September 2007

doc.: IEEE 802.11-07/2410r0

IEEE P802.11
Wireless LANs

	802.11 TGn LB97 Submission to resolve CID 922

	Date: 2007-09-12

	Author(s):

	Name
	Company
	Address
	Phone
	email

	Adrian Stephens
	Intel Corporation
	
	
	Adrian.p.stephens@intel.com

	
	
	
	
	

Introduction

Interpretation of a Motion to Adopt

A motion to approve this submission means that the editing instructions and any changed or added material are actioned in the TGn Draft. This introduction, is not part of the adopted material.

Editing instructions formatted like this are intended to be copied into the TGn Draft (i.e. they are instructions to the 802.11 editor on how to merge the TGn amendment with the baseline documents).

TGn Editor: Editing instructions preceded by “TGn Editor” are instructions to the TGn editor to modify existing material in the TGn draft. As a result of adopting the changes, the TGn editor will execute the instructions rather than copy them to the TGn Draft.

Summission Note: Notes to the reader of this submission are not part of the motion to adopt. These notes are there to clarify or provide context.

CID 922
Original comment

	922
	465.2
	S
	its not xor, just or
	reverse the change that added the "x"

Approved Resolution

See resolution from document 11-07-0706r3.
Edit Notes from CID 922, as edited in D2.07
Taking this as an instruction to implement 11-07/0706r3 in its entirety.

ACTION REQUIRED: Changes made to 9.7a by CID 2849 disallow the use use of A-MPDU aggregated control frame +HTC. This requires review and revision of this Annex. Basically any <control frame>[+HTC]+a-mpdu needs to be changed to remove the +HTC.

CID 55: ACTION REQUIRED: The edit to l-sig-txop-protection-set was incorrect. It should have completely removed the second alternative, but only did so partly. The text to be removed should be:

"(RTS+L-sig[+HTC] CTS+L-sig[+HTC]+a-mpdu

ma-no-ack-htc+a-mpdu+a-mpdu-end) |"

Also unapproved resolution of comment 2142 (see edit notes in CID 2010, which is also an EMR), although compatible with these changes is structurally different. I have attempted to merge the two changes to 9.17.3, resulting in the following:

"--If the transmission of a CTS is required, the transmission of the feedback response frame shall be delayed until the beamformee's next transmission within the TXOP. (#922) This feedback response frame may be aggregated in an A-MPDU with an ACK or BlockAck.

--If the transmission of an ACK or BlockAck (#2010) control response frame (#2418) is required, (#2418) both the feedback response frame (#2405) and the control response frame may be aggregated in an A-MPDU. Otherwise, the feedback response frame (#2405) shall be sent a SIFS after the reception of the sounding PPDU. If NDP sounding is used, the transmission of the feedback response frame (#2405) may follow the NDP, but the control response frame is transmitted a SIFS after reception of the PPDU that elicited the control response."

CID 126: REVIEW REQUIRED: Corrected a couple of typos in the change (to "mcs-adaptation"). There was an extra ")" and a ";" in the added text.

Proposed Edits

TGn Editor: change Annex S as shown below by Word tracked changes.

Insert the following new Annex Q:

· (informative) Frame exchange sequences (#456, 1967)

· Editing instructions in 9.12 move that subclause into this informative annex. Editing instructions in this Annex assume that this repositioning has taken place.

Change the first paragraph as follows:

The allowable frame exchange sequences are defined using an extension of the EBNF format as defined in ISO/IEC 14977: 1996(E). The elements of this syntax that are used here are:

· [a] = a is optional

· {a} = a is repeated zero or more times

· n{a} = a is repeated n or more times. For example, 3{a} requires 3 or more “a”. This notation is an extension to ISO/IEC 14977, and equivalent to n*a{a} as defined in that standard. (#921)

· a|b = a or b a|b|c|... = selection between mutually exclusive alternatives, a, b, c ... (#922)

· () = grouping, so “a (b|c)” is equivalent to “a b | a c”

· (* a *) = “a” is a comment. Comments are placed before the text they relate to.

· <> = order of frames not relevante.g.. For example, <a b> is either “a b” or “b a”

· A rule is terminated by a semicolon “;”

· Whitespace is not significant, but it is used to highlight the nesting of grouped terms.The meaning of whitespace is changed from ISO/IEC 14977 - terminals do not contain whitespace, and the concatenate-symbol (comma in ISO/IEC 14977) is replaced by white space. Whitespace appearing between terminals indicates concatenation. Otherwise, whitespace is not significant, and is used to highlight the nesting of grouped terms. (#924)

Change the second paragraph as follows:

Two types of terminals are defined: (#925)

· Frames. A frame is shown in Bold, and identified by its type/subtype. For example, Beacon and Data. Frames are shown in an initial capital letter.

· Attributes. Attributes are shown in italic. An attribute is introduced by the “+” character. The attribute specifies a condition that applies to the frame that precedes it. Where there are multiple attributes applied, they are generally ordered in the same order of the fields in the frame they refer to. The syntax a+(b|c) where b and c are attributes is equivalent to (a+b) | (a+c).

Change Table 9-6 renumbered to Table Attributes applicable to frame exchange sequence definition as follows: (#926, 927)
	· Attributes applicable to frame exchange sequence definition

	Attribute
	Description

	a-mpdu (# 806)
	Frame is part of an A-MPDU aggregate

	a-mpdu-end (# 806)
	Frame is the last frame in an A-MPDU aggregate

	block-ack
	QoS Data frame has Ack Policy set to Block Ack

	broadcast
	Frame RA is the broadcast address

	CF
	Beacon contains a CFP element

	CF-Ack
	Data type CF-Ack subtype bit set to 1 or CF-End+CF-Ack frame

	CF-Poll
	Data type CF-Poll subtype bit set to 1

	csi
	An Action frame carrying channel state feedback (either channel state information, uncompressed or compressed beamforming matrices).

	csi-request
	A +HTC frame with the Feedback Request field set to a value > 0

	delayed
	BlockAck or BlockAckReq under a delayed policy

	delayed-no-ack
	BlockAck or BlockAckReq frame has No Ack Ack Policy

	DTIM
	Beacon is a DTIM

	frag
	Frame has its More Fragments field set to 1

	group
	Frame RA has Individual/Group bit set to 1

	HTC
	+HTC frame, i.e., a frame that contains the HT Control field, including the Control Wrapper frame.

NOTE—A control frame that contains the HT Control field is always transmitted using the control wrapper frame. (#922)

	implicit-bar
	QoS Data frame in an A-MPDU with Normal Ack Ack Policy

	individual
	Frame RA has i/g bit set to 0

	last
	Frame has its More Fragments field set to 0

	L-sig
	L-sig duration not equal to PPDU duration

	action-no-ack
	Management frame of subtype Action No Ack

	mfb
	A +HTC frame with the MFB field is not set to all ones

	more-psmp
	A PSMP frame with the More PSMP field set to 1

	mrq
	A +HTC frame with the MRQ field set to 1

	mtba
	Ack Policy of QoS data frame is set to MTBA

	ndp-announce
	A +HTC frame with the NDP Announcement field set to 1

	no-ack
	QoS Data frame has Ack Policy set to No Ack

	no-more-psmp
	A PSMP frame with the More PSMP field set to 0

	normal-ack
	QoS Data frame has Ack Policy set to Normal Ack

	non-QAP
	Frame is transmitted by a non-AP QoS STA (#2012)

	non-stbc
	PPDU TXVECTOR STBC parameter is set to 0

	null
	Data type Null Data subtype bit set

	pifs
	Frame is transmitted usingfollowing a PIFS

	QAP
	Frame is transmitted by a QoS AP (#928)

	QoS
	Data type QoS subtype bit set

	RD
	Frame includes an HT control field in which the RD subfield is set to 1

	self
	Frame RA = TA

	sounding
	PPDU TXVECTOR SOUNDING parameter present and set to SOUNDING (#713)

	stbc
	PPDU TXVECTOR STBC parameter is set to a value >0

	trq
	Frame is a +HTC frame with the TRQ field set to 1

Change the txop-sequence term as follows:

(* A TXOP (either polled or EDCA) may be filled with txop-sequences, which are initiated by the TXOP holder. *)

txop-sequence =
(((RTS CTS) | CTS+self) Data+individual+QoS+(block-ack|no-ack)) |

[RTS CTS] (txop-part-requiring-ack txop-part-providing-ack) |

[RTS CTS] (Management|(Data+QAP))+individual Ack |

[RTS CTS] (BlockAckReq BlockAck) |

ht-txop-sequence;

Delete the term poll-sequence as follows:

(* A poll-sequence is the start of a polled TXOP, in which the HC delivers a polled TXOP to a STA. The poll may or may not piggyback a CF-Ack according to whether the previous frame received by the HC was a Data frame. *)

poll-sequence =
non-cf-ack-piggybacked-qos-poll-sequence |

cf-ack-piggybacked-qos-poll-sequence;

Change the term txop-part-requiring-ack as follows: (#929)

(* These frames require acknowledgement *)

txop-part-requiring-ack =
Data+individual[+null]
 |

Data+individual[+null]+QoS+normal-ack |

BlockAckReq+delayed |

BlockAck+delayed;

Change the term txop-part-providing-ack as follows: (#930)

(* These frames provide acknowledgement to the TXOP-part-requiring-ack *)

txop-part-providing-ack=
Ack |

(* An HC responds with a new polled TXOP on expiry of current TXOP *)

cf-ack-piggybacked-qos-poll-sequence |

(* An HC responds with CF-Ack and its own data on expiry of TXOP *)

cf-ack-piggybacked-qos-data-sequence |

Data+CF-Ack;

Insert the following paragraphs after the term starting “cf-ack-piggybacked-qos-data-sequence”:

(* The ht-txop-sequence (#69) describes the additional sequences that may be initiated by an HT STA that is the holder of a TXOP *)

ht-txop-sequence =
L-sig-protected-sequence |

ht-nav-protected-sequence | (#168)

dual-cts-protected-sequence |

1{initiator-sequence};

(* an L-sig-protected-sequence is a sequence protected using the L-sig TXOP protection feature *)

L-sig-protected-sequence = L-sig-protection-set 1{initiator-sequence} eifs-reset;

(* An eifs-cancellation sequence is transmitted at the end of an L-sig-protected-sequence in order to reset the EIFS state of non-HT STA. The L-sig duration expires before the eifs-cancellation sequence starts. *)

eifs-reset =
CF-End | (CF-End+non-QAP CF-End+QAP);

(* a ht-nav-protected (#168) sequence consists of setting the NAV, performing one or more initiator-sequences and then resetting the NAV if time permits, or resetting EIFS if non-HT devices are present. *)

ht-nav-protected-sequence = nav-set 1{initiator-sequence} [nav-reset | eifs-reset]; (#168)

(* a dual-cts-protected-sequence is a sequence protected using the dual CTS protection feature *)

dual-cts-protected-sequence = dual-cts-nav-set 1{initiator-sequence};

(* a dual-cts-nav-set is an initial exchange that establishes NAV protection using dual CTS protection.

dual-cts-nav-set =
(* A dual CTS initiated by a non-AP STA that is not STBC capable *)

(RTS+non-stbc+non-QAP CTS+non-stbc+QAP CTS+stbc+pifs+QAP) |

(* A dual CTS initiated by a non-AP STA that is STBC capable *)

(RTS+stbc+non-QAP CTS+stbc+QAP CTS+non-stbc+QAP) |

(* An STBC initiator-sequence (i.e., containing STBC PPDUs) transmitted by the AP is protected by non-STBC CTS to self *)

(CTS+self+non-stbc+QAP) |

(* A non-STBC initiator-sequence transmitted by the AP is protected by STBC CTS to self *)

(CTS+self+stbc+QAP);

(* an ma-no-ack-htc represents a Management Action No Ack + HTC frame *)

ma-no-ack-htc =
Management+action-no-ack+HTC;

(* This is the sequence of frames that establish protection using the L-sig TXOP protection method *)

L-sig-protection-set =
(RTS+L-sig[+HTC] CTS+L-sig[+HTC]) | (#922)

(Data+individual+L-sig [+HTC][+null][+QoS+normal-ack] Ack [+HTC](#922) +L-sig) | (#922)

(BlockAckReq+L-sig[+HTC] (BlockAck[+HTC]|Ack[+HTC](#922))+L-sig) |

(BlockAck+L-sig[+HTC] Ack[+HTC])+L-sig(#922));

(* These are the series of frames that establish NAV protection for an HT sequence *)

nav-set =
(RTS[+HTC] CTS[+HTC]) |

CTS+self |

(Data[+HTC]+individual[+null][+QoS+normal-ack] Ack) |

Data[+HTC]+individual[+null][+QoS+(block-ack)] | (#922)

Data+group[+null][+QoS] |

(BlockAckReq[+HTC] (BlockAck[+HTC]|Ack[+HTC](#922))) |

(BlockAck[+HTC] Ack);

nav-reset =
CF-End | (CF-End+non-QAP CF-End+QAP);

(* This is an initiator sequence. The different forms arise from whether the initiator transmits a frame that requires a BlockAck (BA), and whether it delivers a reverse direction grant. When a reverse direction grant is delivered, the response is distinguished according to whether it demands a BlockAck response from the initiator or not. *)

initiator-sequence =
(* No BA expected, no RD granted *)

burst

(* BlockAckReq (BAR) delivered, BA expected. No RD *)

burst-bar BlockAck |

(* No BAR delivered, RD granted *)

(burst-rd
(

burst |

burst-bar initiator-sequence-ba

)

) |

(burst-rd-bar Ack) |

(burst-rd-bar
(

burst-ba |

burst-ba-bar initiator-sequence-ba

)

) |

ht-ack-sequence |

psmp-burst (#123) |

link-adaptation-exchange ;

(* This is the same as the initiator-sequence, except the initiator is constrained to generate a BlockAck (BA) response because a previous reverse direction response contained a BAR *)

initiator-sequence-ba =
burst-ba |

(burst-ba-bar BlockAck) |

(burst-ba-rd
(

burst |

burst-bar initiator-sequence-ba

)

) |

(burst-ba-rd-bar Ack) |

(burst-ba-rd-bar (

burst-ba |

burst-ba-bar initiator-sequence-ba

)

);

(* These are sequences that occur within an ht-txop-sequence that have an ack response *)

ht-ack-sequence =
(BlockAck+delayed[+HTC] Ack) |

(BlockAckReq+delayed[+HTC] Ack) |

(Data[+HTC]+individual[+null][+QoS+normal-ack] Ack);

(* A burst is a sequence of 1 or more packets, none of them requiring a response *)

burst =
1{ppdu-not-requiring-response};

(* A burst containing a BAR *)

burst-bar =
{ppdu-not-requiring-response} ppdu-bar;

(* A burst containing a BA *)

burst-ba =
ppdu-ba {ppdu-not-requiring-response};

(* A burst containing a BA and BAR, either in the same packet, or in separate packets. *)

burst-ba-bar =
(ppdu-ba {ppdu-not-requiring-response} ppdu-bar) |

ppdu-ba-bar;

(* A burst delivering an RD grant *)

burst-rd =
{ppdu-not-requiring-response} ppdu-rd;

(* A burst containing a BAR and delivering an RD grant *)

burst-rd-bar = burst ppdu-rd-bar;

(* A burst containing a BA and delivering an RD grant *)

burst-ba-rd =
(ppdu-ba {ppdu-not-requiring-response} ppdu-rd) |

ppdu-ba-rd;

(* A burst containing a BAR and BA and delivering an RD grant *)

burst-ba-rd-bar =
(ppdu-ba {ppdu-not-requiring-response} ppdu-rd-bar) |

ppdu-ba-rd-bar;

(* A PPDU not requiring a response is either a single frame not requiring response, or an A-MPDU of such frames.*)

ppdu-not-requiring-response =

frame-not-requiring-response |

1{frame-not-requiring-response+a-mpdu}+a-mpdu-end;

(* A frame not requiring response is one of the delayed BA policy frames sent under “no ack” Ack Policy, or Data that doesn’t require an immediate ack, or a Management Action No Ack frame. A frame-not-requiring-response may be included with any of the following sequences in any position, except the initial position when this contains a BlockAck or Multi-TID BlockAck: ppdu-bar, ppdu-ba-bar, ppdu-ba, ppdu-rd, ppdu-rd-bar, ppdu-ba-rd-bar, psmp-ppdu *)

frame-not-requiring-response =

BlockAck[+HTC]+delayed-no-ack |

BlockAckReq[+HTC]+delayed-no-ack |

Data[+null][+HTC]+QoS+(no-ack|block-ack) |

ma-no-ack-htc;

(* A PPDU containing a BAR is either a non-A-MPDU BAR, or an A-MPDU containing Data carrying implicit BAR *).

ppdu-bar=
BlockAckReq[+HTC] |

(1{Data[+HTC]+QoS+implicit-bar+a-mpdu} + a-mpdu-end);

(* A PPDU containing both BA and BAR is an A-MPDU that contains a BA, plus either a BlockAckReq frame, or 1 or more Data frames carrying implicit BAR. *)

ppdu-ba-bar=
BlockAck+a-mpdu

(

BlockAckReq+a-mpdu |

1{Data[+HTC]+QoS+implicit-bar+a-mpdu}
) + a-mpdu-end;

(*A PPDU containing BA is either a non-A-MPDU BlockAck, or an A-MPDU containing a BlockAck, and also containing data that does not carry implicit BAR. *)

ppdu-ba=
BlockAck[+HTC] |

(

BlockAck+a-mpdu

1{Data[+HTC]+QoS+(no-ack|block-ack)+a-mpdu}

) + a-mpdu-end;

(* A PPDU delivering an RD grant, but not delivering a BAR is either a Data frame, not requiring immediate acknowledgement, or a BlockAck or BlockAckReq, not requiring immediate acknowledgement *).

ppdu-rd=
Data+HTC[+null]+QoS+(no-ack|block-ack)+RD |

(BlockAck|BlockAckReq)+HTC+delayed-no-ack+RD |

(

1{Data+HTC+QoS+RD+a-mpdu}

) + a-mpdu-end;

(* A PPDU containing a BAR and delivering an RD grant is either an non-A-MPDU BlockAckReq frame, or an A-MPDU containing at least one Data frame with RD and implicit-bar. *)

ppdu-rd-bar=
BlockAckReq+HTC+RD |

(

1{Data+HTC+QoS+implicit-bar+RD+a-mpdu}

) + a-mpdu-end;

(* A PPDU containing a BA and granting RD is either an unaggregated BlockAck or an A-MPDU that contains a BlockAck and at least one data frame containing RD, but not implcit BAR. *)

ppdu-ba-rd=
BlockAck+HTC+RD |

(

BlockAck+a-mpdu (

1{
Data+HTC+QoS+(no-ack|block-ack)+RD+a-mpdu}

)

) + a-mpdu-end;

(* A PPDU containing a BA, BAR and granting RD is an A-MPDU that contains a BlockAck and data frames carrying the implicit BAR. The RD attribute is present in all frames carrying an HT Control field, and at least one of these frames is present. This constraint is not expressed in the syntax below. *)

ppdu-ba-rd-bar=

(

BlockAck+a-mpdu

1{
Data[+HTC+RD]+QoS+implicit-bar+a-mpdu}

) + a-mpdu-end;

(* A PSMP burst is a sequence of PSMP sequence ending with a last-psmp-sequence *)

psmp-burst =
{non-last-psmp-sequence} last-psmp-sequence;

non-last-psmp-sequence =
PSMP+more-psmp+QAP downlink-phase uplink-phase;

last-psmp-sequence =
PSMP+no-more-psmp+QAP downlink-phase uplink-phase;

(* The downlink phase is a sequence of allocations to STA as defined in the

PSMP frame during which they may expect to receive. *)

downlink-phase =
{psmp-allocated-time};

(* The uplink phase is a sequence of allocations to STA as defined in the PSMP

frame during which they are allowed to transmit *)

uplink-phase =
{psmp-allocated-time};

(* During a time allocation, one or more packets may be transmitted of contents defined by psmp-ppdu *)

psmp-allocated-time =
1{psmp-ppdu};

(* The packets that may be transmitted during PSMP are: isolated MTBA or MTBAR frames, or an A-MPDU containing an optional MTBA and one or more data frames sent under the MTBA Ack Policy, or an A-MPDU containing both MTBA and MTBAR, but no data. Any number of Management No-ack frames may be present in either A-MPDU. (#922) *)

psmp-ppdu =
MTBA |

MTBAR |

(

[MTBA+a-mpdu]

{Management+action-no-ack[+HTC] } (#922)

1{Data[+HTC]+individual+QoS+mtba+a-mpdu};

) + a-mpdu-end |

(

MTBA+a-mpdu

{ Management+action-no-ack[+HTC] }

MTBAR+a-mpdu

) + a-mpdu-end; (#922)

(* A link adaptation exchange is a frame exchange sequence in which on the air signaling is used to control or return the results of link measurements so that the initiator device can choose effective values for its TXVECTOR parameters. *)

link-adaptation-exchange =

mcs-adaptation |

implict-txbf |

explicit-txbf;

(* An mcs-adaptation exchange includes an MCS measurement request and subsequent MCS feedback. The MCS request and MCS feedback may be present in any +HTC frame. The exchange can occur either as a fast exchange, in which the feedback is supplied in a response frame, an exchange in which the response is supplied along with some other data frame within the same TXOP, or is supplied in a subsequent TXOP won by the MCS responder. Only the fast response is shown in the syntax that follows. The sequences shown below are representative examples only and are not exhaustive. (#922)*)

mcs-adaptation = (#922)

(* RTS/CTS *)

(RTS+HTC+mrq CTS+HTC+mfb) |

(* non-aggregated Data/Ack *)

(Data+HTC+QoS+mrq+normal-ack Ack+HTC+mfb) |

(* non-aggregated BlockAck *)

(BlockAckReq+HTC+mrq (BlockAck+HTC+mfb | Ack+HTC+mfb)) |

(* aggregated data with implicit BAR and MRQ *)

(

(

1{Data[+HTC]+mrq [+rdg] +QoS+implicit-bar+a-mpdu}

) + a-mpdu-end

(

(* Unaggregated BlockAck response *)

BlockAck+HTC +mfb |

(* Aggregated BlockAck response *)

(

BlockAck +a-mpdu

1{Data[+HTC+mfb]+QoS+(no-ack|block-ack)+a-mpdu}

) + a-mpdu-end

)

);

(* An implicit txbf starts with the transmission of a request to sound the channel. The initiator measures the channel based on the sounding packet and updates its beamforming matrices based on its observations of the sounding packet. No channel measurements are sent over the air.*)

implict-txbf =

(RTS+HTC+trq (CTS+sounding | CTS+HTC+ndp-announce NDP)) |

(Data+HTC+trq+QoS+normal-ack

(Ack+sounding | Ack+HTC+ndp-announce NDP)

) |

(BlockAckReq+HTC+trq

(BlockAck+sounding |

BlockAck+HTC+ndp-announce NDP

)

) |

(BlockAck+HTC+trq+delayed

(Ack+sounding |

Ack+HTC+ndp-announce NDP

)

)

(* The trq/sounding protocol also operates within aggregates. In this case the TRQ is carried in all +HTC frames (of which there has to be at least one) within the TRQ initiator’s transmission. The response PPDU is either a sounding PPDU, or carries at least one +HTC frame with an ndp-announce, in which case the following PPDU is an NDP sounding PPDU. The following syntax is an simplified representation of this sequnce. *)

([BlockAck +a-mpdu] {Data+HTC+trq+QoS+a-mpdu}+a-mpdu-end)

(

([BlockAck +a-mpdu]

{Data+HTC+QoS+a-mpdu}+a-mpdu-end+sounding)

) |

(

([BlockAck +a-mpdu]

{Data+HTC+ndp-announce+QoS+a-mpdu}+a-mpdu-end)

) NDP | (#922)

(BlockAck+HTC+sounding) |

(BlockAck+HTC+ndp-announce NDP);

(* During operation of explicit txbf, there are three encodings of feedback information. These are not distinguished here and are all identified by the csi attribute. The feedback position may be: immediate, aggregate or delayed (#1883). Immediate feedback follows a SIFS after a CSI request, identified by the csi-request attribute. Aggregate feedback occurs during an aggregate within the same TXOP, and may accompany Data frames in the same PPDU. Delayed (#1883) feedback occurs during a subsequent TXOP during which the CSI responder is TXOP intiator. Only immediate feedback is described in the syntax below. The frame indicating any csi-request is carried in a sounding PPDU or followed by an NDP. The CSI response is carried in an Action (#1096) no ack frame, which may be aggregated with the CTS, BlockAck, or Ack response frame. *)

explicit-txbf =
(

(RTS+HTC+csi-request+sounding |

(RTS+HTC+csi-request+ndp-announce NDP))

(CTS+a-mpdu

Management+action-no-ack+HTC+csi+a-mpdu-end)

) |

(Data+HTC+csi-request+QoS+normal-ack+sounding |

(Data+HTC+csi-request+QoS+normal-ack+ndp-announce

NDP))

(Ack+a-mpdu

Management+action-no-ack+HTC+csi+a-mpdu-end)

) |

(BlockAckReq+HTC+csi-request+sounding |

BlockAckReq+HTC+csi-request+ndp-announce NDP)

(BlockAck+a-mpdu

Management+action-no-ack+HTC+csi+a-mpdu-end)

) |

(BlockAckReq+HTC+csi-request+delayed+sounding |

(BlockAckReq+HTC+csi-request+ndp-announce+delayed

NDP))

(Ack+a-mpdu

Management+action-no-ack+HTC+csi+a-mpdu-end)

) ;

Notice: This document has been prepared to assist IEEE 802.11. It is offered as a basis for discussion and is not binding on the contributing individual(s) or organization(s). The material in this document is subject to change in form and content after further study. The contributor(s) reserve(s) the right to add, amend or withdraw material contained herein.

Abstract

This document contains proposed changes to the IEEE P802.11n Draft to address CID 922. This comment was recycled from D2.07 editing with the edit status of “EMR”, which requires additional work on Annex Q (D2.07) to bring the frame exchange sequences into consistency with changes made elsewhere in the amendment.

The changes marked in this document are based on TGn Draft version D2.07.

Submission
page 1
Adrian Stephens, Intel Corporation

