IEEE P802.11
Wireless LANs

	Tunneled Direct Link Setup (TDLS)

	Date: 2007-09-19

	Author(s):

	Name
	Company
	Address
	Phone
	email

	Menzo Wentink
	Conexant
	Oudegracht 3, Utrecht, the Netherlands
	+31-65-183-6231
	menzo.wentink@conexant.com

	Henry Ptasinski
	Broadcom Corporation
	190 Mathilda Place, Sunnyvale CA
	+1-408-543-3316
	henryp@broadcom.com

	Kevin Hayes
	Atheros
	5480 Great America Parkway, Santa Clara, CA 95054 408
	+1-408-773-5275
	kevin@atheros.com

	Yongho Seok
	LG Electronics
	Seocho-Gu, Seoul 137-724, Korea
	+8225264151
	yhseok@lge.com

	Bas Driesen
	Philips
	Prof. Holstlaan 22, Eindhoven, The Netherlands
	+31-6-13246399
	bas.driesen@philips.com

	Michael Montemurro
	Research in Motion
	5090 Commerce Blvd.,

Mississauga, ON. Canada, L4W 5W4
	+1-905-629-4716
	mmontemurro@rim.com

	Daniel R. Borges
	Apple, Inc
	1 Infinite Loop MS 306-2HN

Cupertino, CA 95014
	+1 415 425 7347
	drborges@apple.com

Abstract

This document contains a normative text proposal for TGz, for Tunneled Direct Link Setup (TDLS). Tunneled direct link setup allows direct link setup frames to be tunneled through any AP by using an Ethertype encapsulation and Data frames. This draft also contains methods to allows direct link stations to enter a power save mode.
This document is based on previous work under the name nDLS (new DLS), to which several other people have contributed. It is provided to the TGz group to get a quick start into the discussion. TGz then added several changes and optimizations.

3 Definitions

EDITORIAL NOTE—The subclause numbering of definitions is of the form “3.z<x>” where <x> is an increasing number. The 802.11 technical editor will assign numbers when merging this list into the baseline document.

Insert the following new definitions into Clause 3, so as to maintain alphabetic ordering of definitions and renumbering as appropriate:
3.z1 Tunneled Direct Link Setup: Direct Link Setup protocol which uses a specific Ethertype encapsulation to tunnel setup frames through any AP. Power save is supported as well.
4 Abbreviations and acronyms

Insert the following new abbreviations and acronyms into Clause 4 so as to maintain alphabetic ordering:

TDLS
Tunneled Direct Link Setup
5 Frame formats
5.1 MAC frame formats
5.2 Format of individual frame types

5.2.1 Control frames
5.2.2 Data frames

Insert the following new clauses at the end of 7.2.2:

5.2.2.1 TDLS frame format
The frame body of a TDLS frame is defined in Table z1.
	
	
	
	

	
	LLC/SNAP
	TDLS Type
	Information

	Octets:
	8
	1
	variable

Figure z1—TDLS frame body

The LLC/SNAP field contains the LLC/SNAP header, with Ethertype xxxx.
The TDLS Type field specifies the type of the TDLS frame, as specified in Table z1.
The Information field contains information which is specified for each TDLS Type individually.

Table z1—TDLS Type values

	TDLS Type Value
	Meaning

	0
	TDLS Setup Request

	1
	TDLS Setup Response

	2
	TDLS Setup Confirm

	3
	TDLS Teardown Request

	4
	TDLS Teardown Response

	5
	TDLS Tx Path Switch Request

	6
	TDLS Tx Path Switch Response

	7
	TDLS Rx Path Switch Request

	8
	TDLS Rx Path Switch Response

	9 – 255
	reserved

5.2.2.1.1 TDLS Setup Request frame format

The TDLS Setup Request frame contains the information shown in Table z2.

Table z2—Information for TDLS Setup Request frame
	Order
	Information
	Notes

	1
	Link Identifier
	The Link Identifier is specified in 7.3.2.z1.

	2
	Association Request frame body
	The Association Request frame body is specified in 7.2.3.4.

	3
	Dialog Token
	The Dialog Token contains a unique value for this conversation.

The TDLS Setup Request frame shall be sent through the AP.

5.2.2.1.2 TDLS Setup Response frame format

The TDLS Setup Response frame contains the information shown in Table z3.

Table z3—Information for TDLS Setup Response frame

	Order
	Information
	Notes

	1
	Link Identifier
	The Link Identifier is specified in 7.3.2.z1.

	2
	Status Code
	The Status Code is defined in 7.3.1.9.

	3
	Association Request frame body
	The Association Request frame body is specified in 7.2.3.4. Only present for Status Code 0 (Successful).

	4
	Dialog Token
	The Dialog Token is copied from the corresponding TDLS Setup Request.

The TDLS Setup Response frame shall be sent through the AP.

5.2.2.1.3 TDLS Setup Confirm frame format

The TDLS Setup Response frame contains the information shown in Table z3.

Table z3—Information for TDLS Setup Confirm frame

	Order
	Information
	Notes

	1
	Link Identifier
	The Link Identifier is specified in 7.3.2.z1.

	4
	Dialog Token
	The Dialog Token is copied from the corresponding TDLS Setup Response.

The TDLS Setup Confirm frame shall be sent through the AP.

5.2.2.1.4 TDLS Teardown Request frame format

The TDLS Teardown frame contains the information shown in Table z4.

Table z4—Information for TDLS Teardown Request frame

	Order
	Information
	Notes

	1
	Link Identifier
	The Link Identifier is specified in 7.3.2.z1.

	2
	Reason Code
	The Reason Code is defined in 7.3.1.7.

	3
	Dialog Token
	The Dialog Token contains a unique value for this conversation.

The TDLS Teardown Request frame shall be sent through the AP.

5.2.2.1.5 TDLS Teardown Response frame format

The TDLS Teardown frame contains the information shown in Table z4.

Table z4—Information for TDLS Teardown Response frame

	Order
	Information
	Notes

	1
	Link Identifier
	The Link Identifier is specified in 7.3.2.z1.

	2
	Dialog Token
	The Dialog Token is copied from the corresponding TDLS Teardown Request.

The TDLS Teardown Response frame shall be sent through the AP.

5.2.2.1.6 TDLS Tx Path Switch Request frame format

The TDLS Tx Path Switch Request frame contains the information shown in Table z5.

Table z5—Information for Tx Path Switch Request frame

	Order
	Information
	Notes

	1
	Link Identifier
	The Link Identifier is specified in 7.3.2.z1.

	2
	Dialog Token
	The Dialog Token contains a unique value for this conversation.

	3
	Path
	The Path element contains the requested transmit path. The Path element is specified in 7.3.2.z2.

The TDLS Tx Path Switch Request frame shall be sent through the AP.

5.2.2.1.7 TDLS Tx Path Switch Response frame format

The TDLS Path Switch Response frame contains the information shown in Table z6.

Table z6—Information for TDLS Tx Path Switch Response frame

	Order
	Information
	Notes

	1
	Link Identifier
	The Link Identifier is specified in 7.3.2.z1.

	2
	Dialog Token
	The Dialog Token is copied from the corresponding TDLS Suspend frame.

	3
	Path
	The Path element echoes the requested transmit path. The Path element is specified in 7.3.2.z2.

The TDLS Path Switch Response frame shall be sent through the AP.

5.2.2.1.8 TDLS Rx Path Switch Request frame format

The TDLS Rx Path Switch Request frame contains the information shown in Table z8.

Table z8—Information for Rx TDLS Path Switch Request frame

	Order
	Information
	Notes

	1
	Link Identifier
	The Link Identifier is specified in 7.3.2.z1.

	2
	Dialog Token
	The Dialog Token contains a unique value for this conversation.

	3
	Path
	The Path element contains the requested receive path. The Path element is specified in 7.3.2.z2.

The TDLS Rx Path Switch frame shall be sent through the AP.

5.2.2.1.9 TDLS Rx Path Switch Response frame format

The TDLS Rx Path Switch Response frame contains the information shown in Table z9.

Table z9—Information for TDLS Rx Path Switch Response frame

	Order
	Information
	Notes

	1
	Link Identifier
	The Link Identifier is specified in 7.3.2.z1.

	2
	Dialog Token
	The Dialog Token is copied from the corresponding TDLS Path Switch Request frame.

	3
	Path
	The Path element echoes the requested receive path. The Path element is specified in 7.3.2.z2.

The TDLS Rx Path Switch Response frame shall be sent through the AP.

5.3 Management frame body components
5.3.1 Fields that are not information elements
5.3.2 Information elements
In table 26, add the following New Information elements, and renumber the reserved values accordingly:
Table 26—Element IDs

	Information element
	Element ID
	Length (in octets)

	Link Identifier (see 7.3.2.z1)
	z1
	20

	Path (see 7.3.2.z2)
	z2
	1

7.3.2.21 Measurement Request element
In P802.11k D7.0, clause 7.3.2.21, Table 29, insert a new measurement request named Link RCPI Request, with Measurement Type 9, in the Radio Measurement category, and renumber the reserved Measurement Types accordingly.

In P802.11k D7.0, renumber clause 7.3.2.21.11 into 7.3.2.21.12, and insert a new clause 7.3.2.21.11 as follows:

7.3.2.21.11 Link RCPI Request
The Measurement Request field corresponding to a Link RCPI Request is shown Figure z2.
	
	
	

	
	BSSID
	STA
Address

	Octets:
	6
	6

Figure z2—Measurement Request field for a Link RCPI Request

BSSID indicates the BSSID.

STA Address indicates the MAC address of the STA requesting the Link RCPI measurement.

7.3.2.22 Measurement Report element

In P802.11k D7.0, clause 7.3.2.22, Table 30, insert a new measurement report named Link RCPI Report, with Measurement Type 9, in the Radio Measurement category, and renumber the reserved Measurement Types accordingly.

In P802.11k D7.0, insert a new clause 7.3.2.22.11 as follows:

7.3.2.22.11 Link RCPI Report
The format of the Measurement Report field corresponding to a Link RCPI Report is shown in Figure z3.
	
	
	
	
	

	
	BSSID
	RCPI 1
	STA
Address
	RCPI 2

	Octets:
	6
	1
	6
	1

Figure z3—Measurement Report field for a Link RCPI Report
BSSID indicates the BSSID.

RCPI 1 indicates the RCPI on frames received from the AP. The RCPI field is defined in 802.11k clause 17.3.10.6.
STA Address indicates the MAC address of the STA requesting the Link RCPI measurement.

RCPI 2 indicates the RCPI on frames received from the STA requesting the Link RCPI measurement. The RCPI field is defined in 802.11k clause 17.3.10.6.
7.3.2.25 RSN information element

7.3.2.25.2 AKM suites

Insert the following new entry in Table 34 and update the reserved values accordingly:

Table 34—AKM suite selectors
	OUI
	Suite type
	Authentication type
	Key management type

	00-0F-AC
	3
	N/A
	SMK Handshake

Insert the following new clauses after the last subclause of 7.3.2:

7.3.2.z1 Link Identifier element
The Link Identifier element contains information which identifies the direct link. The element information format is defined in Figure z4.
	
	
	
	
	
	
	
	

	
	Element
ID
	Length
	BSSID
	Source
Address
	Destination
Address
	Regulatory
Class
	Channel
Number

	Octets:
	1
	1
	6
	6
	6
	1
	1

Figure z4— Link Identifier element format

The Length field shall be set to 20.

The BSSID field shall be set to the BSSID of the STAs current association.

The Source Address field shall be set to the transmitting STAs MAC address.

The Destination Address field shall be set to the MAC address of the destination STA.

The Regulatory Class field shall be set to the Regulatory Class of the STAs current association.

The Channel Number field shall be set to the channel number of the STAs current association.

7.3.2.z2 Path element

The Path element identifies the path selected for a direct link. The element information format is defined in Figure z5.

	
	
	
	

	
	Element
ID
	Length
	Path

	Octets:
	1
	1
	1

Figure z5—Path element format

The Length field shall be set to 1.

The Path field is set to 0 for the AP path and to 1 for the direct link path.

6 Security
8.5 Keys and key distribution
8.5.2 EAPOL-Key frames

Add two new entries in Table 62 in clause 8.5.2 as shown below, and update the reserved values accordingly:

Table 62—KDE

	OUI
	Data type
	Meaning

	00-0F-AC
	9
	BSSID KDE

	00-0F-AC
	10
	DH KDE

	00-0F-AC
	10 – 255
	Reserved

At line 37, page 209 of clause 8.5.2, add the following two new KDE definitions:
	BSSID

	6 octets

Figure z6—BSSID KDE format

	DH

	192 octets

Figure z6—DH KDE format

Add a new clause 8.5.9 after clause 8.5.8 as follows:

8.5.9 TDLS Peer Key Handshake

The TDLS Peer Key Handshake occurs after any other direct link setup procedures and is used to create an STKSA providing data confidentiality between the two STAs.

The TDLS Peer Key EAPOL-Key exchange provides a mechanism for obtaining the keys to be used for direct STA-to-STA communication. The initiator STA shall start a timer when it sends the first EAPOL-Key message and the peer STA shall do the same on receipt of the first EAPOL-Key message. On expiration of this timer, the STA shall transition to the STKINIT state.

A STA should use the TDLS Peer Key Handshake prior to transferring any direct STA-to-STA data frames. The STKSA should be deleted when the STA to STA connection is terminated.

The following assumptions apply:

· EAPOL-Key() denotes an EAPOL-Key frame conveying the specified argument list, using the notation introduced in 8.5.2.1

· STA_I is the initiator STA

· STA_P is the peer STA

· AP is the access point with which both the STA_I and the STA_P are associated

· MAC_I is the MAC address of STA_I

· MAC_P is the MAC address of STA_I

· INonce is the nonce generated by STA_I

· PNonce is the nonce generated by STA_P

· DH_I is the public value of STA_I

· DH_P is the public value of STA_P

The TDLS Peer Key Handshake has two components:

a) SMK Handshake: This handshake is initiated by the initiator STA and, as a result of this handshake, the SMKSA is installed in both the STAs. This message exchange goes through the AP.

b) 4-Way STK Handshake: Using the installed SMKSA, the initiator STA initiates the 4-Way Handshake (as per 8.5.3.4) and, as a result of this, the STKSA gets installed in both the STAs. The STKSA is used for securing data exchange between the initiator STA and the peer STA. This message exchange goes directly between the peer STAs.
8.5.9.1 SMK Handshake

Initiator STA initiates the SMK Handshake by sending first message to the Peer STA through the AP path. This is done to establish a SMKSA between Imitator and Peer STA associated with the same AP. Unlike the 4-Way Handshake and Group Key Handshake, the SMK Handshake is initiated by the initiator STA.

For SMK Handshake, the modulus p shall be 1536 bits (as per RFC 3526) in length and the generating element g shall be 2.

The prime is: 2^1536 - 2^1472 - 1 + 2^64 * { [2^1406 pi] + 741804 }. Its hexadecimal value is:

 FFFFFFFF FFFFFFFF C90FDAA2 2168C234 C4C6628B 80DC1CD1

 29024E08 8A67CC74 020BBEA6 3B139B22 514A0879 8E3404DD

 EF9519B3 CD3A431B 302B0A6D F25F1437 4FE1356D 6D51C245

 E485B576 625E7EC6 F44C42E9 A637ED6B 0BFF5CB6 F406B7ED

 EE386BFB 5A899FA5 AE9F2411 7C4B1FE6 49286651 ECE45B3D

 C2007CB8 A163BF05 98DA4836 1C55D39A 69163FA8 FD24CF5F

 83655D23 DCA3AD96 1C62F356 208552BB 9ED52907 7096966D

 670C354E 4ABC9804 F1746C08 CA237327 FFFFFFFF FFFFFFFF

The information flow of the SMK handshake is as follows:
Message 1:
Initiator STA → Peer STA

EAPOL-Key(0,0,0,0,0,1,0, INonce, 0, RSNIE_I, MAC_I KDE, BSSID KDE, Lifetime KDE, DH_I KDE)

Message 2:
Peer STA → Initiator STA

EAPOL-Key(0,1,0,1,0,1,0, PNonce, 0, RSNIE_P, MAC_I KDE, MAC_P KDE, BSSID KDE, INonce KDE, Lifetime KDE, DH_P KDE)

Message 3:
Initiator STA → Peer STA

EAPOL-Key(0,1,1,0,0,1,0, INonce, 0, 0, MAC_I KDE, BSSID KDE, PNonce KDE)

8.5.9.1.1 SMK Handshake Message 1

The Initiator STA performs following steps before generating Message 1:

a) Create RSNIE by filling the element id (fixed hex 30), length, version (1), and pairwise cipher suite list field. Since group cipher suit field is before pairwise cipher suite list field (so STA needs to fill it), STA shall fill this field with any value and on the other side STA processing this field shall ignore it.

b) Generate 256 bit random number which is sent in Key Nonce field.

c) Decides on lifetime of SMK, which is sent as part of Lifetime KDE.

d) Initiator STA selects a random integer A < p and computes public X = gA mod p, which is sent as part of DH_I KDE.

Message 1 uses the following values for each of the EAPOL-Key frame fields:
Descriptor Type = N – see 8.5.2
Key Information:
Key Descriptor Version = 1 (RC4 encryption with HMAC-MD5) or 2 (NIST AES key wrap with HMAC-SHA1-128)
Key Type = 0 (Group/SMK)
SMK Message = 1 (SMK)
Install = 0
Key Ack = 0
Key MIC = 0

Secure = 0

Error = 0
Request = 1
Encrypted Key Data = 0
Reserved = 0
Key Length = 0
Key Replay Counter = 0

Key Nonce = INonce
EAPOL-Key IV = 0
Key RSC = 0
Key MIC = 0

Key Data Length = Length of Key Data field in octets
Key Data = Initiator RSNIE, initiator MAC address KDE, BSSID KDE, Lifetime KDE, initiator DH_I KDE
The initiator STA sends Message 1 to the peer STA P through AP. After sending the message 1, the Initiator STA starts a timer (different from the Lifetime-Timer) and waits for response message from the Peer STA.

On receipt of Message 1, the peer STA performs following actions:

e) Verify the initiator MAC address against existing direct link. If no direct link exists, it silently discards the message.

f) If all checks succeed,
1) Generate 256 bit random number which is sent in Key Nonce field.

2) Check the suggested lifetime value proposed by initiator STA. If needed select a smaller lifetime value or use the same lifetime value to create the Lifetime KDE to be used in message 2.

3) Peer STA selects a random integer B < p and computes public Y = gB mod p, which is sent as part of DH_P KDE.

4) Peer STA extracts X = gA mod p from DH_I KDE and computes SMK as HMAC-SHA256(SHA256(XB mod p), BSSID || MAC_I || MAC_P || INonce || PNonce, 256).
5) Peer STA selects one of the ciphersuite from the ciphersuite list and creates peer RSNIE.
g) Using all the information, peer STA creates Message 2 and sends it to initiator STA through AP.

8.5.9.1.2 SMK Handshake Message 2

Message 2 message uses the following values for each of the EAPOL-Key frame fields:

Descriptor Type = N – see 8.5.2
Key Information:
Key Descriptor Version = 1 (RC4 encryption with HMAC-MD5) or 2 (NIST AES key wrap with HMAC-SHA1-128)

Key Type = 0 (Group/SMK)

SMK Message = 1 (SMK)

Install = 1

Key Ack = 0

Key MIC = 1
Secure = 0
Error = 0

Request = 0

Encrypted Key Data = 0
Reserved = 0
Key Length = 0

Key Replay Counter = 0

Key Nonce = PNonce
EAPOL-Key IV = 0
Key RSC = 0
Key MIC = 0

Key Data Length = Length of Key Data field in octets
Key Data = Peer RSNIE, initiator MAC address KDE, peer MAC address KDE, BSSID KDE, Lifetime KDE, peer DH_P KDE, INonce KDE

The peer STA sends Message 2 to the initiator STA through the AP path. After sending Message 2, the Peer STA starts a timer (different from the Lifetime-Timer) and waits for response message from the Initiating STA.
On receipt of Message 2, the Initiator STA performs the following actions:

h) Verify the Peer MAC address against existing direct link. If no direct link exists, it silently discards the message.

i) Verify the Initiator MAC address and INonce from EAPOL-Key Key Data field and if it does not match, the Initiator STA silently discards the message.

j) If all checks succeed,
1) The Initiator STA extracts Y = gB mod p from DH_P KDE and computes the SMK as HMAC-SHA256(SHA256(YA mod p), BSSID || MAC_I || MAC_P || INonce || PNonce, 256).
k) Using all the information, the Initiator STA creates Message 3 and sends it to the Peer STA through the AP path.

8.5.9.1.3 SMK Handshake Message 3

Message 3 uses the following values for each of the EAPOL-Key frame fields:

Descriptor Type = N – see 8.5.2
Key Information:
Key Descriptor Version = 1 (RC4 encryption with HMAC-MD5) or 2 (NIST AES key wrap with HMAC-SHA1-128)
Key Type = 0 (Group/SMK)
SMK Message = 1 (SMK)
Install = 0

Key Ack = 1

Key MIC = 1
Secure = 0

Error = 0
Request = 0
Encrypted Key Data = 0

Reserved = 0
Key Length = 0
Key Replay Counter = 0
Key Nonce = INonce
EAPOL-Key IV = 0
Key RSC = 0
Key MIC = 0
Key Data Length = Length of Key Data field in octets
Key Data = Initiator MAC address KDE, BSSID KDE, PNonce KDE

The Initiator STA sends Message 3 to the Peer STA through the AP path. After sending Message 3, the SMK handshake is complete from initiator STA side.

On reception of Message 3, the peer STA performs following actions:

l) Verify the Initiator MAC address against existing direct link. If no direct link exists, silently discard the message.

m) Verify the Peer MAC address and PNonce from EAPOL-Key Key Data field and if either does not match, silently discard the message.

n) If all checks succeed, the SMK handshake is complete from the Peer STA side.

8.5.9.2 TDLS Peer Key setup and handshake error conditions

If the STA_P does not receive a valid SMK Message 3 or a 4-Way STK Message 1 after sending the EAPOL request message to initiate the TDLS Peer Key rekey within a 200 millisecond timeout, the STA_P shall invoke a direct link teardown procedure.

If the STA_I does not receive an SMK Message 2 from the STA_P, the STA_I shall attempt dot11RSNAConfigSMKUpdateCount transmits of the SMK Handshake Message 1 plus a final timeout. If the STA_I still has not received a response after these retries, it shall invoke a direct link teardown procedure. The retransmit timeout value shall be 200 milliseconds for the first timeout, the listen interval for the second timeout, and twice the listen interval for subsequent timeouts. If there is no listen interval, then 200 milliseconds shall be used for all timeout values.

Upon receipt of the SMK Message 3, the STA_I will transmit Message 1 of the 4-Way STK Handshake to the STA_P. If the STA_I does not receive Message 2 of the 4-Way STK Handshake from the STA_P, it shall attempt dot11RSNAConfigSMKUpdateCount transmits of 4-Way STK Handshake Message 1, plus a final timeout. If STA_I still has not received a response after these retries, it shall invoke a direct link teardown procedure. The retransmit timeout value shall be 100 milliseconds for the first timeout, half the listen interval for the second timeout, and the listen interval for subsequent timeouts. If there is no listen interval, then 100 milliseconds shall be used for all timeout values.

8.5.9.3 STKSA rekeying

Rekeying is always initiated by the STA_I. When needed, the STA_P sends an EAPOL request message to the STA_I to request rekeying. The STA_P shall wait a minimum of one half the IEEE 802.1X timeout after the STSL setup before initiating a TDLS Peer Key rekey procedure. To perform rekeying, there are two cases:

1) If the SMK timer has not expired, the STAs will initiate a 4-Way Handshake to create a new STK. The 4-Way Handshake is always initiated by STA_I. In this case, STA_P should not delete any existing STKSA prior to verifying Message 3 of the 4-Way Handshake with STA_I for this session.

2) If the SMK has expired, STA_I shall not use an existing STKSA and shall start the SMK Handshake followed by a 4-Way Handshake to create new keys.

The format of the EAPOL-Key request message in case 1 from STA_P to STA_I is as follows:

Request Message:
STA_P → STA_I

EAPOL-Key(1,1,0,0,1,0,0,0, MIC, PMKID KDE)

The request message uses the following values for each of the EAPOL-Key frame fields:

Descriptor Type = N - see 8.5.2

Key Information:

Key Descriptor Version = 1 (RC4 encryption with HMAC-MD5) or 2 (NIST AES key wrap with HMAC-SHA1-128)

Key Type = 1 (PTK)

SMK Message = 0

Install = 0

Key Ack = 0

Key MIC = 1

Secure = 1

Error = 0

Request = 1

Encrypted Key Data = 0

Reserved = 0

Key Length = 0

Key Replay Counter = request replay counter of peer STA

Key Nonce = 0

EAPOL-Key IV = 0

Key RSC = 0

Key MIC = MIC computed over the body of this EAPOL-Key frame

Key Data Length = Length of Key Data field in octets

Key Data = SMKID in SMKID KDE
8.5.9.4 Error Reporting

Error reporting messages are defined in this sub-clause and used to report errors whenever STAs detect an error during the SMK Handshake.

The STA, upon receipt of the error messages defined in this sub-clause, shall tear down the direct link with the other STA and clear all the TDLS Peer Key states.

The format of EAPOL-Key request message for reporting an error message is as follows:

Error Message: EAPOL-Key(1,1,0,0,0,1,0, 0, MIC, Error KDE, MAC Address KDE).

The request message uses the following values for each of the EAPOL-Key frame fields:

Descriptor Type = N - see 8.5.2

Key Information:

Key Descriptor Version = 1 (RC4 encryption with HMAC-MD5) or 2 (NIST AES key wrap with HMAC-SHA1-128)

Key Type = 0 (Group/SMK)

SMK Message = 1 (SMK)

Install = 0

Key Ack = 0

Key MIC = 1

Secure = 1

Error = 1

Request = 1

Encrypted Key Data = 0

Reserved = 0

Key Length = 0

Key Replay Counter = request EAPOL replay counter

Key Nonce = 0

EAPOL-Key IV = 0

Key RSC = 0

Key MIC = MIC computed over the body of this EAPOL-Key frame

Key Data Length = Length of Key Data field in octets

Key Data = Error KDE (different types defined in Table 64), MAC Address KDE

8.5.9.4.1 Error ERR_CPHR_NS

This error message is sent whenever a STA finds that it does not support any of the ciphersuites proposed by the other STA. In response to this error, the STA creates an Error KDE with error type ERR_CPHR_NS and sends the message back to the other STA. The MAC address KDE contains the MAC address of the other
STA.

8.5.8.4.4 Error ERR_NO_STSL

This error message is sent whenever a STA finds that it does not have an existing direct link with the other STA. In response of this error, the STA creates an Error KDE with error type ERR_NO_STSL and sends the message back to the other STA. The MAC address KDE contains the MAC address of the other STA.

10 Layer management

10.3 MLME SAP interface
Insert a new subclause at the end of clause 10.3 as follows:

10.3.z1 Management of tunneled direct link setup
The following MLME primitives support the signaling of tunneled direct link setup. Figure z7 depicts the TDSL setup process. The figure illustrates the basic protocol, which is only an example and is not meant to be exhaustive of all possible protocol uses.

[image: image1.emf]IEEE 802.11 initiating STA IEEE 802.11 peer STA

SME

MLME

SME

MLME

MLME-TDLSSETUP-

REQUEST.req

TDLS Setup

Request Frame

Process TDLS

Setup Request

Action

MLME-TDLSSETUP-

REQUEST.ind

MLME-TDLSSETUP-

REQUEST.cfm

MLME-DLSSETUP-

RESPONSE.ind

TDLS Setup

Response Frame

MLME-TDLSSETUP-

RESPONSE.req

MLME-TDLSSETUP-

RESPONSE.cfm

Figure z7—Tunneled Direct Link Setup Protocol Exchange
Add TDLS Setup Confirm.

10.3.z1.1 MLME-TDLSSETUPREQUEST.request

10.3.z1.1.1 Function

This primitive requests that a TDLS Setup Request frame be sent to the candidate peer STA.

10.3.z1.1.2 Semantics of the Service Primitive

The primitive parameters are as follows:
MLME-TDLSSETUP.request(

PeerSTAAddress,

TDLSSetupRequest
TDLSRequestTimeout
)
	Name
	Type
	Valid Range
	Description

	PeerSTAAddress
	MAC Address
	Any valid individual MAC Address
	Specifies the address of the peer MAC entity with which to perform the TDLS Setup process.

	TDLSSetupRequest
	As defined in TDLS Setup Request element
	As defined in TDLS Setup Request element
	Specifies the proposed service parameters for the TDLS Setup.

	TDLSRequestTimeout
	Integer
	≥ 0
	Specifies a time limit (in TU) after which the TDLS Setup procedure is terminated.

10.3.z1.1.3 When Generated

This primitive is generated by the SME to request that a TDLS Setup Request frame be sent to the candidate peer STA.

10.3.z1.1.4 Effect of Receipt

On receipt of this primitive, the MLME constructs a TDLS Setup Request action management frame. The STA then attempts to transmit this to the candidate peer STA.

10.3.z1.2 MLME-TDLSSETUPREQUEST.confirm

10.3.z1.2.1 Function

This primitive reports the result of a TDLS Setup procedure.

10.3.z1.2.2 Semantics of the Service Primitive

The primitive parameters are as follows:

MLME-TDLSSETUP.confirm(

TDLSSetupResponse

)

	Name
	Type
	Valid Range
	Description

	TDLSSetup- Response
	As defined in TDLS Setup Response element
	As defined in TDLS Setup Response element
	Specifies service parameters for the TDLS Setup.

10.3.z1.2.3 When Generated

This primitive is generated by the MLME as a result of an MLME-TDLSSETUP.request and indicates the results of the request.

This primitive is generated when the MLME-TDLSSETUP.request contains invalid parameters, when a timeout or failure occurs, or when the STA receives a TDLS Setup Response frame from the AP.

10.3.z1.2.4 Effect of Receipt

On receipt of this primitive, the SME evaluates the Element Status and may use the reported data.

10.3.z1.3 MLME-TDLSSETUPREQUEST.indication

10.3.z1.3.1 Function

This primitive indicates that a TDLS Setup Request frame was received from a candidate peer STA.

10.3.z1.3.2 Semantics of the Service Primitive

The primitive parameters are as follows:

MLME-TDLSSETUP.indication(

PeerSTAAddress,

TDLSSetupRequest

)

	Name
	Type
	Valid Range
	Description

	PeerSTAAddress
	MACAddress
	Any valid individual MAC Address
	The address of the non-AP STA MAC entity from which a TDLS Setup Request frame was received.

	TDLSSetup- Request
	As defined in TDLS Setup Request element
	As defined in TDLS Setup Request element
	Specifies the proposed service parameters for the TDLS Setup.

10.3.z1.3.3 When Generated

This primitive is generated by the MLME when a valid TDLS Setup Request frame is received.

10.3.z1.3.4 Effect of Receipt

On receipt of this primitive the SME should operate according to the procedure in 11.z1.

10.3.z1.4 MLME-TDLSSETUPRESPONSE.request

10.3.z1.4.1 Function

This primitive requests that a TDLS Setup Request frame be sent to the initiating STA.

10.3.z1.4.2 Semantics of the Service Primitive

The primitive parameters are as follows:
MLME-TDLSSETUPRESPONSE.request(

PeerSTAAddress,

TDLSSetupRequest
ResultCode

)
	Name
	Type
	Valid Range
	Description

	PeerSTAAddress
	MAC Address
	Any valid individual MAC Address
	Specifies the address of the peer MAC entity with which to perform the TDLS Setup process.

	TDLSSetupRequest
	As defined in TDLS Setup Request element
	As defined in TDLS Setup Request element
	Specifies the proposed service parameters for the TDLS Setup.

	ResultCode
	Enumeration
	SUCCESS, REFUSED, INVALID_ PARAMETERS, TIMEOUT
	

10.3.z1.4.3 When Generated

This primitive is generated by the SME to request that a TDLS Setup Response frame be sent to the initiating STA.

10.3.z1.4.4 Effect of Receipt

On receipt of this primitive, the MLME constructs a TDLS Setup Response action management frame. The STA then attempts to transmit this to the initiating STA.

10.3.z1.5 MLME-TDLSSETUPRESPONSE.confirm

10.3.z1.5.1 Function

This primitive reports the result of a TDLS Setup procedure.

10.3.z1.5.2 Semantics of the Service Primitive

The primitive parameters are as follows:

MLME-TDLSSETUPRESPONSE.confirm(

TDLSSetupResponse

)

	Name
	Type
	Valid Range
	Description

	TDLSSetup- Response
	As defined in TDLS Setup Response element
	As defined in TDLS Setup Response element
	Specifies service parameters for the TDLS Setup.

10.3.z1.5.3 When Generated

This primitive is generated by the MLME as a result of an MLME-TDLSSETUP.request and indicates the results of the request.

This primitive is generated when the MLME-TDLSSETUP.request contains invalid parameters, when a timeout or failure occurs, or when the STA receives a TDLS Setup Response frame from the AP.

10.3.z1.5.4 Effect of Receipt

On receipt of this primitive, the SME evaluates the Element Status and may use the reported data.

10.3.z1.6 MLME-TDLSSETUPRESPONSE.indication

10.3.z1.6.1 Function

This primitive indicates that a TDLS Setup Request frame was received from a candidate peer STA.

10.3.z1.6.2 Semantics of the Service Primitive

The primitive parameters are as follows:

MLME-TDLSSETUPRESPONSE.indication(

PeerSTAAddress,

TDLSSetupResponse
ResultCode

)

	Name
	Type
	Valid Range
	Description

	PeerSTAAddress
	MACAddress
	Any valid individual MAC Address
	The address of the non-AP STA MAC entity from which a TDLS Setup Request frame was received.

	TDLSSetup- Request
	As defined in TDLS Setup Request element
	As defined in TDLS Setup Response element
	Specifies the proposed service parameters for the TDLS Setup.

	ResultCode
	Enumeration
	SUCCESS, REFUSED, INVALID_ PARAMETERS, TIMEOUT
	

10.3.z1.6.3 When Generated

This primitive is generated by the MLME when a valid TDLS Setup Response frame is received.

10.3.z1.6.4 Effect of Receipt

On receipt of this primitive the SME should operate according to the procedure in 11.z1.

Add TDLS Teardown

11 MLME

Insert a new subclause at the end of clause 11 as follows:

11.z1 Tunneled Direct Link Setup
Tunneled Direct Link Setup (TDLS) is characterized by the fact that the signaling frames are encapsulated in Data frames, which allows them to be transmitted through any access point transparently. Therefore, a direct link can be setup using any access point. The access point does not need to be direct link aware, nor does it have to support any of the capabilities which will be used on the direct link. TDLS also includes an option to suspend receiving over the direct link, so that the station can enter a power save mode.
A STA may transmit a Link RCPI Measurement Request to an (intended) peer STA to obtain an indication of the RCPI values at the peer STA. The Link RCPI measurement request and report are sent to the peer STA directly. The RCPI information may be used to decide whether to switch over to a direct link for communication with the peer STA.

To setup a direct link, the initiator STA sends a TDLS Setup Request to the intended peer STA. If the peer STA accepts the direct link, it responds with a TDLS Setup Response frame with status code 0 (Successful). If the peer STA does not accept the direct link, it responds with a TDLS Setup Response with a status code other than 0. If there is no response within the set timeout, the initiator STA should conclude that the intended peer STA does not support TDLS and the setup procedure is terminated. The initiator then sends a TDLS Setup Confirm to the peer STA to confirm the receipt of the TDLS Setup Response.
After a successful response, the initiating STA further prepares the direct link for Data transmissions by starting the TDLS Peer Key Handshake. When the SMK Handshake has been completed, both STAs shall accept frames received over the direct link.
After transmitting a last Data frame through the AP path and before transmitting the first Data frame over the direct link, a STA may send a TDLS Tx Path Switch Request indicating a switch to the direct path. The first Data frame transmitted over the direct link should be transmitted after receipt of the TDLS Tx Path Switch Response in this case. This avoids potential reordering of frames between the AP path and the direct link. The STA may also use a message exchange which is part of the direct link setup or the peer key handshake for this purpose.
When a STA intends to enter a power save state, it sends a TDLS Rx Path Switch Request to the peer STA, indicating a switch to the AP path. Upon receipt of a TDLS Rx Path Switch Request indicating a switch to the AP path, the receiving STA shall cease transmissions over the direct link as soon as possible. When no further Data frames will be transmitted over the direct link, the responding STA shall send a TDLS Rx Path Switch Response, echoing the switch to the AP path. The requesting STA may enter a power save mode after receiving the TDLS Rx Path Switch Response.
A STA may request a peer STA to enable the direct Rx path by sending a TDLS Tx Path Switch Request, indicating a switch to the direct path. Upon receipt of the TDLS Tx Path Switch Request indicating the direct path, the receiving STA shall enable the direct Rx path and respond with a TDLS Tx Path Switch Response echoing the switch to the direct path. The requesting station shall not transmit frames on the direct link before receiving the TDLS Tx Path Switch Response.
A STA that is enabling its direct Rx path may inform its peer STA by sending a TDLS Rx Path Switch Request indicating a switch to the direct path. The responding STA responds by sending a TDLS Rx Path Switch Response echoing the switch to the direct Rx path. The responding STA may then transmit over the direct path, but does not have to.
To tear down a direct link, the STA sends a TDLS Teardown Request to the peer STA, after which the STA shall not transmit on the direct link any longer. Upon receipt of the TDLS Teardown Request, the peer STA shall disable the direct Rx and Tx paths and destroy the related security parameters, and then respond with a TDLS Teardown Response. Upon receipt of the TDLS Teardown Response, the STA which initiated the teardown shall disable the direct Rx path and destroy the related security parameters.
Annex A

A.4 PICS proforma–IEEE Std. 802.11, 1999 Edition

A.4.3 IUT configuration

Insert the following entry to the end of the IUT configuration table:

	
	
	
	
	

	Item
	IUT configuration
	References
	Status
	Support

	*CFz
	Is Tunneled Direct Link Setup supported?
	
	O
	Yes, No, N/A

Add a new clause at the end of 4.3 as follows:

A.4.z1 Wireless Network Management extensions

	Item
	Protocol Capability
	References
	Status
	Support

	TDLS1
	Tunneled Direct Link Setup
	7.2.2.1, 11.z1
	CFz:M
	Yes, No. N/A

	 TDLS1.1
	 TDLS Setup
	7.2.2.1.1, 7.2.2.1.2
	CFz:M
	Yes, No. N/A

	 TDLS1.2
	 TDLS Teardown
	7.2.2.1.3, 7.2.2.1.4
	CFz:M
	Yes, No. N/A

	 TDLS1.3
	 TDLS Tx Path Switch
	7.2.2.1.5, 7.2.2.1.6
	CFz:M
	Yes, No. N/A

	 TDLS1.4
	 TDLS Rx Path Switch
	7.2.2.1.7, 7.2.2.1.8
	CFz:M
	Yes, No. N/A

	 TDLS1.5
	 TDLS Peer Key Handshake
	8.5.9
	CFz:M
	Yes, No. N/A

	 TDLS1.6
	 Link RCPI Request/Report
	7.3.2.21.11, 7.3.2.22.11
	CFz:M
	Yes, No. N/A

Annex D

Insert the following entries at the end of the dot11StationConfigEntry sequence list:

Dot11StationConfigEntry ::=

 SEQUENCE {

…

dot11TunneledDirectLinkSetupImplemented TruthValue }

Insert the following elements at the end of the dot11StationConfigTable element definitions:

dot11TunneledDirectLinkSetupImplemented OBJECT-TYPE

SYNTAX TruthValue

MAX-ACCESS read-only

STATUS current

DESCRIPTION

"This attribute, when TRUE, indicates that the station

implementation is capable of supporting Tunneled Direct

Link Setup.

The default value of this attribute is FALSE."

::= { dot11StationConfigEntry TBD }
Notice: This document has been prepared to assist IEEE 802.11. It is offered as a basis for discussion and is not binding on the contributing individual(s) or organization(s). The material in this document is subject to change in form and content after further study. The contributor(s) reserve(s) the right to add, amend or withdraw material contained herein.

Release: The contributor grants a free, irrevocable license to the IEEE to incorporate material contained in this contribution, and any modifications thereof, in the creation of an IEEE Standards publication; to copyright in the IEEE’s name any IEEE Standards publication even though it may include portions of this contribution; and at the IEEE’s sole discretion to permit others to reproduce in whole or in part the resulting IEEE Standards publication. The contributor also acknowledges and accepts that this contribution may be made public by IEEE 802.11.

Patent Policy and Procedures: The contributor is familiar with the IEEE 802 Patent Policy and Procedures <� HYPERLINK "http://%20ieee802.org/guides/bylaws/sb-bylaws.pdf" \t "_parent" �http:// ieee802.org/guides/bylaws/sb-bylaws.pdf�>, including the statement "IEEE standards may include the known use of patent(s), including patent applications, provided the IEEE receives assurance from the patent holder or applicant with respect to patents essential for compliance with both mandatory and optional portions of the standard." Early disclosure to the Working Group of patent information that might be relevant to the standard is essential to reduce the possibility for delays in the development process and increase the likelihood that the draft publication will be approved for publication. Please notify the Chair <� HYPERLINK "mailto:stuart.kerry@nxp.com" ��stuart@ok-brit.com�> as early as possible, in written or electronic form, if patented technology (or technology under patent application) might be incorporated into a draft standard being developed within the IEEE 802.11 Working Group. If you have questions, contact the IEEE Patent Committee Administrator at <� HYPERLINK "mailto:patcom@ieee.org" \t "_parent" �patcom@ieee.org�>.

