoff algorithm is not need and will be removed.

NEXT SNIPPET

· LISTEN state

In the LISTEN state, the link instance waits for unsolicited Link Open frames.

When a CNCL event occurs, the state machine transitions to IDLE state. The link instance shall use the MLME-SignalPeerLinkStatus.indication(localLinkID, PEER-LINK-CLOSED) primitive to report the result to the IEEE 802.11 SME.

When an ACTOPN event occurs, the link instance shall send a Peer Link Open frame to the candidate peer MP identified by peerMAC. The Peer Link Open frame shall contain the localLinkID and Mesh Configuration information. The retryTimer is set according to dot11MeshRetryTimeout. The finite state machine transitions to OPEN_SENT state.

When a CLS_ACPT event occurs, the finite state machine transitions to IDLE state. The link instance shall use the MLME-SignalPeerLinkStatus.indication(localLinkID, PEER-LINK-CLOSED) primitive to report the result to the IEEE 802.11 SME.

When an OPN_ACPT event occurs, the link instance shall send the corresponding Peer Link Confirm frame to respond to the Peer Link Open frame. And it shall send a Peer Link Open frame to request a Peer Link Confirm frame from the candidate peer MP. The retryTimer is set according to dot11MeshRetryTimeout value. The finite state machine transitions to OPEN_RCVD state.

All other events shall be ignored in this state.

· OPEN_SENT state

In the OPEN_SENT state, the link instance waits for a Peer Link Confirm frame. In this state, the retryTimer is set.

When a CNCL event occurs, the MP shall clear the retryTimer, send a Peer Link Close frame with reason code PEER-LINK-CANCELLED, and set the holdingTimer according to the value of dot11MeshHoldingTimeout. The finite state machine transitions to HOLDING state.

When a CLS_ACPT event occurs, the MP shall clear the retryTimer, send a Peer Link Close frame with reason code MESH-CLOSE-RCVD, and set the holdingTimer according to the value of dot11MeshHoldingTimeout. The finite state machine transitions to HOLDING state.

When an OPN_ACPT event occurs, the MP shall send the corresponding Peer Link Confirm frame to respond to the incoming Peer Link Open frame. The finite state machine transitions to OPN_RCVD state. Note that the retryTimer is still in effect after the state transition.

When an OPN_RJCT event occurs, the MP shall clear the retryTimer, send a Peer Link Close frame with reason code specified by the OPN_RJCT event, and set the holdingTimer according to the value of dot11MeshHoldingTimeout. The finite state machine transitions to HOLDING state.

When a CNF_ACPT event occurs, the MP shall clear the retryTimer and shall set the confirmTimer according to the value of dot11MeshConfirmTimeout and the finite state machine transitions to CNF_RCVD state.

When a CNF_RJCT event occurs, the MP shall clear the retryTimer, send a Peer Link Close frame with reason code specified by the CNF_RJCT event, and set the holdingTimer according to the value of dot11MeshHoldingTimeout. The finite state machine transitions to HOLDING state.

When a TOR1 event occurs, the Peer Link Open frame shall be resent and the retryCounter shall be incremented. The retryTimer shall be set according to the updated retryTimeout computed by the backoff algorithm. No state transition occurs.

When a TOR2 event occurs, the MP shall send a Peer Link Close frame with reason code MESH-MAX-RETRIES. The holdingTimer shall be set according to the value of dot11MeshHoldingTimeout, and the finite state machine transitions to HOLDING state.

All other events shall be ignored in this state.

· CNF_RCVD state

In the CNF_RCVD state, the link instance has received a Peer Link Confirm frame and is waiting for a Peer Link Open frame.

When a CNCL event occurs, the MP shall clear the confirmTimer, send a Peer Link Close frame with the reason code PEER-LINK-CANCELLED, and set the holdingTimer according to the value of dot11MeshHoldingTimeout. The finite state machine transitions to HOLDING state.

When a CLS_ACPT event occurs, the MP shall clear the confirmTimer, send a Peer Link Close frame with reason code MESH-CLOSE-RCVD, and set the holdingTimer according to the value of dot11MeshHoldingTimeout. The finite state machine transitions to HOLDING state.

When an OPN_ACPT event occurs, the MP shall clear the confirmTimer and shall send the corresponding Peer Link Confirm frame to respond to the incoming Peer Link Open frame. The finite state machine transitions to ESTAB state. The link instance shall use the MLME-SignalPeerLinkStatus.indication(localLinkID, PEER-LINK-ESTABLISHED) primitive to report the result to the IEEE 802.11 SME.

When an OPN_RJCT event occurs, the MP shall clear the confirmTimer, send a Peer Link Close frame with reason code as specified by the OPN_RJCT event, and set the holdingTimer according to the value of dot11MeshHoldingTimeout. The finite state machine transitions to HOLDING state.

When a CNF_RJCT event occurs, the MP shall clear the confirmTimer, send a Peer Link Close frame with reason code as specified by the CNF_RJCT event, and set the holdingTimer according to the value of dot11MeshHoldingTimeout. The finite state machine transitions to HOLDING state.

When TOC event occurs, the MP shall send a Peer Link Close frame with reason code MESH-CONFIRM-TIMEOUT and set the holdingTimer according to the value of dot11MeshHoldingTimeout. The finite state machine transitions to HOLDING state.

All other events shall be ignored in this state.

· OPEN_RCVD state

In the OPEN_RCVD state, the link instance has received a Peer Link Open frame and sent a Peer Link Open frame and the corresponding Peer Link Confirm frame. An incoming Peer Link Confirm is expected.

When a CNCL event occurs, the MP shall clear the retryTimer, send a Peer Link Close frame with reason code PEER-LINK-CANCELLED, and set the holdingTimer according to the value of dot11MeshHoldingTimeout. The finite state machine transitions to HOLDING state.

When a CLS_ACPT event occurs, the MP shall clear the retryTimer, send a Peer Link Close frame, and set the holdingTimer according to the value of dot11MeshHoldingTimeout. The finite state machine transitions to HOLDING state.

When an OPN_ACPT event occurs, the MP shall resend the corresponding Peer Link Confirm frame. No state transition occurs.

When an OPN_RJCT event occurs, the MP shall clear the retryTimer, send a Peer Link Close frame with reason code as specified by the OPN_RJCT event, and set the holdingTimer according to the value of dot11MeshHoldingTimeout. The finite state machine transitions to HOLDING state.

When a CNF_ACPT event occurs, the retryTimer shall be cleared. The finite state machine transitions to ESTAB state. The MP invokes the MLME-SignalPeerLinkStatus.indication(localLinkID, PEER-LINK-ESTABLISHED) to report the result to the IEEE 802.11 SME.

When a CNF_RJCT event occurs, the MP shall clear the retryTimer, send a Peer Link Close frame with reason code as specified by the CNF_RJCT event, and set the holdingTimer according to the value of dot11MeshHoldingTimeout. The finite state machine transitions to HOLDING state.

When a TOR1 event occurs, the Peer Link Open frame shall be resent and the retryCounter shall be incremented. The retryTimer shall be set according to the updated retryTimeout computed by the backoff algorithm. No state transition occurs.

When a TOR2 event occurs, the MP shall send a Peer Link Close frame with reason code MESH-MAX-RETRIES. The holdingTimer shall be set according to the value of dot11MeshHoldingTimeout, and the finite state machine transitions to HOLDING state.

All other events shall be ignored in this state.

· ESTAB state

In the ESTAB state, the link instance has been successfully established with the peer MP.

When a CNCL event occurs, the MP shall send a Peer Link Close frame with reason code PEER-LINK-CANCELLED, and set the holdingTimer according to the value of dot11MeshHoldingTimeout. The finite state machine transitions to HOLDING state.

When a CLS_ACPT event occurs, the MP shall send a Peer Link Close frame with reason code MESH-CLOSE-RCVD, and set the holdingTimer according to the value of dot11MeshHoldingTimeout. The finite state machine transitions to HOLDING state.

When an OPN_ACPT event occurs, the MP shall respond again by resending the corresponding Peer Link Confirm frame. No state transition occurs.

All other events shall be ignored in this state.

· HOLDING state

In HOLDING state, the MP is closing the peer link. The holdingTimer is in effect.

When a CLS_ACPT event occurs, the primitive MLME-SignalPeerLinkStatus.indication(localLinkID, PEER-LINK-CLOSED) shall be used to report the result to the IEEE 802.11 SME. The finite state machine transitions to IDLE state.

When any of the following four events occurs, the MP shall respond by sending the corresponding Peer Link Close frame. No state transition occurs: OPN_ACPT, CNF_ACPT, OPN_RJCT, CNF_RJCT.

When a TOH event occurs, the primitive MLME-SignalPeerLinkStatus.indication(localLinkID, PEER-LINK-CLOSED) shall be used to report the result to the IEEE 802.11 SME. The finite state machine transitions to IDLE state.

All other events are ignored in this state.

NEXT SNIPPET

· Channel graph switch protocol

This subclause describes the procedure used for an MP to initiate switching of a unified channel graph to a new channel, with a new channel precedence indicator. Due to the possibility of more than one MP of a unified channel graph executing the channel graph switch protocol concurrently, this protocol includes a mechanism to resolve such possible conflicts by introducing a Mesh Channel Switch timer (MCS timer) that assures adequate time for the decision process of this protocol.

An MP that determines the need to switch the channel of its UCG shall transmit a Mesh Channel Switch Announcement to announce this intent. The MP first chooses a Mesh Channel Switch wait time in the range from 0 to 255, representing the time (in TUs) until the MP switches to the new channel. The MP sets the MCS timer with this wait time and then sends a Mesh Channel Switch Announcement frame to each neighbor peer MP to which a mesh link has been established in the unified channel graph, copying the value of the new candidate channel and new candidate channel precedence indicator and setting the Channel Switch Count field value to the chosen wait time.

If an MP receives a Mesh Channel Switch Announcement with a channel precedence value larger than the current channel precedence value of the PHY on which the frame was received, the MP shall set an MCS timer equal to the channel switch count value of the frame and then sends a Mesh Channel Switch Announcement frame to each neighbor peer MP to which a mesh link has been established on the PHY, copying the values from the received Mesh Channel Switch Announcement.

It is possible that more than one MP in the unified channel graph may independently detect the need to switch channels and send separate Mesh Channel Switch Announcements. If an MP receives more than one Mesh Channel Switch Announcement, it only acts upon the frame if the channel precedence value is larger than the channel precedence value of a previously received Mesh Channel Switch Announcement frame. In case a newly received Mesh Channel Switch Announcement frame has the same channel precedence value as a previously received frame, the new frame is acted upon only if the source address is smaller than the source address from the previously received frame. If the MP acts upon the newly received Mesh Channel Switch Announcement frame, it updates its candidate channel and candidate channel precedence indicator, sets its MCS timer to the channel switch count value of the frame and then sends a Mesh Channel Switch Announcement frame to each neighbor peer MP to which a mesh link has been established on the PHY, copying the values from the received Mesh Channel Switch Announcement frame.

If an MCS timer has been set on an MP, the MP shall not originate a new Mesh Channel Switch Announcement frame during the duration of the MCS timer. When the MCS timer expires on an MP the MP switches its PHY to the candidate channel and updates its channel precedence indicator to the candidate channel precedence indicator.

NEXT SNIPPET

· Overview of MSA authentication mechanism

MSA defines the MSA authentication mechanism for the purpose of establishing a secure link between two MPs within a mesh. An MP that has dot11RSNAEnabled set to true shall use the MSA authentication mechanism in order to establish each of its peer links, thus enabling security on all established links. Further, an MP that has enabled security on any of its peer links (using the MSA authentication mechanism) shall have enabled security on all of its (current or future) peer links.

The MSA authentication mechanism (11A.4.2.2) is used by an MP to securely establish links with peer MPs, and, when required, includes the authentication of an MP (such as through the use of 802.1X authentication) and the establishment of its mesh key hierarchy. This procedure, known as Initial MSA Authentication, occurs within the MSA authentication mechanism, and is required, for example, when an MP establishes its first peer link within an MKD domain. On the establishment of subsequent links within the MKD domain, an MP's execution of the MSA authentication mechanism may utilize its mesh key hierarchy and omit the Initial MSA Authentication procedure. Initial MSA Authentication is described in 11A.4.2.2.5. When Initial MSA Authentication occurs, and IEEE 802.1X is selected, 8.4.5 specifies the authentication procedure. If pre-shared keys (PSKs) are selected instead, then the key hierarchy is derived from the PSK.

The MSA authentication mechanism includes the peer link management protocol (11A.2) and an MSA 4-Way Handshake (11A.4.2.2.6), which establishes a PTK, and allows each MP to provide its GTK to the peer MP.

An example instance of the MSA authentication mechanism, which includes the Initial MSA Authentication procedure, is shown in Figure s56. When Initial MSA Authentication is omitted, the MSA 4-way Handshake immediately follows peer link management.

Pre-RSNA authentication shall not be supported for peer link establishment.[image: image1.wmf]
· MSA authentication mechanism, including Initial MSA Authentication

· MSA authentication mechanism

An MP uses the MSA authentication mechanism to establish a secure link with a peer MP. The mechanism consists of the establishment of a peer link, in accordance with 11A.2, followed by an MSA 4-way handshake, which is based on the 4-way handshake described in 8.5.3.

The MSA authentication mechanism may also comprise the authentication of an MP (such as through the use of 802.1X authentication) and the establishment of its mesh key hierarchy. This procedure, known as Initial MSA Authentication, is required, for example, when an MP establishes its first peer link within an MKD domain. On the establishment of subsequent peer links within the MKD domain, an MP’s execution of the MSA authentication mechanism may utilize its mesh key hierarchy to omit the authentication and key establishment steps.

During the peer link management portion of the MSA authentication mechanism, the exchanged information determines whether Initial MSA Authentication will occur. If so, the authentication of the MP and establishment of the mesh key hierarchy occurs after peer link management completes, but before the MSA 4-way handshake begins. An MP indicates a request for Initial MSA Authentication by setting the “Requests Authentication” bit in the MSAIE that is included in the peer link open frame. An MP may request Initial MSA Authentication during its first peer link within an MKD domain, but also to refresh its key hierarchy due to, for example, its past or impending expiration.

Prior to beginning the MSA authentication mechanism, the MP determines if it is the Selector MP for the duration of the protocol. The MP is the Selector MP if its MAC address is numerically larger than that of the candidate peer MP.

NEXT SNIPPET

· Processing Peer Link Open frame

Upon reception of a peer link open frame from a candidate peer MP that contains an MSAIE, the local MP shall determine if it is the Selector MP. Further, the local MP shall:

· Verify that the “Default Role Negotiation” field included in the MSCIE of the peer link open frame is identical to the value included in the local MP’s MSCIE in Beacon frames and Probe Response frames.

· Verify that the local MP supports the peer MP’s group cipher suite as indicated in the RSNIE received in the peer link open frame. Further, verify that the pairwise cipher suite list and AKM suite list in the received RSNIE each contain at least one entry that is also supported by the local MP.

· If the local MP is not the Selector MP, verify that the AKM suite and pairwise cipher suite selected in the MSAIE are among those supported by the local MP.

· Verify that it wishes to establish a peer link with the candidate peer MP that sent the peer link open frame, based on the policies advertised in the peer link open frame, and, if present, the Selector MP’s choice of AKM suite and pairwise cipher suite.

If any of these verifications fail, an OPN_RJCT event (see 11A.2.2.3) shall be triggered in order to close the link, with a ReasonCode that describes the failed verification (for example, “Invalid Pairwise Cipher,” or MESH-SECURITY-ROLE-NEGOTIATION-DIFFERS).

If the local MP has received a peer link confirm frame from the candidate peer MP, it shall also verify that:

· RSNIE is identical to the RSNIE included in the peer link confirm frame received from the candidate peer MP, except the PMKID list.

· MSCIE is identical to the MSCIE included in the peer link confirm frame received from the candidate peer MP.

· In the MSAIE, Handshake Control field is identical to that included in the received peer link confirm frame. If the candidate peer MP is the selector MP, the values in the Selected AKM Suite and Selected Pairwise Cipher Suite fields are identical to the values received in peer link confirm frame.

If any of these verifications fail, an OPN_RJCT event (see 11A.2.2.3) shall be triggered in order to close the link, with ReasonCode set to MESH-SECURITY-FAILED-VERIFICATION.

The local MP shall perform the key selection procedure based on the contents of the peer link open frame. The result of the procedure determines if a PMK-MA is available to be used to secure the link, or if Initial MSA Authentication must occur. One of two PMK-MAs may be selected: PMK-MA(local) is a PMK-MA belonging to the key hierarchy created by the local MP during its prior Initial MSA Authentication; PMK-MA(peer) is a PMK-MA belonging to the key hierarchy created by the peer MP during its prior Initial MSA Authentication.

The key selection procedure first determines if Initial MSA Authentication shall occur. No common PMK-MA is available and Initial MSA Authentication shall occur if any of the following are true:

· The PMKID list entry in the received peer link open frame is empty; or,

· The local MP requests authentication during this MSA authentication mechanism; or,

· No PMK-MA(local) is currently valid to secure the link with the candidate peer MP; or,

· The MKDD-ID values included in the received peer link open frame and included by the local MP in its Beacon frames and Probe Response frames are different.

Otherwise, the key selection procedure is given in Table s46.

	· Key selection procedure

	Valid-local-key
	Cached-peer-key
	“Connected to MKD” of
	Local MP is Selector MP?
	Selected Key

	
	
	Peer MP
	Local MP
	
	

	False
	False
	0
	0
	(any)
	No PMK-MA available (and no connection to MKD available): OPN_RJCT event shall be triggered in order to close the link, with ReasonCode set to MESH-SECURITY-AUTHENTICATION-IMPOSSIBLE.

	False
	False
	0
	1
	(any)
	PMK-MA(peer), identified by PMK-MAName(sender) in the received message, which the local MP must retrieve from the MKD.

	False
	False
	1
	0
	(any)
	PMK-MA(local), the currently-valid PMK-MA belonging to the key hierarchy created by the local MP during a prior Initial MSA Authentication, that may be used to secure a link with the candidate peer MP.

	False
	False
	1
	1
	True
	PMK-MA(peer), identified by PMK-MAName(sender) in the received message, which the local MP must retrieve from the MKD.

	False
	False
	1
	1
	False
	PMK-MA(local), the currently-valid PMK-MA belonging to the key hierarchy created by the local MP during a prior Initial MSA Authentication, that may be used to secure a link with the candidate peer MP.

	False
	True
	(any)
	(any)
	(any)
	PMK-MA(peer), which is identified by PMK-MAName(sender) in the received message.

	True
	False
	(any)
	(any)
	(any)
	PMK-MA(local), which is identified by PMK-MAName(receiver) in the received message.

	True
	True
	(any)
	(any)
	True
	PMK-MA(peer), which is identified by PMK-MAName(sender) in the received message.

	True
	True
	(any)
	(any)
	False
	PMK-MA(local), which is identified by PMK-MAName(receiver) in the received message.

The table input Valid-local-key is set to true if PMK-MAName(receiver), contained in the PMKID list field in the RSNIE of the received peer link open frame, identifies the PMK-MA belonging to the local MP’s key hierarchy that is currently valid for securing the link with the peer MP; otherwise, and when there is only one PMK-MAName entry, it is false.

The table input Cached-peer-key is set to true if the key named by PMK-MAName(sender), contained in the PMKID list field in the RSNIE of the received peer link open frame, is cached by the MA function of the local MP and is currently valid for securing the link. Otherwise, it is false.

The “Connected to MKD” bits in the MSCIE, as in the local MP’s Beacon frames and Probe Response frames, and as included by the peer MP in the peer link open frame, are also inputs to the procedure. A final input for the key selection procedure is the determination of whether the local MP is the Selector MP.

If the key selection procedure resulted in the choice of PMK-MA(peer), but the local MA function does not have PMK-MA(peer) in its cache, then the MA shall contact the MKD and retrieve the selected key. The MA shall use the PMK-MKDName value received in the peer link open frame to identify the PMK-MA to be retrieved.

If the key selection procedure resulted in an indication that Initial MSA Authentication shall occur, the “Connected to MKD” bits contained in the received peer link open frame and as set by the local MP in its Beacon frames and Probe Response frames shall be examined. If both MPs have “Connected to MKD” bits set to zero, an OPN_RJCT event (see 11A.2.2.3) shall be triggered in order to close the link, with ReasonCode set to MESH-SECURITY-AUTHENTICATION-IMPOSSIBLE, since authentication cannot occur.

If the local MP has received a peer link confirm frame from the candidate peer MP, the local MP shall verify that the PMK-MAName value contained in the received peer link confirm frame identifies the key chosen by the key selection procedure, or is empty if Initial MSA Authentication shall occur. If the verification fails, an OPN_RJCT event (see 11A.2.2.3) shall be triggered in order to close the link, with ReasonCode set to MESH-SECURITY-FAILED-VERIFICATION.

Following the key selection procedure, the MP shall perform the 802.1X role selection procedure based on the contents of the received peer link open frame and its own configuration. If the “Default Role Negotiation” bits sent by the peer MP in the peer link open frame and as set by the local MP in its Beacon frames and Probe Response frames are set to zero, the determination of 802.1X roles is outside the scope of this standard. Otherwise, the following procedure indicates which node plays the 802.1X authenticator role; the other MP is the 802.1X supplicant.

 The inputs to the 802.1X role selection procedure are:

· The “Connected to MKD” bit in the MSCIE and the “Request Authentication” bit in the MSAIE, both in the peer link open frame received from the peer,

· The “Connected to MKD” bit in the MSCIE of the local MP’s Beacon frames and Probe Response frames,

· Whether the local MP requests authentication during this MSA authentication mechanism, and

· Whether the local MP is the Selector MP.

The 802.1X role selection procedure is as follows:

· If neither MP has the “Connected to MKD” bit set to 1, then the 802.1X Authenticator is the Selector MP.

· If only one MP has the “Connected to MKD” bit set to 1, then that MP is the 802.1X Authenticator.

· If both MPs have “Connected to MKD” bit set to 1, then:

· If both MPs request authentication during this handshake, then the 802.1X Authenticator is the Selector MP.

· If neither MP requests authentication during this handshake, then the 802.1X Authenticator is the Selector MP.

· Otherwise, the MP that requests authentication is the 802.1X Supplicant, and the other MP is the 802.1X Authenticator.

If the local MP has received a peer link confirm frame from the candidate peer MP, the local MP shall verify that the MA-ID value received in the peer link confirm frame matches the result of the 802.1X role selection procedure. If not, an OPN_RJCT event (see 11A.2.2.3) shall be triggered in order to close the link, with ReasonCode set to MESH-SECURITY-FAILED-VERIFICATION.

The processing of the peer link open frame is completed after the 802.1X roles are determined. The OPN_ACPT event shall be generated to indicate successful message processing. On the OPN_ACPT event, the peer link management messages are sent according to the peer link management procedures of 11A.2.

NEXT SNIPPET

· Link metric reporting

The purpose of the link metric reporting procedure is to determine the link metric associated with a particular link.

If bi-directional link metrics are required in the network, each MP may request a link metric report from a neighbor peer MP, or may voluntarily submit a link metric report to a neighbor peer MP. Upon reception of a link metric report, an MP may update its local link metric information using the link metric information received.

To request a link metric report, an MP sends a link metric request to a neighbor peer MP. An MP receiving a link metric request shall reply with a link metric report containing the measured metric for the link to the requesting MP.

To submit a link metric report, an MP sends a link metric report frame to a neighbor peer MP.

NEXT SNIPPET

· At Source MPs

An MP that is the source of a broadcast frame shall use a 4 address frame and set the Address 3 field to the broadcast address and the Address 2 and Address 4 fields to its own MAC address.

If the frame is originally received by an MP from proxied entities (i.e., at MAPs/MPPs) with a broadcast address in the Address 1 (RA/DA) field the Source MP shall enable Mesh Address Extension by setting the Address Extension Mode to 10 and encode Address 5 to the broadcast address and Address 6 to the address of the proxied entity. It shall set the Address 3 field to the broadcast address and the Address 2 and Address 4 fields to its own MAC address.

The Source MP shall set the TTL field in the Mesh Header to dot11MeshTTL in order to control the reachability of broadcast frames in terms of hop count. For example, if the TTL field is set to 1, frames are delivered to immediate neighbors only. Otherwise, the frames are broadcasted multiple hops, limited by the TTL value.

The Source MP shall set the Mesh Sequence Number field in the Mesh Header to a value from a single modulo-65536 counter that is incrementing by 1 for each new frame.

In order to increase the reliability of broadcast frame delivery, a Source MP may optionally transmit the same broadcast frame multiple times or break the frame in to multiple unicast frames to neighbor peer MPs with Address 1 set to each peer MP’s address and Address 3 set to the broadcast address.

· At Intermediate and destination MPs

On receipt of a frame with Address 1 (RA) set to its MAC address or the broadcast MAC address and with Address 3 (DA/Mesh DA) set to the broadcast address, an MP deciphers the frame and checks for authenticity. If it is not from a peer MP, the frame shall be silently discarded. Otherwise, it shall be further processed as follows.

The tuple of Address 4 (SA/Mesh SA) and Mesh Sequence Number from the Mesh Header shall be used as a unique message signature for tracking broadcast frames. The MP checks whether the frame has previously been received. If this is the case, the frame shall be discarded. Otherwise, the MP shall retain the signature and continues processing the frame.

The MP then decrements the TTL field in the Mesh Header field. If the TTL value has reached zero, the message shall not be forwarded to other MPs. If the TTL value has not reached zero and the MP is a forwarder for this frame, the frame is queued for transmission to neighbor peer MPs in order to propagate this broadcast frame throughout the mesh. The transmission procedure of the broadcast frame is as described in the previous subclause.

If the MP is a proxy MP, the MP shall transmit the frame to all its proxied entities outside the boundary of the mesh after translating the frame to the appropriate frame formats for proxied entities.

Note that during the forwarding process at intermediate MPs, the contents of the frame body are not changed.

NEXT SNIPPET

· Airtime link metric computation procedures

In order to compute the forwarding table for individually addressed frames, the MP shall first calculate the link metric for each pairwise link to its neighbor peer MPs in the Mesh. This subclause defines a default link metric that may be used by a path selection protocol to identify an efficient radio-aware path. The extensibility framework allows this metric to be overridden by any path selection metric as specified in the active profile.

The default link metric is the airtime metric. Airtime reflects the amount of channel resources consumed by transmitting the frame over a particular link. This measure is approximate and designed for ease of implementation and interoperability.

The airtime for each link is calculated as:

[image: image2.wmf]c

a

O

B

t

r

-

-

-

-

-

+

1

1

e

f

–

-

-

-

-

-

-

-

-

-

-

-

-

-

=

Where O and Bt are constants listed in Table s53, and the input parameters r and ef are the data rate in Mb/s and the frame error rate for the test frame size Bt respectively. The rate r represents the data rate at which the MP would transmit a frame of standard size Bt based on current conditions and its estimation is dependent on local implementation of rate adaptation. The frame error rate ef is the probability that when a frame of standard size Bt is transmitted at the current transmission bit rate r, the frame is corrupted due to transmission error; its estimation is a local implementation choice. Frame drops due to exceeding TTL should not be included in this estimate as they are not correlated with link performance.

The airtime link metric shall be measured in increments of 10.24 microseconds, or one hundredth of a TU.

	· Airtime cost constants

	Parameter
	Recommended Value
	Description

	O
	varies depending on PHY
	Channel access overhead, which includes frame headers, training sequences, access protocol frames, etc.

	Bt
	8192
	Number of bits in test frame

 Table s54 gives the parameters of the airtime link metric for the Extensible Path Selection Framework.

	· Parameters of the Airtime Link Metric for Extensible Path Selection Framework

	Path Selection Metric ID
	See Table s6 in 7.3.2.54.2.

	Data type
	Unsigned integer, [image: image3.wmf]0

metric value

4

294

967

296

,

,

,

£

£

	Length of metric field
	4 octets

	Operator for metric aggregation
	addition (+)

	Comparison operator
	less than, equal to, greater than as used with integers

· metric a is better than metric b iff a < b

· metric a is equal to metric b iff a = b

· metric a is worse than metric b iff a > b

	Initial value of path metric
	0

NEXT SNIPPET

· Definitions

This subclause describes terminology for HWMP. Figure s65 illustrates an example utilizing this terminology.[image: image4.wmf]
· Illustration of definitions

The following definitions are made within the context of a single PREQ/PREP action frame pair (path discovery).

· path originator:

· The path originator is the MP that triggers the path discovery.

· path originator address:

· The MAC address of the path originator.

· path target:

· The path target is the MP to which the path originator attempts to establish a path.

· path target address:

· The MAC address of the path target.

· intermediate MP:

· The intermediate MP is the MP which participates in path selection and is neither path originator nor path target.

· intermediate MP address:

· The MAC address of the intermediate MP.

· forward path:

· The forward path is the path to the path target, set up at the path originator and intermediate MPs.

· reverse path:

· The reverse path is the path to the path originator, set up at the path target and intermediate MPs.

· forwarding information: The forwarding information maintained by an intermediate MP that allows the MP to perform its path selection and forwarding functions.

The terminology used when discussing Forwarding Information is relative to the MP (reference MP) and a particular destination of the path. The following terms are specific to a given instance of the Forwarding Information.:

· destination MP:

· The end point of a path.

· destination MP address:

· The MAC address of the path destination.

· next hop MP:

· The next hop MP is a neighbor peer MP on the path to the destination MP.

· next hop MP address: The MAC address of the next hop MP.

· precursor MP:

· A precursor MP is an MP that identifies a given MP as the next hop MP to some destination MP.

· precursor MP address:

· The MAC address of the precursor MP.

 Table s56 shows the roles of the various MPs in the Forward Path and Reverse Path generated as a result of the full path PREQ/PREP processing as shown in Figure s65. Each row in the table contains the roles of a forward/reverse path from the reference MP’s perspective.

	· Precursor and Next Hop Examples

	Forward Path (to Path Target)

	Reference MP
	Precursor MP
	Next Hop MP
	Destination MP

	Path Originator
	N/A
	Intermediate 1
	Path Target

	Intermediate 2
	Intermediate 1
	Intermediate 3
	Path Target

	Path Target
	Intermediate 3
	N/A
	Path Target

	Reverse Path (to Path Originator)

	Reference MP
	Precursor MP
	Next Hop MP
	Destination MP

	Path Originator
	Intermediate 2
	N/A
	Path Originator

	Intermediate 2
	Intermediate 3
	Intermediate 1
	Path Originator

	Path Target
	N/A
	Intermediate 3
	Path Originator

· unknown destination: A destination MP is considered unknown if the MP does not have any forwarding information for that MP.

· unreachable destination: A destination MP is considered unreachable if the MP does not have valid forwarding information for that MP.

· destination sequence number (DSN):

· The sequence number of the MP when the MP is referred to as the destination. The destination sequence number is used to distinguish newer from older forwarding information to the destination MP. See also 11A.8.4.2.

· target sequence number:

· The sequence number of the MP when the MP is referred to as the path target. It is only used in PREQ/PREP during the establishment of the path.

· time-to-live (TTL): An integer number that is used to limit the number of hops an HWMP Information Element may be processed and propagated. Note that this TTL is not related to the TTL in the mesh header (see 7.1.3.5a).

· root MP:

· A root MP is the root of a path selection tree.

· dependent MP:

· An MP that has a Next Hop MP on the path to the Root MP.

· General rules for processing HWMP information elements

This subclause describes the rules for the processing of the following components of the HWMP information elements:

· Destination Sequence Number

· TTL

· Metric

Note: It is assumed that the receiving MP only accepts HWMP elements from MPs with which it has established a peer link. Therefore, all HWMP elements accepted are presumed to have originated in the same mesh network that the receiving MP belongs to.
NEXT SNIPPET

· Non-synchronizing MPs

A non-synchronizing MP is an MP that maintains an independent TSF timer and may not update the value of its TSF timer based on time stamps and offsets received in Beacon frames or Probe Response frames from other MPs. A non-synchronizing MP may start its TSF timer independently of other MPs. The “Synchronizing with peer MP” bit in the “Synchronization Configuration” field of the Mesh Configuration element, when set to 0, indicates that an MP is currently a non-synchronizing MP. An MP that supports synchronization may elect to be a non-synchronizing MP if it is communicating with peer MPs that are not requesting synchronization.

NEXT SNIPPET

· Interaction between synchronizing and non-synchronizing MPs

In case the MP requests synchronization from its peer MP, the MP sets the “Requests Synchronization from Peer MP” subfield in the Mesh Configuration element during peer link establishment. However, an MP should request synchronization from a peer MP only if the peer MP supports synchronization (“Supporting Synchronization” subfield of the Mesh Configuration element is set to 1). If an MP requests synchronization from its peer MPs, it shall be a synchronizing MP at that time. For example, initially, an MP may be in the non-synchronized state, but it may switch to the synchronized state and vice-versa based on either its own requirements or the requirements of peer MPs.

A non-synchronizing MP may change into a synchronizing MP if it is capable of synchronizing, by setting its “Synchronizing with peer MP” bit to 1.

A non-synchronizing MP or an MP that has an established peer link with a non-synchronizing MP shall maintain information to wake up at the neighboring MP’s Mesh DTIM beacon timing when it is in power save mode, as described in 11A.12.

NEXT SNIPPET

· Overview

Mesh power management is enabled between an MP which supports power save service and an MP which operates in power save mode.

An MP which supports power save service is, for convenience, referred to as Power Save Supporting MP, and is capable of signal processing and frame delivery scheme to communicate with MP in power save mode. An MP which operates in power save mode or intends to operate in power save mode is, for convenience, referred to as Power Saving MP, and can establish and maintain peer link only with Power Save Supporting MPs.

A Power Save supporting MP shall utilize the frame transmission rule defined in this clause, in order to deliver frames to power saving MPs. The Power Save supporting MP shall initialize the power save service as described in 11A.12.3, and follow the frame transmission rule described in 11A.12.5. A Power Saving MP shall utilize the frame reception rule defined in this clause, in order to receive frames from Power Save supporting MPs. The Power Saving MP shall initialize the power save service as described in 11A.12.3, change its Power Management Mode as described in 11A.12.2, and follow the frame reception rule described in 11A.12.4.

MPs shall advertise their capability to support power save in the Power Save Support Enabled bit in the Mesh Capability element, included in Beacon and Probe Response frames.

An MP which is in Power Save mode or is transitioning to Power Save mode shall set the Power Management field of the Frame Control field to 1. Such an MP is also called a power saving MP.

In case a neighbor of an MP does not support power save, the MP intending to be in Power Save mode may choose not to open a peer link with that particular neighbor MP, or it may choose to operate in active mode and open peer link with that neighbor MP.

 An MP which intends to operate in Power Save mode may reject a peer link establishment attempt from another MP if this MP does not support power save. Similarly, an MP which does not support power save may reject a peer link establishment attempt from MP whose Power Management field in the Frame Control field is set to 1.

The decision of whether to enter Power Save mode or not should be made considering the power versus communication constraints. Such a decision can be changed dynamically. An MP may close one or more of the established peer links with neighboring MPs, prior to changing its power management mode from active mode to Power Save mode, in order to conserve power consumption.

An MP that has power save capability may or may not have power save supporting capability and an MP with power save supporting capability may or may not have power save capability. It is possible for an MP to have both power save capability and power save supporting capability.

A power saving MP shall periodically listen for Mesh DTIM beacons of peer MPs, which is determined by the Mesh DTIM Period field in the Mesh TIM element in Beacon and Probe Response frames transmitted by these peer MPs. A power saving MP waking to transmit or receive a beacon frame shall stay in the awake state for a minimum period of Mesh ATIM window as indicated in their Beacon frames, before returning to the doze state.

A power save supporting MP which has a peer link with an MP in power save mode shall buffer MSDUs destined for the MP and only transmit them at designated times. MSDUs that are to be transmitted to an MP in power save mode are first announced via the Mesh TIM element in the beacon frame, or by an ATIM frame transmission during the Mesh ATIM window following the Mesh DTIM beacon when neighboring MPs are awake. A power saving MP shall listen for these announcements to determine if it needs to remain in the awake state.

A power save supporting MP which sets up TSPEC with a power saving MP may send traffic to power saving MPs on agreed schedules as negotiated as part of APSD (Automatic Power Save Delivery) TSPEC setup. An MP in Power Save mode which sets up TSPEC with a power save supporting MP shall wakeup according to any negotiated schedule as part of TSPEC setup with the power save supporting MP. The MP remains in the awake state until the end of the service period.

NEXT SNIPPET

· (normative) ASN.1 encoding of the MAC and PHY MIB

Insert the following at the end of Annex D:

**

* dot11MeshPointConfig TABLE

**

dot11MeshEnabled OBJECT-TYPE

SYNTAX INTEGER

MAX-ACCESS read-only

STATUS current

 DESCRIPTION

"This attribute shall specify whether or not mesh services are supported by a station."

 ::= { dot11MeshPointConfigEntry 1}

dot11BBConnectivityReportTimeout OBJECT-TYPE

SYNTAX INTEGER (0..1000)

MAX-ACCESS read-write

STATUS current

 DESCRIPTION

"This attribute shall specify the amount of Mesh DTIM intervals, when no beacon or connectivity report indicating received beacon is received before the MP is removed from the Mesh Neighbor List element in beacon or in connectivity report."

 ::= { dot11MeshPointConfigEntry 2 }

dot11BBBeaconRecoveryTimeOut OBJECT-TYPE

SYNTAX INTEGER (0..1000)

MAX-ACCESS read-write

STATUS current

 DESCRIPTION

"This attribute shall specify the amount of Mesh DTIM intervals, when no beacon or connectivity report indicating received beacon is received before the MP starts to transmit a beacon."

 ::= { dot11MeshPointConfigEntry 3 }

dot11BBBeaconRecoveryAddition OBJECT-TYPE

SYNTAX INTEGER (0..100)

MAX-ACCESS read-write

STATUS current

 DESCRIPTION

"This attribute shall specify extra Mesh DTIM intervals that is used to for MPs that have not received connectivity reports from all other MPs. The MPs shall wait for with beacon or connectivity report indicating received beacon is received before the MP starts to transmit a beacon."

 ::= { dot11MeshPointConfigEntry 4 }

dot11MeshMaxRetries OBJECT-TYPE

SYNTAX INTEGER

MAX-ACCESS read-only

STATUS current

DEFAULT { 0 }

 DESCRIPTION

"This object specifies the maximum number of Peer Link Open retries that can be sent to establish a new peer link instance in a mesh."

 ::= { dot11MeshPointConfigEntry 5}

dot11MeshRetryTimeout OBJECT-TYPE

SYNTAX INTEGER

MAX-ACCESS read-only

STATUS current

DEFAULT { 40 }

 DESCRIPTION

"This object specifies the initial retry timeout, in millisecond units, used by the Peer Link Open message."

 ::= { dot11MeshPointConfigEntry 6}

dot11MeshConfirmTimeout OBJECT-TYPE

SYNTAX INTEGER

MAX-ACCESS read-only

STATUS current

DEFAULT { 40 }

 DESCRIPTION

"This object specifies the initial retry timeout, In millisecond units, used by the Peer Link Open message."

 ::= { dot11MeshPointConfigEntry 7}

dot11MeshHoldingTimeout OBJECT-TYPE

SYNTAX INTEGER

MAX-ACCESS read-only

STATUS current

DEFAULT { 40 }

 DESCRIPTION

"This object specifies the confirm timeout, in millisecond units, used by the peer link management to close a peer link."

 ::= { dot11MeshPointConfigEntry 8}

dot11MeshID OBJECT-TYPE

SYNTAX OCTET STRING (SIZE(0..32))

MAX-ACCESS read-write

STATUS current

 DESCRIPTION

"This attribute reflects the Mesh ID configured in this entity."

::= { dot11MeshPointConfigEntry 9}

dot11MeshFirstLevelKeyLifetime OBJECT-TYPE

SYNTAX Unsigned32 (1..65535)

MAX-ACCESS read-write

STATUS current

DEFVAL (10000)

 DESCRIPTION

"This attribute shall specify the default lifetime of the PMK-MKD, in minutes when a Session-Timeout attribute is not provided during the EAP authentication."

::= { dot11MeshPointConfigEntry 10}

dot11MeshKeyDistributorDomainID OBJECT-TYPE

SYNTAX OCTET STRING (SIZE(6))

MAX-ACCESS read-write

STATUS current

 DESCRIPTION

"This attribute shall specify the MKD domain identifier of this entity."

::= { dot11MeshPointConfigEntry 11}

dot11MeshTTL OBJECT-TYPE

SYNTAX INTEGER (0..255)

MAX-ACCESS read-write

STATUS current

 DESCRIPTION

"This attribute shall specify the value of TTL field set at a source MP. The default value for this attribute is 31."

::= { dot11MeshPointConfigEntry 12}

dot11MeshMKDNASID OBJECT-TYPE

SYNTAX OCTET STRING (SIZE(1..48))

MAX-ACCESS read-write

STATUS current

 DESCRIPTION

"This attribute shall specify the MKD Key Holder identifier of the Authenticator of this entity.

NOTE: Backend protocol may allow longer NAS Client identifiers (e.g., RADIUS allows up to 253 octet NAS-Identifier), but when used with Initial MSA Authentication, the maximum length is limited to 48 octets. The same value must be used for the NAS Client identifier and dot11MeshMKDNASID to allow EAP channel binding.

"

 ::= { dot11MeshPointConfigEntry 13}

dot11MeshKHHandshakeAttempts OBJECT-TYPE

SYNTAX INTEGER (1..65535)

MAX-ACCESS read-write

STATUS current

 DESCRIPTION

"The number of times transmission of mesh key holder security handshake messages 1 and 3 will be attempted before indicating failure of the mesh key holder security handshake protocol."

 ::= { dot11MeshPointConfigEntry 14}

dot11MeshKHHandshakeTimeout OBJECT-TYPE

SYNTAX INTEGER (1..65535)

MAX-ACCESS read-write

STATUS current

 DESCRIPTION

"The time in milliseconds between transmission attempts of mesh key holder security handshake messages 1 and 3, and between the final transmission attempt and indicating failure of the mesh key holder security handshake protocol."

 ::= { dot11MeshPointConfigEntry 15}

dot11MeshKeyTransportTimeout OBJECT-TYPE

SYNTAX INTEGER (1..65535)

MAX-ACCESS read-write

STATUS current

 DESCRIPTION

"The timeout value in milliseconds that a mesh entity waits for a response message in a key transport protocol before indicating failure of the key transport protocol."

 ::= { dot11MeshPointConfigEntry 16}

dot11MeshForwarding OBJECT-TYPE

SYNTAX INTEGER

MAX-ACCESS read-write

STATUS current

 DESCRIPTION

"This attribute shall specify the ability of a Mesh Point to forward frames."

 ::= { dot11MeshPointConfigEntry 17}.

dot11shortMulticastFrameLengthLimit OBJECT-TYPE

SYNTAX INTEGER (0..2304)

MAX-ACCESS read-write

STATUS current

 DESCRIPTION

"This attribute shall specify the maximum size of one short broadcast or multicast MPDU which may be transmitted during the Mesh ATIM window if the MAC frame length of the MPDU is less than dot11shortMulticastFrameLengthLimit."

 ::= { dot11MeshPointConfigEntry 18}

**

* End of dot11MeshPointConfig TABLE

NEXT SNIPPET

· Shared data structures and Secure peer link states

When the protocol completes, we expect the protocol achieves consistency property by synchronizing the following shared data structures:

· Data link addresses, which are used as identifiers.

· Random numbers, which are used as challenges and as protocol instance identifiers.

· Pairwise Master Key (PMK).

· Each PMK is named by a PMK-ID.

· Each PMK has an expiry time.

· The PMK is used to derive three other keys:

· the Key Confirmation Key (AKCK), which is the “authentication key” for the abbreviated handshake.

· the Key Encryption Key (AKEK), which is the key used to wrap the broadcast key.

· the Temporal Key (TK), which is a session key. This key must be ephemeral to make replay work.

· A ciphersuite selector list, identifying the ciphersuites a peer MP implements and the security policy it enables. The protocol must negotiate the ciphersuite used with the TK from these lists of ciphersuite selectors.

· GTK, the broadcast key for its source.

· A group ciphersuite for the GTK. We do not negotiate the broadcast ciphersuite; the protocol simply fails if there is no match.

· The AKM used by the Abbreviated Handshake itself, for extensibility in the future.

NEXT SNIPPET

· Protocol Revision 1: Instance Identifier Agreement

Instance identifier agreement achieves two security goals. First it achieves mutual authentication. Second, it achieves the consistency property for a link instance identifier.

Assume that MPs A and B, but no one else shares the “authentication” key AKCK. For the time being, the AKCK may be treated as a long lived key. Later in T.5.4, this assumption is removed, using key derivation to replace a long-lived AKCK with an ephemeral key. The message integrity code micAKCK(.) is also fixed for the following discussion.

The protocol treats the MAC addresses MACA and MACB of the two peer MPs A and B as identifiers for A and B, respectively. Each party also generates a random number RA and RB. The protocol requires that each MP commit to its own value for each instance of the protocol it initiates—A must commit to MACA and RA, while B must commit to MACB and RB. In other words, these values are invariant and fixed for each protocol instance. In particular, if one peer MP wants to create a new instance of the protocol, it must generate a new random number. It can associate, however, as many instance created by its peer MP with this one, in order to defend against flooding attacks.

The space of all peer identifiers is lexicographically ordered. The space of random numbers is also ordered lexicographically. The goal of this first version of the protocol is for A and B to agree on a common identifier for an instance of the protocol. The instance identifier is given by <min(MACA, MACB), max(MACA, MACB), min(RA, RB), max(RA, RB)>. The 4-tuple uses the min(.,.) and max(.,.) operators in the instance identifier name, because a peer-to-peer does not have a notion of whether A or B should be named first, so the max and min operators provide the arbitrariness needed to unambiguously identify the instance.

For this first revision of the protocol, let Open(A, B, R, K) represent [MACA || MACB || R]K and Confirm(A,B,R,S,K) represent [MACA || MACB || R || S]K. At least one of the peers sends an Open message to the other (both could initiate at the same time) to begin a new instance of the protocol:

A uses rand to generate a random RA
A B: Open(A,B,RA,AKCK)

 On receipt of the first message, the other party does the following:

 if RA = RB then

[1]

B discards Open(A,B,RA,AKCK)

else if MACB is not B’s MAC address then

[2]

B discards Open(A,B,RA,AKCK)

else if micAKCK(MACA || MACB || RA) is invalid then
[3]

B discards Open(A,B,RA,AKCK)

else

B instantiates a protocol instance using MACA and RA
[4]

if B has not sent its own Open(B,A,RB,AKCK) then
B A: Open(B,A,RB,AKCK)

endif

B A: Confirm(B,A, RB, RA,AKCK)

endif

A must also execute the same pseudo-code, with the roles of A and reversed. The rationale for each step is as follows:

· Since the messages used by any peer-to-peer protocol are by necessity symmetric, we need some way to defeat reflection attacks (i.e., the adversary sends A its own messages). The test for equality in [1] is intended to accomplish this.

· Filtering on MAC address is a simple sanity check, to make sure the receiver to whom the adversary delivered the message is the intended destination. The test [2] is meant to accomplish this.

· Including a message integrity code in the first message is not standard, but it appears to help establish the consistency property for other parameters added by later protocol revisions below. The check of the message integrity code in [3] limits the adversary to resorting to retries to create forgeries. This helps defend against flooding attacks. We hypothesize the message integrity code is crucial for the correctness of a 4 message peer-to-peer protocol.

· If all of the basic sanity checking succeeds, in [4] the receiver instantiates an instance of the protocol based on the parameters received from its peer. What this means is that B begins with a half-instantiated link instance and then pairs each RA received with his own RB to create a fully instantiated link instance. In principle this would appear to enable a flooding attack, as the receiver generates a protocol instance for each valid Open message received from the peer MP. However, we believe this is necessary, and it is how other protocols, such as TCP and the 802.11 4-Way Handshake, respond to flooding attacks. Its efficacy depends on the peer MP committing to its identifier and random number at the protocol start. Referring back to the peer link management state machine, since each peer MP commits to a MAC address and random number, at most one of these fully instantiated instances can later advance to the ESTAB state in response to a Confirm message (the one created by the peer holding AKCK). The other instances will time out, enter the HOLDING state, and eventually be purged. And once it later receives a verified Confirm message from A, B need never accept any further Open messages for instances of the protocol identified by its own MAC address and random number, except those matching to MACA and RA. Also, since the AKCK is ephemeral in practice, the adversary’s opportunity to effectively replay earlier Open messages with other RA values is limited.

When MP A receives a Confirm message it does the following:

if RB = RA then

[5]

A discards Confirm(B,A,RB,RA,AKCK)

else if MACA is not A’s MAC address then

[6]

A discards Confirm(B,A,RB,RA,AKCK)

else if micAKCK(MACB || MACA || RB || RA) is invalid then

[7]

A discards Confirm(B,A,RB,RA,AKCK)

else

A enters the ESTAB state (A decides the protocol succeeds)

endif
Peer MP B runs the mirror image pseudo-code, with the roles of A and B reversed, when it receives a Confirm message after sending an Open.

Steps [5], [6], and [7] are as before, providing integrity for the Confirm message. The message integrity code binds the peer identifiers MACA and MACB to the instance identifiers RA and RB. Since by hypothesis RA is unpredictable, the Confirm message could not have been produced before A’s Open message. Since the message integrity code is valid, it could only be produced by a principal that knows AKCK; since A did not produce this Confirm, and since by assumption B is the only other party that knows AKCK, this Confirm must have been generated by B in response to A’s Open message.

Note that if RA is not A’s random number, then according to the state machine the Confirm message will not be delivered to this protocol instance.

We believe that the protocol achieves the consistency property for the instance identifiers. Indeed, the Confirm message from A to B attests to B that A is using MACA, MACB, RA, and RB for this protocol instance, and similarly the Confirm message from B to A. We further believe that the consistency property plus the fact that A and B sent and received the same set of Open and Confirm messages ought to be counted as mutual authentication.

NEXT SNIPPET

· Protocol Revision 3: Deriving the Session Keys

Next, the protocol is enhanced to use the pairwise master key (PMK), which is the top of the 802.11 key hierarchy. The assumptions the design makes about the PMK are the following:

· The PMK is only known to A and B.

· Ephemeral. The PMK was created recently with expiry time. In other words, the PMK is only valid within certain period of time.

· PMK has sufficient entropy.

The security goal here is to establish a session key TK known only to the two peer MPs.

The MPs share the PMK and apply a key derivation function kdf:

AKCK || AKEK kdfPMK(0n || min(MACA, MACB) || max(MACA, MACB))

TK kdfPMK(min(RA, RB) || max(RA, RB) || min(MACA, MACB) || max(MACA, MACB))

where n = length RA + length RB in bits, and 0n denotes the string of n zero bits. Here the first assignment is meant to say that AKCK and AKEK are derived together as one string, with AKCK being the first substring of AKCK || AKEK and AKEK being the remaining bits. It is standard to assume that the kdf is implemented by a pseudo-random function. Under this assumption, this represents a counter-mode construction for a pseudo-random function, because 0n and min(RA, RB) || max(RA, RB) are distinct counter values, applying kdfPMK(.) to arguments constructed from them provides key separation.

Including MACA and MACB is a way to express the “contract” that all of the derived keys are to be used for communication only between A and B (or, more technically, between addresses MACA and MACB). T.5.2 and T.5.3, have already explained how AKCK and AKEK are used. TK is used to secure data traffic between A and B once link establishment protocol succeeds.

Observe that this construction treats AKCK and AKEK as long-lived keys; they can be reused multiple times to form links after PMK has been set. This is of practical significance, because a wireless link can go up and down frequently due to RF disruptions, and it can be relatively expensive to set the PMK.

We believe this construction is acceptable, because this change does not affect the security of GTK wrapping or the freshness of the communication.

· the GTK, not the AKEK, provides the randomization needed to make the keywrap secure

· the random values RA and RB, not AKCK, provide the freshness of the message exchange. In particular, there is no security requirement that AKCK and AKEK differ from one protocol instance to the next. Including the random numbers RA and RB in the derivation of the TK, however, means that TK will always be “fresh” after each instance of the protocol.

This construction raises other issues, however. In 802.11s, the PMK is always ephemeral, in the sense that it is created from random inputs whenever an MP joins the mesh. This means that MACA is no longer an effective key identifier for B, and similarly MACB is not a good key identifier for A. A better key identifier is the peer MAC address plus the shared PMK-ID. It is therefore prudent to add the PMK-ID of the PMK being used to the Open and Confirm messages exchanged for the receiver to properly identify which key was used to derive the AKCK, AKEK, and TK.

We believe that our construction meets its security goal of creating a TK known only to A and B if (a) PMK has sufficient entropy and (b) PMK is itself known only to A and B.

· Protocol Revision 4: Negotiating the Session Ciphersuite

It is possible for peer MPs A and B to implement different ciphersuites to protect unicast traffic protected by the session key TK. However, for communication to be possible, A and B must agree on a common ciphersuite to use with TK. This section attempts to enhance the protocol version defined in T.5.4 with this new capability.

The security goal is to achieve the consistency property for the instance ciphersuite.

Each peer MP identifies the ciphersuites it is willing to use with a list of identifiers for each enabled ciphersuite. 802.11 calls each ciphersuite identifier a selector. Let us call A’s list of selectors CiphersuitesA, and B’s list CiphersuitesB. We require that each party orders its ciphersuite selectors by preference, from most to least preferred. A adds its ciphersuites list to its Open message:

Open(A) = [MACA || MACB || RA || EA) || GroupCiphersuiteA || CiphersuitesA || PMK-ID]{K}

and similarly for B. The receiver pseudo-code for the Open message is modified as follows (assuming EA is unwrapped on receipt of the Open message):

if RA = RB then
B discards Open(A,B,RA,EA, GroupCiphersuiteA,CiphersuitesA,AKCK)

else if MACB is not B’s MAC address then
B discards Open(A,B,RA,EA,CiphersuitesA,AKCK)

else if micAKCK(MACA || MACB || RA || EA || GroupCiphersuiteA || CiphersuitesA || PMK-ID) is invalid then
B discards Open(A,B,RA,EA, GroupCiphersuiteA,CiphersuitesA,AKCK)

else if EA does not unwrap correctly then
B discards Open(A,B,RA,EA, GroupCiphersuiteA,CiphersuitesA,AKCK)

else if GroupCiphersuiteA is not the same as set by B’s policy then
B discards Open(A,B,RA,EA, GroupCiphersuiteA, CiphersuitesA,AKCK)

B sends a Close message protected byAKCK
B transitions to the HOLDING state

else if CiphersuitesA and CiphersuitesB have an empty intersection then
[12]

B discards Open(A,B,RA,EA,GroupCiphersuiteA,CiphersuitesA,AKCK)

B sends a Close message protected by AKCK

B transitions to the HOLDING state

else

B instantiates a protocol instance using MACA and RA
GroupCiphersuite  GroupCiphersuiteA
if MACA > MACB then

[13]

Ciphersuite  A’s most preferred choice in the overlap set

else

Ciphersuite  B’s most preferred choice in the overlap set

endif

if B has not sent its own Open then
B A: Open(B,A,RB,EB, GroupCiphersuite,CiphersuitesB,AKCK)

endif

B A: Confirm(B,A,RB, RA, EA,GroupCiphersuite,Ciphersuite,AKCK)
[14]

 endif
The conditional test [12] is intended to check whether A and B share any ciphersuites. If they do not, then it is not possible to form a link, so the Open message is discarded. Otherwise, the peers need some method to select a ciphersuite from those they share. Any such ciphersuite will do, since both parties believe all of those in the overlapping set meet their security requirements. This means we can impose a completely arbitrary rule to select one. [13] uses the ordering of MAC addresses and the preference of the peer with the larger MAC address to make this selection, which the above pseudo-code assigns to a variable called Ciphersuite. The receiver inserts this choice into its Confirm message in [14].

Strict adherence to the consistency goal suggests that B’s Confirm message should also convey A’s Ciphersuite list. However, since CiphersuitesA is bound by the Open message integrity code to RA, A is assured that B received CiphersuitesA instead of some other list in the Open.

Since the selected Ciphersuite is sent in the Confirm message, the pseudo-code for processing a received Confirm must change as well:

if RB = RA then
A discards Confirm(B,A,RB,RA,EA, GroupCiphersuite,Ciphersuite,AKCK)

else if MACA is not A’s MAC address then
A discards Confirm(B,A,RB,RA,Ciphersuite,AKCK)

else if micAKCK(MACB || MACA || RB || RA || EA || GroupCiphersuite || Ciphersuite || PMK-ID) is invalid then
A discards Confirm(B,A,RB,RA,EA, GroupCiphersuite,Ciphersuite,AKCK)

else if GroupCiphersuite is not the same as sent earlier in an Open message then

A discards Confirm(B,A,RB,RA,EA,GroupCiphersuite,Ciphersuite, AKCK)

A sends a Close message protected by the AKCK

A transitions to the HOLDING state

else if EA is not the same as sent earlier in an Open message then

A discards Confirm(B,A,RB,RA, EA,GroupCiphersuite,AKCK)

A sends a Close message protected by the AKCK

A transitions to the HOLDING state

else if Ciphersuite is not in CiphersuitesA sent earlier in an Open message then

[15]

A discards Confirm(B,A,RB,RA, EA,GroupCiphersuite,Ciphersuite,AKCK)

A sends a Close message protected by the AKCK

A transitions to the HOLDING state

else

A enters theESTAB state (the protocol succeeds from A’s perspective)

endif
Step [15] checks for failures to conform to the protocol. A can end the protocol instance in this case, because the Confirm acknowledges A’s random instance identifier RA, so A knows the Confirm is not a replay from the adversary.

We believe this revision accomplishes its security goal of achieving the consistency property for the selected pairwise ciphersuite, because B will not respond to A with an authenticated Confirm message unless (a) its policy enables a ciphersuite that A’s policy also allows in A’s Open message and (b) both parties apply the same (arbitrary) selection rule to select a ciphersuite from the overlapping set.

Implementation Note: In order to simplify future instances based on the same PMK, A and B can cache the selected ciphersuite and use this to short-circuit the intersection construction by truncating their ciphersuite lists in their Open messages. The utility of this depends on the fact that policy changes are relatively rare—they usually depend on software or hardware upgrades.

· Protocol Revision 5: Negotiating the Instance AKM

Real protocols need the extensibility property. Even if the existing protocol is “correct,” progress in computing, cryptography, and fashion will someday render, e.g., AES-128, insecure or otherwise unusable, and different cryptographic primitives will be needed to secure the abbreviated handshake itself.

802.11 calls the suite of cryptographic algorithms and protocol used to establish keys an authenticated key management suite, or AKM. It is therefore necessary to be able to negotiate the AKM, which the present section attempts to add to the functionality of the protocol of Section 8. This would be trivial in the client-server model, but it is messy in the peer-to-peer case.

The security goal for this latest enhancement is to establish the consistency property for the AKM.

The techniques of Section 8 easily apply to this negotiation, but there is an added complication in that our proposed protocol structure requires “premature” commitment to an AKM before it is negotiated. We attempt to circumvent this by abandoning a protocol instance started using the “wrong” AKM and starting a new protocol instance based on the “right” AKM.

The first thing to note is that the key derivation procedure from Section 7 must change, or else we end up using the same AKCK and AKEK with different AKMs, violating basic key hygiene. We obviate this problem by incorporating the AKM selector into the derived keys:

AKCK || AKEK  kdfPMK(0n || AKM-ID || min(MACA, MACB) || max(MACA, MACB))

TK  kdfPMK(min(RA, RB) || max(RA, RB) || AKM-ID || min(MACA, MACB) || max(MACA, MACB))

The next step is to insert the AKM-ID into each of the protocol messages. We also require the list of enabled AKMs in the protocol messages, because each party needs to know whether an alternative can be selected if the first doesn’t work. We order the AKMList by the preference of the party sending the message, with the most preferred AKM first and least preferred last:

 Open(A) = [MACA || MACB || RA || EA || GroupCiphersuiteA || CiphersuitesA || AKMListA || AKMA || PMK-ID] AKCK
 Confirm(A) = [MACA || MACB || RA || RB || EA || GroupCiphersuite || Ciphersuite || AKMA || PMK-ID]AKCK
The messages include the AKM selector explicitly, because otherwise the list would have to play conflicting roles in the Confirm message.

Finally, we need abort the current instance if the two parties cannot agree on an AKM. There are three cases:

 Case 1: AKMListA has the same first element with AKMListB
Both parties agree from the outset. The protocol instances execute correctly as specified through Section 8 (but with the key derivation and message formats as modified by this section). All we need to do is add the check that the AKMs selected by each peer already match.

 Case 2: AKMListA and AKMListB overlap but have different first elements.

Obviously (or perhaps not so obviously) the message authentication code on the received Open or Confirm message must be verified before this case becomes interesting. Otherwise, the adversary can cause one or both of the peers to misbehave and potentially violate AKM consistency.

We need an arbitrary rule to choose the AKM. The arbitrary rule we impose is the same as in Section 8, viz. the most preferred AKM of the device with the larger MAC address wins.

In the following we simply discard Confirm messages that arrive while a peer MP is in this state, because Confirm messages should never happen until the AKM is resolved.

Subcase 1. MACA > MACB.

Let AKMA be A’s most preferred AKM in the overlap between AKMListA and AKMListB.

If AKMA is the first element of A’s AKMListA, then A discards B’s Open message and wait for a new one whose AKMListB begins with the “correct” AKMA. A executes its current instance of the protocol as specified above. It can accept validated Confirm messages that prescribe AKMA for its use. It must discard other Confirms.

Otherwise A (resp. B) creates a new AKMListA (resp. AKMListB) by truncating AKMListA (resp. AKMListB) to begin with AKMA. A (resp. B) then creates a new instance of the protocol based on AKMListA (resp. AKMListB) instead of AKMListA (resp. AKMListB), identified by new random instance identifier RA (resp. RB) using the MLME-PeerLinkActiveOpen primitive (Clause 10.3.40). (“resp.” means respectively)

Subcase 2. MACA < MACB.

Let AKMB be B’s most preferred AKM in the overlap between AKMListA and AKMListB. Same algorithm as in subcase 1, with the roles of A and B reversed..

 Case 3: AKMListA has empty intersection with AKMListB
In this case, conversation is impossible. But wait! The message may be a forgery from the adversary instead of the peer. Since we have no way of verifying this case, all we can do is ignore the message and wait for the protocol instance to time out and enter the Holding state.

In order to make above changes take effect, however, the actual key derivation algorithm needs to be considered outside the AKM suite to avoid the inter-dependency problem of the key derivation algorithm and the authenticated key management suite. The solution is to announce the supported key derivation function elsewhere in the Open/Confirm/Close messages. In addition, similar to Group Cipher Suite negotiation, a single key derivation function needs to be agreed by all nodes in a mesh network. The messages include the KDF selector explicitly. The messages are modified as below:

 Open(A) = [MACA || MACB || RA || EA || GroupCiphersuiteA || CiphersuitesA || AKMListA || AKMA || KDFA || PMK-ID] AKCK
 Confirm(A) = [MACA || MACB || RA || RB || EA || GroupCiphersuite || Ciphersuite || AKM || KDF || PMK-ID]AKCK
We believe this achieves the consistency goal for the AKM while working around the problem of premature AKM usage. Verifying the message authentication code (where possible) allows us to at least conclude that the Open is no worse than a replay. Starting a new protocol instance whenever a peer’s AKM list does not begin with the “correct” first element allows the peers to achieve consistency of the AKM within a new protocol instance while abandoning the old.

References:

[1] 11-07/0861r0 “Architectural Considerations for IEEE 802.11s”

[2] 11-07/2572r0 “Relationship between peer link and physical link”
[3] IEEE P802.11s™/D1.07: Draft STANDARD Amendment <number>: Mesh Networking
[4] 11-07/2553r0 “Simulation Evaluation of Peer Link Management Protocol”

Abstract

This document provides normative text for the proposed resolution to comments CID 418 and 465. The distinction between the logical concept of a peer link and the physical link within a mesh is made clearer with the proposed changes. Peer link and physical link are related, but independent concepts. Peer link and physical link are coupled only during peer link setup and the setup of the security association between MPs. If the physical link breaks, the corresponding peer link does not have to be torn down. If there is no peer link established between two MPs in direct communication range, no successful transmission of mesh frames is possible between them. For more discussion, see documents 11-07/0861r0 and 11-07/2572.

Submission
page 63
M. Bahr, Siemens AG

