July 2007

doc.: IEEE 802.11-07/1999r3

IEEE P802.11
Wireless LANs

	Abbreviated Handshake for Authenticated Peer Link Establishment

	Date: 2007-07-18

	Author(s):

	Name
	Company
	Address
	Phone
	email

	Meiyuan Zhao
	Intel Corp.
	RNB-6-61, 2200 Mission College Blvd, Santa Clara, CA 95052
	+1-408-653-5517
	meiyuan.zhao@intel.com

	Jesse Walker
	Intel Corp.
	JF3-206, 2111 NE 5th Ave, Hillsboro, OR 97124
	+1-503-712-1849
	jesse.walker@intel.com

	W Steven Conner
	Intel Corp.
	JF3-206, 2111 NE 5th Ave, Hillsboro, OR 97124
	+1-503-264-8036
	w.steven.conner@intel.com

	Hideyuki Suzuki
	Sony Corporation
	5-1-12 Kitashinagawa, Shinagawa-ku, Tokyo,

141-0001, Japan
	+81-3-5448-3175
	HideyukiA.Suzuki@jp.sony.com

Proposed text

7.3.1.7 Reason Code field

Add the following content to table 22 as shown, re-numbering as necessary:

Table 22—Reason codes
	Reason code
	Meaning

	55—65 535
	Reserved

	55
	“MESH-INVALID-GTK”. The Mesh Point fails to unwrap the GTK or the values in the wrapped contents do not match

	56
	“MESH-INCONSISTENT-PARAMETERS”. The Mesh Point receives inconsistent information about the mesh paramters between Peer Link Management frames

	56—65 535
	Reserved

7.3.1.9 Status Code field

Add the following content to table 23 as shown, re-numbering as needed:

Table 23—Status codes
	Reason code
	Meaning

	59—65 535
	Reserved

	59
	“MESH-LINK-MAX-RETRIES”. The MSA Abbreviated Handshake fails because no response after maximal number of retries.

	60
	“MESH-LINK-NO-PMK”. The MSA Abbreviated Handshake fails because no shared PMK

	61
	“MESH-LINK-ALT-PMK”. The MSA Abbreviated Handshake fails because no matching chosen PMK, but there exits an alternative choice.

	62
	“MESH-LINK-NO-AKM”. The Abbreviated Handshake fails because no commonly supported AKM suite for Abbreviated Handshake exists.

	63
	“MESH-LINK-ALT-AKM”. The Abbreviated Handshake fails because no matching chosen AKM, but there exists an alternative choice.

	64—65 535
	Reserved

Insert two new rows and change the existing “Reserved” row in Table 34 as shown.

Table 34—AKM suite selectors

	OUI
	Suite type
	Meaning

	
	
	Authentication type
	Key management type

	00-0F-AC
	<ANA 59>
	MSA Authentication negotiated over IEEE 802.1X.
	MSA Key Mangement

	00-0F-AC
	<ANA 60>
	MSA Authentication using PSK
	MSA Key Management

	00-0F-AC
	<ANA 61>
	MSA Abbreviated Handshake
	Using PMKSA caching as defined in 8.4.6.2

	00-0F-AC
	38-255
	Reserved
	Reserved

	Vender OUI
	Any
	Vendor specific
	Vendor specific

	Other
	Any
	Reserved
	Reserved

Modify clause 7.3.2.81 as shown by underlining and strikethrough:

The MSA information element includes information needed to perform the authentication sequence during an MSA handshake. This information element is shown in Figure s58.

	Octets: 1
	1
	1
	6
	4
	4
	16
	32
	32
	variable

	Element ID
	Length
	Handshake Control
	MA-ID
	Selected AKM Suite
	Selected Pairwise Cipher Suite
	Chosen PMK
	Local Nonce
	Peer Nonce
	Optional Parameters

Figure s58—MSA information element [MSAIE]

The Element ID is set to the value given in Table 26 for this information element. The Length field for this information element indicates the number of octets in the information field (fields following the Element ID and Length fields).

The Handshake Control field contains two subfields as shown in Figure s59.

	B0
	B1 B7

	Request Authentication
	Reserved

	Bits: 1
	7

Figure s59—Handshake Control field

The “Request Authentication” subfield is set to 1 to indicate an MP requests authentication during the Initial MSA Authentication procedure. The “Request Authentication” subfield is set to 0, when the Selected AKM Suite subfield is set to the identifier of a AKM suite that supports Abbreviated Handshake.
The MA-ID field contains the MA’s identity, which is used by the supplicant MP for deriving the PMK-MA. It is encoded following the conventions from 7.1.1.

The Selected AKM Suite field contains an AKM suite selector, as defined in 7.3.2.25.2, indicating the authentication type and key management type to be used to secure the link.

The Selected Pairwise Cipher Suite field contains a pairwise cipher suite selector, as defined in 7.3.2.25.1, indicating a cipher suite to be used to secure the link.
The Chosen PMK field contains a PMKID indicating the name of the PMK-MA to be used to secure the link.

The Local Nonce field contains a nonce value chosen by the MP that is sending the information element. It is encoded following the conventions from 7.1.1.

The Peer Nonce field contains a nonce value that was chosen by the peer MP or candidate peer MP to which the information element is being sent. It is encoded following the conventions from 7.1.1.

The format of the optional parameters is shown in Figure s60.

	Octets: 1
	1
	Variable

	Sub-element ID
	Length
	Data

	Figure s60—Optional parameters field

The Sub-element ID is one of the values from Table s6.

	· Sub-element IDs

	Value
	Contents of data field
	Length

	0
	Reserved
	

	1
	MKD-ID
	6

	2
	EAP Transport List
	Variable

	3
	PMK-MKDName
	16

	4
	MKD-NAS-ID
	16

	5
	GTKdata
	Variable

	36-255
	Reserved
	

MKD-ID indicates the MKD that the supplicant MP may contact to initiate the mesh key holder security handshake.

EAP Transport List contains a series of transport type selectors that indicate the EAP transport mechanism. A transport type selector has the format shown in Figure s66.

	Octets: 3
	1

	OUI
	Transport Type

	· Transport type selector format

The order of the organizationally unique identifier (OUI) field follows the ordering convention for MAC addresses from 7.1.1. The transport types defined by this standard are provided in Table s7.

	· Transport types

	OUI
	Transport Type
	Meaning

	00-0F-AC
	0
	None specified

	00-0F-AC
	1
	EAP Transport mechanism as defined in 11A.2.5

	00-0F-AC
	2-255
	Reserved

	Vendor OUI
	Any
	Vendor specific

	Other
	Any
	Reserved

The transport type 00-0F-AC:1 is the default transport type selector value.

PMK-MKDName contains an identifier of a PMK-MKD as defined in 8.8.4.
MKD-NAS-ID contains the identity of the MKD that facilitates authentication, and that will be bound into the first-level keys PMK-MKD and MKDK.
The GTKdata field contains a KDE containing the bit string of {GTK || peerMAC || Key RSC || GTKExpriationTime}, and the entire bit string is encrypted using the NIST AES Key Wrap algorithm as specified in IETF RFC 3394. The KDE is defined in Figures 143 and 144 of 8.5.2. The Key RSC denotes the last frame sequence number sent using the GTK and is specified in Table 61 of 8.5.2. GTKExpirationTime denotes the key lifetime of the GTK in seconds and the format is specified in Figure 149 of 8.5.2.
Modify Table s9, Table s10, and Table s11 as indicated below:

	· Peer Link Open frame body

	Order
	Information
	Notes

	·
	Category
	

	·
	Action Value
	

	·
	Capability
	

	·
	Supported rates
	

	·
	Extended Supported Rates
	The Extended Supported Rates element is present whenever there are more than eight supported rates, and it is optional otherwise.

	·
	Power Capability
	The Power Capability element shall be present if dot11SpectrumManagementRequired is true.

	·
	Supported Channels
	The Supported Channels element shall be present if dot11SpectrumManagementRequired is true.

	·
	RSN
	The RSN information element is only present within Peer Link Open frames generated by MPs that have dot11RSNAEnabled set to TRUE.

	·
	QoS Capability
	The QoS Capability element is present when dot11QoS-OptionImplemented is true.

	·
	Mesh ID
	The Mesh ID information element is present when dot11MeshEnabled is true.

	·
	Mesh Configuration
	The Mesh Configuration information element is present when dot11MeshEnabled is true.

	·
	Peer Link Management
	The Peer Link Management information element is present only when dot11MeshEnabled is true. The subtype of the Peer Link Management Element is set to 1.

	·
	MSCIE
	The MSCIE element is present when dot11MeshEnabled is true.

	·
	MSAIE
	The MSAIE element is present when dot11MeshEnabled is true.

	15
	MIC (see 7.3.1.35 and 11A.4.3.5)
	This field is present when dot11MeshEnabled is true and the abbreviated handshake is enabled

	Last
	Vendor Specific
	One or more vendor-specific information elements may appear in this frame. This information element follows all other information elements.

	· Peer Link Confirm frame body

	Order
	Information
	Notes

	·
	Category
	

	·
	Action Value
	

	·
	Capability
	

	·
	Status code
	

	·
	AID
	

	·
	Supported rates
	

	·
	Extended Supported Rates
	The Extended Supported Rates element is present whenever there are more than eight supported rates, and it is optional otherwise.

	·
	RSN
	The RSN information element is only present when dot11RSNAEnabled is set to TRUE.

	·
	EDCA Parameter Set
	

	·
	Mesh ID
	The Mesh ID information element is present when dot11MeshEnabled is true.

	·
	Mesh Configuration
	The Mesh Configuration information element is present when dot11MeshEnabled is true.

	·
	Peer Link Management
	The Peer Link Management information element is present only when dot11MeshEnabled is true. The subtype of the Peer Link Management Element is set to 1.

	·
	MSCIE
	The MSCIE element is present when dot11MeshEnabled is true.

	·
	MSAIE
	The MSAIE element is present when dot11MeshEnabled is true.

	15
	MIC (see 7.3.1.35 and 11A.4.3.5)
	This field is present when dot11MeshEnabled is true and the abbreviated handshake is enabled

	Last
	Vendor Specific
	One or more vendor-specific information elements may appear in this frame. This information element follows all other information elements.

	· Peer Link Close frame body

	Order
	Information
	Notes

	·
	Category
	

	·
	Action Value
	

	·
	Reason code
	

	·
	Peer Link Management
	The Peer Link Management information element is present only when dot11MeshEnabled is true. The subtype of the Peer Link Management Element is set to 1.

	3
	MSAIE
	The MSA information element is present when dot11MeshEnabled is true and the Abbreviated Handshake is enabled.

	4
	MIC (see 7.3.1.35 and 11A.4.3.5)
	This field is present when dot11MeshEnabled is true and the Abbreviated Handshake is enabled.

	Last
	Vendor Specific
	One or more vendor-specific information elements may appear in this frame. This information element follows all other information elements.

Modify clause 10.3.32.1 as indicated below:

The following primitives report the link status to the mesh entity as the result of peer link management,.

10.3.32.1 MLME-SignalPeerLinkStatus.indication

10.3.32.1.1 Function

This primitive indicates that the mesh entity has finishes the link management procedure with a specified peer mesh entity and reports the status of the link.

10.3.32.1.2 Semantics of the service primitive

The primitive parameters are as follows:

MLME-SignalPeerLinkStatus.indication(

localLinkID,

StatusCode,

KeyInfo,
AKMInfo
)

	Name
	Type
	Valid range
	Description

	localLinkID
	Integer
	1—216-1
	Specifies the integer generated by the local mesh entity to identify this link instance

	StatusCode
	Enumeration
	MESH-LINK-ESTABLISHED,

MESH-LINK-CLOSED, MESH-LINK-MAX-RETRIES, MESH-LINK-NO-PMK, MESH-LINK-ALT-PMK, MESH-LINK-NO-AKM, MESH-LINK-ALT-AKM
	Indicates the resultstatus of the peer link establishment procedure

	KeyInfo
	Integer
	0—2128-1
	Specifies the PMKID of the alternative PMK-MA chosen by the candidate peer MP, if the StatusCode value is “MESH-LINK-ALT-PMK”. Otherwise, set to 0.

	AKMInfo
	Integer
	0—232-1
	Sepcifies the AKM ID of the alternative AKM suite as the result of AKM suite negotiation, if the StatusCode value is “MESH-LINK-ALT-AKM”. Otherwise, set to 0.

10.3.32.1.2 When generated

This primitive is generated when the mesh entity finishes the peer link management procedure, either when the peer link is established, or when it is closed.

10.3.32.1.3 Effect of receipt

This primitive enables the mesh entity to handle the link instance status.
Replace the first 4 paragraphs in 11A.4.1.5 as following:

11A.4.1.5 MSA authentication

Pre-RSNA authentication shall not be supported for mesh link establishment.

The MSA Authentication mechanism permits an MP to establish a secure link with a peer MP. The MSA authentication mechanism may be the Initial MSA Authentication that comprise the basic peer link establishment, the authentication of an MP (such as through the use of 802.1X authentication) and the establishment of its mesh key hierarchy, and the MSA 4-way handshake, or be the Abbreviated MSA Authentication when an established pairwise master key exists for the two MPs. The Initial MSA Authentication is required, for example, when an MP establishes its first peer link within an MKD domain. On the establishment of subsequent links within the MKD domain, an MP may execute the Abbreviated MSA Authentication mechanism to utilize the established mesh key hierarchies.
Initial MSA Authentication is described in 11A.4.2.2.5. When Initial MSA Authentication occurs, and IEEE 802.1X is selected, 8.4.5 specifies the authentication procedure. If pre-shared keys (PSKs) are selected instead, then the key hierarchy is derived from the PSK.

The Initial MSA Authentication mechanism includes an MSA 4-Way Handshake, as specified in 11A.4.2.2.6, which establishes a PTK, and allows each MP to provide its GTK to the peer MP.
The Initial MSA Authentication is shown in Figure s89, with procedures specified in 11A.4.2.2. The Abbreviated MSA Authentication is specified in 11A.4.2.3.
After the MSA Authentication completes, either MP may initiate a Group Key Handshake (see 8.5.4) at any time during the link’s lifetime, to update its GTK.
Modify the text in 11A.4.2.1 as indicated below:
· General

MSA defines the following procedures for use within a mesh:

· Initial MSA Authentication (11A.4.2.2) is used by an MP to securely establish links with peer MPs, and to authenticate and establish the mesh key hierarchy that may be used when securing future links.

· Abbreviated MSA Authentication (annotated as Abbreviated Handshake, specified in 11A.4.3) is used by an MP to securely establish links with peer MPs using the shared PMK-MAs established after the MP has established its mesh key hierarchy.
· MSA Key Holder Communication comprises three related mechanisms:

· The procedure for establishing communications and a security association between an MA and an MKD is the mesh key holder security handshake (11A.4.3).

· The mesh key transport protocol (11A.4.4) describes the mechanisms for key delivery and key management within the mesh key hierarchy.

· The mesh EAP message transport protocol (11A.4.5) describes a mechanism for transporting EAP messages between MKD and MA to facilitate authentication of a supplicant MP.

d. When establishing a secure peer link with a candidate peer MP, the MP may use the Initial MSA Authentication or the Abbreivtaed MSA Authentication mechanism. The MP may initiate the Abbreviated Handshake if pre-conditions are satisified (11A.4.2.3.2 and 11A.4.2.3.3).
e. If the conditions are not satisfied, the MP may use the key transport protocol (11A.4.4) to query a PMK-MA from the candidate peer MP’s mesh key hierarchy and initiate the Abbrevited Handshake once the key delivery protocol succeeds. Alternatively, the MP may instead use the MSA Initial Authentication mechanism to establish a secure peer link.
Modify the text in 11A.4.2.2 as indicated below:
· Initial MSA Authentication mechanism

An MP uses the MSA Initial Authentication mechanism to establish a secure link with a peer MP. The mechanism consists of the establishment of a peer link, in accordance with 11A.2, followed by the authentication of the MP (such as throught the use of 802.1X authentication) and the establishment of its mesh key hierarchy, followed by an MSA 4-way handshake, which is based on the 4-way handshake described in 8.5.3.
This procedure is required, for example, when an MP establishes its first peer link within an MKD domain.
The authentication of the MP and establishment of the mesh key hierarchy occurs after peer link management completes, but before the MSA 4-way handshake begins. An MP indicates a request for Initial MSA Authentication by setting the “Requests Authentication” bit in the MSAIE that is included in the Peer Link Open frame. An MP may request Initial MSA Authentication during its first peer link within an MKD domain, but also to refresh its key hierarchy due to, for example, its past or impending expiration.

Prior to beginning the MSA authentication mechanism, the MP determines if it is the Selector MP for the duration of the protocol. The MP is the Selector MP if its MAC address is numerically larger than that of the candidate peer MP.

Modify the text in 11A.4.2.2.5 as indicated below:

· Authenticating MP in Initial MSA Authentication
In the Initial MSA Authentication, authentication and establishment of the 802.1X supplicant’s key hierarchy shall occur after peer link management completes. If the negotiated AKM suite requires 802.1X authentication, it is initiated by the 802.1X authenticator MP. The IEEE 802.1X exchange is sent between the 802.1X supplicant and the 802.1X authenticator using EAPOL messages carried in IEEE 802.11 data frames. The 802.1X authenticator may transport the IEEE 802.1X exchange to the MKD using the optional mesh EAP message transport protocol, as specified in 11A.4.5.

Upon successful completion of IEEE 802.1X authentication, the MKD receives the MSK and authorization attributes associated with it and with the supplicant MP. If a mesh key hierarchy already exists for this supplicant, the MKD shall delete the old PMK-MKD SA and PMK-MA SAs. It then generates the PMK-MKD SA as well as a PMK-MA SA.

The MKD then delivers the PMK-MA to the MA using the mesh key distribution protocol defined in 11A.4.4. Once the PMK-MA is delivered, the MSA authentication mechanism proceeds with the MSA 4-way handshake.

Add text after 11A.4.2.2 with the following, renumbering subsequent clauses, Figures and Tables as appropriate:

11A.4.2.3 Abbreviated MSA Authentication
11A.4.2.3.1 Overview

The Abbreviated MSA Authentication protocol, also called the Abbreviated Handshake, establishes an authenticated peer link and session keys between the MPs, under the assumption that a PMK-MA is already established before the initiation of the protocol. The PMK-MA is shared between two MPs in two cases. In case one, the two MPs have directly authenticated with each other, thus a PMK-MA was established for the two MPs. In case two, one MP receives the other MP’s PMK-MA from the MKD.

An MP may initiate the Abbreviated Handshake when the MP expects that there is at least one PMK-MA shared between itself and the candidate peer MP and the MP supports the Abbreviated Handshake.

The Abbreviated Handshake uses action frames defined for peer link management protocol. In addition to the basic information defined by Peer Link Management protocol, the Abbreviated Handshake functions are accomplished through exchanging RSN information elements and MSA information elements. When Abbreviated Handshake is enabled, in addition to announcing AKM Suite List in RSN information element, the Selected AKM Suite shall be set to a AKM suite that supports Abbreviated Handshake. This field is set to “MSA Abbreviated Handshake” by default. And the Request Authentication subfield in the Handshake Control field shall be set to 0 to specify that the external authentication protocol is not requested.
The major supported Abbreviated Handshake functions are PMK Negotiation, Security Capability Negotiation, and Key Management (specified in 11A.4.3).

· The PMK Negotiation function selects the PMK-MA used for the Abbreviated Handshake. The Abbreviated Handshake fails if the PMK Negotiation function fails to select the PMK-MA. If the PMK Negotiaton function identifies a different PMK-MA from the one proposed, the MPs may execute a new instance of abbreviated handshake with updated PMK-MA parameter or execute the MSA authentication mechanism with initial MSA authentication procedure to obtain a new PMK-SA.

· The Security Capability Negotiation function agrees on the security parameters used for the security association, including the pairwise cipher suite, AKM suite, group cipher suite, and other related parameters.

· The Key Management function derives key encryption, key confirmation, and temporal keys for the authenticated peer link and distributes both MPs’ GTKs and IGTKs to each other.
During the abbreviated handshake, the MPs generate nonces and transmit them via peer link management action frames. The secure link instance is identified as
 Link Instance Identifier = <min(localMAC, peerMAC),
max(localMAC, peerMAC),

min(localNonce||localLinkID, peerNonce||peerLinkID),

max(localNonce||localLinkID, peerNonce||peerLinkID)>.
The MP shall randomly generate a value for localNonce, as specified in 8.5.7. It receives the other random number, peerNonce, from the candidate peer MP. The localNonce is random with respect to the MP. The MP selects the localNonce randomly to provide protection against replays of Peer Link Management action frames using the same PMK-MA. The peerNonce shall be supplied by the peer or MP in Peer Link Management action frames.
11A.4.2.3.2 Abbreviated Handshake Initiation
The MP may initiate the Abbreviated Handshake only when the following four conditions are satisified:

1. the peer link security is required in the mesh,

2. the MP has already joined the mesh,

3. the candidate peer MP is believed to be an MP also, and

4. the MP does not require further authentication at this time, i.e., it may already possesse a PMK-MA for the candidate peer MP.
When initiating the Abbreviated Handshake, the IEEE 802 SME shall generate a new Abbreviated Handshake Finite State Machine (specified in 11A.4.2.3.10) to handle the instance of the Abbreviated Handshake. The link instance identifier shall be used to identify the state machine.
11A.4.2.3.3 Responding to Abbreviated Handshake Initiation

The MP may respond to a request of the Abbreviated Handshake initiation only when the following five conditions are satisfied:

1. the peer link security is required in the mesh,

2. the MP has already joined the mesh,

3. the candidate peer MP is believed to be an MP also,

4. the MP does not require further authentication at this time, i.e., it already possesses a PMK-MA for the candidate peer MP,

5. the IEEE 802 SME has generated an Abbreviated Handshake FSM, which is in the LISTEN state.

The IEEE 802 SME may generate an Abbreviated Handshake FSM when the resource and configured policy (e.g., the configured peer capacity) permit. The IEEE 802 SME shall always keep an extra unused FSM available for potential incoming requests (if the peer capacity has not been reached) or needs to handle failure cases. The IEEE 802 SME shall not respond to a new Abbreviated Handshake initiation request if the resource cannot accommodate a new Abbreviated Handshake FSM or the MP has reached the configured peer capacity.
Add text after 11A.4.2 with the following, renumbering subsequent clauses, Figures and Tables as appropriate:

11A.4.3 Abbreviated Handshake
11A.4.3.1 PMK Negotiation

The MPs negotiate the PMK-MA for the instance of the Abbreviated Handshake using the Peer Link Open, Peer Link Confirm, and Peer Link Close frames. Each MP shall announce the supported PMK-MAs for the instance and make a default choice in the Peer Link Open frame. The MP shall use the same choice of PMK-MA for the same link instance. The MP negotiates the PMK by comparing the content in the incoming Peer Link Management frames with the PMK-MAs supported by the MP. Once the negotiation succeeds, the MP may send a Peer Link Confirm or Peer Link Close frame depending on the processing of other parameters. When such a frame is sent, the chosen PMK-MA shall also be sent in the frame.
Each MP shall announce the supported PMK-MAs in the PMKID List field of the RSN information element. The announced PMK-MAs are supported by the MP for the link instance with the candidate peer MP. It may be the PMK-MA derived from the direct authentication with the candidate peer MP, when either the MP or the candidate peer MP is the supplicant. The PMK-MAs may also be received from the MKD via the key transport protocol.

The PMK-MAs announced in the PMKID List are ordered by their expiry time, with the key expiring furthest in the future most preferred and soonest least preferred; keys expiring at the same time are ordered lexicographically by their PMK-MANames from the smallest to greatest.

The PMK negotiation procedure starts when the MP has not decided the PMK successfully and is initiating or responding to an Abbreviation Handshake instance. When sending the Peer Link Open frame, the Chosen PMK field in the MSA information element shall be set to the PMK-MANmae of the first key in the announced PMKID list. When responding, upon successful PMK selection, the Chosen PMK field shall also be set to the same PMK-MAName of the decided PMK-MA.

When the MP receives a Peer Link Open frame from the candidate peer MP, if the MP has not initiated the Abbreviated Handshake, the PMK selection in response to a received Peer Link Open frame succeeds if the MP also supports the PMK-MA chosen by the candidate peer MP. If the MP does not support the selected PMK-MA, then the MP shall discard the received action frame and the NOKEY_RJCT event shall be triggered and the IEEE 802 SME shall be notified by this event and the chosen PMK by the candidate peer MP.
When the MP that initiated the Abbreviated Handshake receives either a Peer Link Open frame, Peer Link Confirm, or Peer Link Close frame from the candidate peer MP, the MP shall verify that the chosen PMK-MA matches the MP’s choice. If it matches, the PMK-MA for the link instance is decided.
If the chosen PMK values do not match, the received frame shall be discarded. If the received frame is a Peer Link Confirm or a Peer Link Close frame, the CNF_IGNR or CLS_IGNR event shall be triggered. If the received frame is a Peer Link Open, the MP shall further compare the two PMKID lists announced by the two MPs.
· If the lists do no overlap, the PMK-MA selection procedure fails. The MP shall discard the Peer Link Management frame as a forgery. A NOKEY_RJCT event shall be triggered and the IEEE 802 SME shall be notified by this event with the status code “MESH-LINK-NO-KEY”. Furthermore, the MP may

a. contact the MKD in an attempt to acquire one of the PMK-MAs listed by the candidate peer MP, or

b. may initiate a new, unprotected Peer Link Management state machine with the candidate peer, with the purpose of (re)authenticating and thereby acquiring a new shared PMK-MA.

· If the two lists overlap, then the MP selects the first element from the intersection list of the two announced list.

· If the selected PMK-MA is different from that the MP used to initiate its own Peer Link Open frame, the NOKEY_RJCT event shall be triggered and the IEEE 802 SME shall be notified by this event with the status code “MESH-LINK-ALT-KEY” and the selected PMK-MA. The MP may initiate a new Abbreviated Handshake finite state machine utilizing this selected PMK-MA.

· If the selected PMK-MA is the same as chosen by the MP initially, the OPN_IGNR event shall be triggered.
Once the PMK-MA is selected, the KEK and KCK are derived according to 11A.4.3.3. The MP shall also verify the MIC field of the received Peer Link Mangement frame to prove that the candidate peer MP has the correct possession of the selected PMK-MA.

If the MIC field verification succeeds, the MP accepts the successful PMK negotiation. The further Peer Link Management processing shall be performed according to 11A.4.3.6. If as the result, a Peer Link Confirm or a Peer Link Close frame is sent, the Chosen PMK field in the MSA information element shall be set to the PMK-MAName of the negotiated PMK-MA.

If the MIC field verification fails, the PMK-MA negotiation fails, and further actions are taken according to the Abbreviated Handshake finite state machine specified in 11A.4.3.7.

When the NOKEY_RJCT event is triggered, the MP fails to select a shared PMK-MA with the candidate peer MP given the choices they have. The finite state machine for the current instance shall be terminated. Furthermore, the MP may

i) initiate an unauthenticated peer link management FSM, with the aim of authenticating, or
ii) contact the MKD in an attempt to acquire the PMK-MA suggested from the PMK negotiation procedure, or
iii) initiate a new instance of Abbreviated Handshake with another cached PMK-MA suggested from the result of the PMK negotiation procedure.

11A.4.3.2 Security Capabilities Negotiation
11A.4.3.2.1 Instance AKM Negotiation

The MP shall announce the supported AKM suites in RSN information element using a prority list with the suite preferred most first, and specify the first AKM suite in the list in the “Selected AKM Suite” field in MSA information element. The supported AKM Suites shall be “MSA Abbreviated Handshake” by default, or other vender-specific AKM Suites that are specified to support Abbreviated Handshake.

The AKM Negotiation is achieved via the following procedure:

· If the MP has not initiated the Abbreviated Handshake, the AKM Suite selection in response to a received Peer Link Open frame succeeds if the MP also supports the AKM Suite chosen by the candidate peer MP. If the MP does not support the selected AKM Suite, then the MP shall discard the received action frame and the NOAKM_RJCT event shall be triggered and the IEEE 802 SME shall be notified by this event and the chosen PMK by the candidate peer MP.

· When the MP that initiated the Abbreviated Handshake receives either a Peer Link Open frame, Peer Link Confirm, or Peer Link Close frame from the candidate peer MP, the MP shall verify that the selected AKM Suite matches the MP’s choice. If it matches, the AKM Suite for the link instance is negotiated successfully.

· If the selected AKM suite values do not match, the received frame shall be discarded. If the received frame is a Peer Link Confirm or a Peer Link Close frame, the CNF_IGNR or CLS_IGNR event shall be triggered. If the received frame is a Peer Link Open, the MP shall further compare the two AKM Suite lists announced by the two MPs in RSN information elements.

iv) If the lists do no overlap, the AKM Suite negotiation procedure fails. The MP shall discard the Peer Link Management frame as a forgery. A NOAKM_RJCT event shall be triggered and the IEEE 802 SME shall be notified by this event with the status code “MESH-LINK-NO-AKM”.

v) If the two lists overlap, then the MP selects the first element from the intersection list of the two announced lists.

vi) If the selected AKM Suite is different from that the MP used to initiate its own Peer Link Open frame, the NOAKM_RJCT event shall be triggered and the IEEE 802 SME shall be notified by this event with the status code “MESH-LINK-ALT-AKM” and the selected AKM Suite. The MP may initiate a new Abbreviated Handshake finite state machine utilizing this selected AKM Suite.

vii) If the selected AKM Suite is the same as chosen by the MP initially, the OPN_IGNR event shall be triggered.
11A.4.3.2.2 Instance Pairwise Cipher Suite Negotiation
If the negotiated pairwise cipher suite has not been decided, MPs negotiate the pairwise cipher suite using the following procedure in four phases:

b) The MP shall announce the list of pairwise cipher suite it supports using an ordered list in the RSN information element in the Peer Link Open frame. The first value in the list is the most preferred cipher suite by the MP, and last value the least preferred.
If the MP receives a Peer Link Open from the candidate peer MP, the MP shall independently make decision on the chosen pairwise cipher suite based on intersect of its own ordered list and the received ordered list.
If the intersect is empty, the pairwise cipher suite negotiation fails and failure code “Cipher suite rejected because of the security policy” shall be generated and corresponding actions shall be taken according to 11A.4.3.7.
· If the intersect is not empty and contains more than one value, the chosen cipher suite shall be decided as the one preferred by the “selector MP” (see 11A.4.1). If the received action frame is a Peer Link Confirm frame, the MP shall proceed to phase c), otherwise proceed to last phase.

i) If the MP receives a Peer Link Confirm frame from the candidate peer MP before receiving a Peer Link Open frame, the MP shall verify that the MP supports the pairwise cipher suite specified in the “Selected Pairwise Cipher Suite” subfield in MSA information element. Otherwise, the negotiation fails and the reason code “Cipher suite rejected because of the security policy” shall be generated. Furthermore, once receiving a Peer Link Open frame, the MP shall verify that the accepted selected pairwise cipher suite matches the chosen pairwise cipher suites as the result of phase b). If they do not match, the negotiation fails and the reason code “Cipher suite rejected because of the security policy” shall be generated. Otherwise, the pairwise cipher suite negotiation succeeds, and the MP shall proceed to the last phase.

ii) Upon the successful pairwise cipher suite negotiation, if generating the Peer Link Confirm frame, the MP shall set the Selected Pairwise Cipher Suite value to confirm the choice.

11A.4.3.2.3 Group Cipher Suite Negotiation
The MPs shall announce the group cipher suite used for its own broadcast protection in the Peer Link Open action frame. The MP shall verify whether it supports the group cipher suite announced by the candidate peer MP. If the cipher suite is supported, the negotiation succeeds. If a Peer Link Confirm frame is sent out after successful processing of other fields of the received frame, the received GTK shall be confirmed in MSA information element. Otherwise, the negotiation fails and the reason code “Invalid group cipher” shall be reported.

11A.4.3.3 Keys and Key Derivation Algorithm

 To execute the Abbreviated Handshake, the MP shall derive the keys, including a key encryption key (KEK), a key confirmation key (KCK), and a temporal key (TK) using the chosen PMK-MA.

The KEK and KCK are derived statically from the chosen PMK-MA. The TK is derived based on dynamic information provided by localNonce and peerNonce. Figure A illustrates the key derivation algorithm for Abbreviated Handshake protocol.

[image: image1]
Figure s75 Key Derivation for Abbreviated MSA Authentication

KCK and KEK are mutually derived by the local MP and the peer MP. The following details the key derivation:

· The KEK and KCK shall be derived from the PMK-MA by

KEK || KCK (PRF-256(PMK-MA, “KCK KEK Derivation”, 0512 || Selected AKM Suite || min(localMAC, peerMAC) || max(localMAC, peerMAC))
The min and max operations for IEEE 802 addresses are with the address converted to a positive integer, treating the first transmitted octet as the most significant octet of the integer as specified in 8.5.1.2.

NOTE—The local MP and peer MP normally derive a KCK and KEK only once per PMK-MA. The local MP or peer MP shall derive a new KCK and a new KEK once a new PMK-MA has been decided.

· The KCK shall be computes as the first 128 bits (bits 0—127) of the resulting string:

KCK (L(KEK||KCK, 0, 128)

The KCK is used to provide data origin authenticity in the Abbreviated Handshake and the Group Key Handshake messages.

· The KEK shall be computed as the second 128 bits (bits 128-255) of the resulting string:

KEK (L(KEK||KCK, 128, 128)

The KEK is used to provide data confidentiality in the Abbreviated Handshake and the Group Key Handshake messages.

· The termporal key (TK) shall be derived from the PMK-MA by

TK (PRF-X(PMK-MA , “Temporal Key Derivation”, min(localNonce, peerNonce) || max(localNonce, peerNonce) || Selected AKM Suite || min(localMAC, peerMAC) || max(localMAC, peerMAC))
CCMP uses X = 128. The Min and Max operations for IEEE 802 addresses are with the address converted to a positive integer treating the first transmitted octet as the most significant octet of the integer as specified in 8.5.1.2. The Min and Max operations for nonces are with the nonces treated as positive integers converted as specified in 7.1.1.

NOTE—The local MP and peer MP normally derive a TK only once per link instance. The local MP or peer MP may use the Abbreviated MSA Handshake to derive a new TK. Both the local MP and peer MP create a new nonce value for each Abbreviated MSA Handshake instance.

· The TK is referenced and named as follows:
TKName = PRF-128(PMK-MAName, “TK Name”, min(localNonce, peerNonce) || max(localNonce, peerNonce) || Selected AKM Suite || min(localMAC, peerMAC) || max(localMAC, peerMAC))
PMK-MAName is the identifier of the chosen PMK-MA.

11A.4.3.4 GTK Distribution

The MP shall distribute the GTK to the peer MP using the Peer Link Open frame during the Abbreviated Handshake. The GTK subfield in MSAIE shall contain the encrypted key data. AES key wrap, defined in IETF RFC 3394, shall be used to encrypt the GTK field using the KEK derived from the chosen PMK-MA. The data to be encrypted shall be the bit string: {GTK || peerMAC || Key RSC || GTKExpirationTime}. The key wrap default initial value shall be used.

The receiver of the encrypted GTK shall unwrap the GTK using the default initial value and the same KEK, as defined in IETF RFC 3394. The MP shall verify that the second element in the resulting string matches the receiver's MAC address, peerMAC, as sent in the Peer Link Open frame. The MP shall extract the GTK value, the Key RSC, and GTK life time by removing the bits of the the peerMAC from the resulting bit string of the key unwrapping operation.

If the key unwrapping operation fails or the concatenated values do not match, the GTK distribution fails, the reason code “MESH-Invalid-GTK” shall be generated and the corresponding actions shall be taken according finite state machine specified in 11A.4.3.7.

11A.4.3.5 MIC Computation

The MIC computation can only be done after chosen a PMK-MA is decided. For Peer Link Open and Peer Link Confirm frames, the MIC is computed using the derived KCK from the chosen PMK-MA. For Peer Link Close frames, the MIC is computed using the derived TK from the chosen PMK-MA.

The AES-128-CMAC algorithm (AES-128-CMAC is defined by FIPS SP800-38B) shall be used to compute the MIC value, over the content of the Peer Link Management frames used for Abbreviated Handshake. The contents protected by the MIC are specified as the following list in the specified order:

· Sender’s MAC address

· Receiver’s MAC address

· All contents in the frame, except the Message Integrity Check field

· For Peer Link Open and Peer Link Confirm frames, the key used to compute MIC is the KEK derived from the chosen PMK-MA as specified in the MSA element. The MIC value for Peer Link Close frames shall be computed using the KCK derived from the chosen PMK-MA for the current link instance.
11A.4.3.6 Peer Link Management Action frames for Abbreviated Handshake
11A.4.3.6.1 Summary

The Abbreviated Handshake specific processing operations shall be performed first once a Peer Link Management action frame is received. These operations include processing RSN information elements and MSA information elements for matching nonces, PMK usage negotiation, security capability negotiation, GTK wrapping and unwrapping, and message integrity code verification. If these operations succeed, other basic processing operations (as specified in 11A.1.5.2) shall be performed. If the Abbreviated Handshake specific operations fail, the corresponding reason code and finite state machine events shall be generated.
11A.4.3.6.2 Process Peer Link Close action frames

Upon receiving a Peer Link Close frame, the MP shall first verify that the sender and receiver’s MAC addresses are different. The AKM Suite negotiation shall be performed if the Selected AKM Suite has not been decided. If the shared PMK-MA has not been negotiated, the PMK usage negotiation process shall be performed.

The CLS_IGNR event shall be triggered if

· PMK negotiation fails, or
· AKM Suite negotiation fails, or
· chosen PMK does not match the negotiated PMK-MA, or

· the MIC verification fails, or

· the Peer Link Close frame contains a mismatched value or an incomplete nonce value.

The MIC verification failure happens if

· the MIC field is missing, or

· the computed MIC using the KCK derived from the negotiated PMK-MA does not match the value of the MIC field in the frame.

A received nonce value is a mismatch if:

· the locally recorded peerNonce does not match the value in the Local Nonce field in the received action frame, or

· the locally recoreded localNonce does not match the value in the Peer Nonce field in the received action frame.
The received nonce values are incomplete if either of the value of the Peer Nonce field or the Local Nonce field is zero.

In other cases, the MP shall proceed to basic action frame processing of the Peer Link Close frame as specified in 11A.2.2.2.

11A.4.3.6.3 Processing Peer Link Open action frames

The MP shall first verify that the sender and receiver’s MAC addresses are different. If the MAC addresses are the same, OPN_IGNR event shall be generated.

The MP then shall perform AKM Suite negotiation as specified in 11A.4.3.2.1, if the AKM Suite has not been decided. The MP shall also perform PMK negotiation as specified in 11A.4.3.1, if the shared PMK-MA has not been decided for the link instance. If above procedures fail, the received Peer Link Open frame shall be discarded, and corresponding event and status code shall be generated.

If the above procedures succeed, and the following operations shall be performed:

· The MIC checked. The OPN_IGNR event shall be triggered and the action frame shall be discarded if the MIC verification fails.

· The nonce checked against the receiving instance. The nonce value is a mismatch, if the MP has local information of peerNonce (e.g., previously received a Peer Link Management frame for the link instance), and the value does not match the value in the Local Nonce field of the Peer Link Open action frame. The OPN_IGNR event shall be triggered if the Peer Link Open frame contains a mismatched nonce value.

· The OPN_RJCT event shall be triggered if

· the security capability negotiation fails (see 11A.4.3.2), or

· the received Pairwise Cipher Suite List does not contain the negotiated pairwsie cipher suite, or

· the received Pairwise Cippher Suite List is not the same as previously received from a Peer Link Open frame for the same instance.

· The received PMKID list does not contain the negotiated PMK-MA, or

· the received AKM Suite List does not contain the negotiated AKM Suite, or

· the received AKM Suite List is not the same as previously received from a Peer Link Open frame for the same instance.

· The received PMKID list is not the same as previously received from a Peer Link Open frame for the same instance.

· If none of the above cases is true, the MP shall proceed to perform key unwrapping operation to extract the peer MP’s GTK value, as specified in 11A.4.3.4. If this operation fails, the OPN_RJCT event shall be triggered with the reason code “MESH-INVALID-GTK”.

If all above operations succeeds, the MP shall proceed to process the Peer Link Open frame on basic parameters as specified in 11A.2.2.1 and 11A.2.2.3.

11A.4.3.6.4 Process Peer Link Confirm action frames

The MP shall first verify that the sender and receiver’s MAC addresses are different. If the MAC addresses are the same, CNF_IGNR event shall be generated.

The MP then shall perform AKM Suite negotiation as specified in 11A.4.3.2.1, if the AKM Suite has not been decided. The MP shall also perform PMK negotiation as specified in 11A.4.3.1, if the shared PMK-MA has not been decided for the link instance. If above procedures fail, the received Peer Link Open frame shall be discarded, and corresponding event and status code shall be generated.

If the above procedures succeed, and the following operations shall be performed:

· The MIC checked. The CNF_IGNR event shall be triggered and the action frame shall be discarded if the verification fails.

· The nonces checked against the receiving instance. The nonce value in the action frame is a mismatch if: the value in the Peer Nonce field does not match the local state of localNonce or the value in the Local Nonce field does not match the local state of peerNonce, excluding the case that the peerNonce value is unknown. The CNF_IGNR event shall be triggered if the Peer Link Confirm frame contains a mismatched nonce value.

· Chosen Pairwise Cipher Suite checked. If the security capability negotiation has been done and the received Chosen Pairwise Cipher Suite value is not the same as the negotiated value, the CNF_RJCT event shall be triggered with the reason code “Invalid pairwise cipher”.
·
· Selected AKM Suite checked. If the AKM Suite negotiation has been done and the received Selected AKM Suite value is not the same as the negotiated value, the CNF_RJCT event shall be triggered with the reason code “Invalid AKMP”.

· If the security capability negotiation has not been done and the received Chosen Pairwise Cipher Suite is not supported by the MP, the CNF_RJCT event shall be triggered with the reason code “Cipher suite rejected because of the security policy”.

· The CNF_RJCT event shall be triggered with the reason code “MESH-INCONSISTENT-PARAMETERS” if the PMK negotiation has been done but the received Chosen PMK field is not the same as the value received earlier in a Peer Link Management frame for the instance.

If none of the above cases is true, the MP shall proceed to process the Peer Link Confirm action frame on basic parameters as specified in 11A.2.2.1 and 11A.2.2.4.

11A.4.3.7 Finite State Machine
11A.4.3.7.1 Overview

The finite state machine for Abbreviated Handshake supports all the states, events, and actions defined for the finite state machine for the Peer Link Management protocol. New events, actions, and state transitions are added to specify the security functions for Abbreviated Handshake.

When a finite state machine is generated and actived for an Abbreviated Handshake instance, the localNonce shall be generated and used together with a new localLinkID to identify the instance.

11A.4.3.7.2 New Events and Actions

All events for rejecting or ignoring received action frames shall report the corresponding reason code related to Abbreviated Handshake functions.

In addition, there are two new events.

NOKEY_RJCT – This event refers to the failure of PMK negotiation. The trigger of this event is accompanied with a status code. Either the two MPs do not share a valid PMK-MA for Abbreviated Handshake (“MESH-LINK-NO-KEY”), or the chosen PMK-MA by the MP is not a shared PMK-MA by the two MPs. The received Peer Link Management frame shall be discarded. Thus the link instance shall be closed. However, the MP shall not send a Peer Link Close frame as the result of this event.

NOAKM_RJCT—This event refers to the failure of AKM Suite negotiation. The trigger of this event is accompanied with a status code. Either the two MPs do not share a valid AKM suite for Abbreviated Handshake (“MESH-LINK-NO-AKM”), or the chosen AKM suite by the MP is not a shared AKM by the two MPs (“MESH-LINK-ALT-AKM”). The received Peer Link Management frame shall be discarded. Thus the link instance shall be closed. However, the MP shall not send a Peer Link Close frame as the result of this event.

TOR3 – This event refers to Timeout(localLinkID, retryTimer), the dot11MESHMAXRetries has been reached, with the Abbreviated Handshake enabled. The link instance shall be closed when TOR3 occurs. Since the PMK negotiation never occurs, the MP shall not send Peer Link Close frame.

The actions of sending peer link management frames are updated as the following.

sndOPN – When generating a Peer Link Open frame, in addition to the content by the Peer Link Managemenet protocol, the RSN information element and MSA information element shall be sent for PMK usage negotiation, security capability negotiation, and group key distribution. 11A.4.3.2, 11A.4.3.3, and 11A.4.3.4 specify the content of the fields for each of the functions respectively. Note that the MIC is computed according 11A.4.3.5.

sndCNF – When generating a Peer Link Confirm action frame, in addition to the content by the Peer Link Management protocol, the MSA information element shall be sent for PMK usage negotiation and security capability negotiation. 11A.4.3.1 and 11A.4.3.2 specify the content of the fields for each of the functions respectively. Note that the MIC shall be computed using the KCK derived from the negotiated PMK-MA over the content of the Peer Link Confirm action frame.

sndClose – When generating a Peer Link Close action frame, in addition to the content by the Peer Link Management protocol, the MSA information element shall be sent with the following content:

· Local Nonce field shall be set by the value of the localNonce generated for the instance.
· Peer Nonce field may be set by the value of the peerNonce received from the candidate peer MP or peer MP.

· Chosen PMK field shall be set by the PMK-MAName of the negotiated PMK-MA or the chosen PMK-MA if the PMK usage negotiation has not been performed.

· MIC field shall contain the computed MIC using the KCK derived for the link instance over the content of the Peer Link Close frame.

11A.4.3.7.3 State transitions

All state transitions specified in Peer Link Management finite state machine shall be used for Abbreviated Handshake finite state machine.

In LISTEN state, the following are the additional state transitions and performed actions

· The NOKEY_RJCT event shall be ignored

· When NOAKM_RJCT event occurs, the finite state machine transitions to IDLE state

· When OPN_IGNR event occurs with the status code MESH-LINK-ALT-PMK, the status code and the candidate peer MP’s choice of the PMK-MA for the instance shall be reported to IEEE 802 SME via MLME-SignalLinkStatus.indication primitive.

In OPN_SNT state, the following are additional state transitions and actions
· When NOKEY_RJCT event occurs, the MLME-SignalLinkStatus.indication primitive shall be used to inform the IEEE 802 SME the failure of establishing the authenticated peer link with the status code MESH-LINK-NO-PMK. The received Peer Link Open frame shall be discarded. The retryTimer is cleared and the finite state machine transitions to IDLE state.

· When NOAKM_RJCT event occurs, the MLME-SignalLinkStatus.indication primitive shall be used to inform to IEEE 802 SME the failure of establishing the authenticated peer lin with the status code MESH-LINK-NO-PMK. The received Peer Link Open frame shall be discarded. The retryTimer is cleared and the finiate state machine transitions to HOLDING state.

· When OPN_IGNR event occurs with the status code MESH-LINK-ALT-PMK, the status code and the candidate peer MP’s choice of the PMK-MA for the instance shall be reported to IEEE 802 SME via MLME-SignalLinkStatus.indication primitive.

· When TOR3 event occurs, the MLME-SignalLinkStatus.indication primitive shall be used to inform the IEEE 802 SME the failure of establishing the peer link with the status code “MESH-LINK-MAX-RETIES”. The finite state machine transitions to HOLDING state.
In OPN_RCVD state, the following are the additional actions
· When CNF_ACPT event occurs, in addition to the actions for Peer Link Management protocol, the MLME-installKey.request primitive shall be called to install the established temporal key and received GTK from the peer MP.

In CNF_RCVD state, the following are the additional actions
· When CNF_ACPT event occurs, in addition to the actions for Peer Link Management protocol, the MLME-installKey.request primitive shall be called to install the established temporal key and received GTK from the peer MP.
Table s43 and Figure s75 specify the state transitions of the finite state machine for Abbreviated Handshake. The text in red highlights the additional new state transitions for Abbreviated Handshake, compared with Peer Link Mangaement finite state machine for basic peer links.
Table s43: Abbreviated Handshake Finite State Machine
	
	To State

	
	IDLE
	LISTEN
	OPN_SNT
	CNF_RCVD
	OPN_RCVD
	ESTAB
	HOLDING

	From State
	IDLE
	
	PASOPN/ --
	ACTOPN/ (sndOPN, setR)
	
	
	
	

	
	LISTEN
	CNCL, NOKEY_RJCT,

NOAKM_RJCT / --
	
	ACTOPN/ (sndOPN, setR)
	
	OPN_ACPT/ (sndOPN, sndCNF, setR)
	
	

	
	OPN_SNT
	
	
	TOR1/ (sndOPN, setR)
	CNF_ACPT/ (clR, setC)
	OPN_ACPT/ (sndCNF)
	
	CLS_ACPT, OPN_RJCT, CNF_RJCT, TOR2, CNCL/ (sndCLS, clR, setH)

TOR3, NOKEY_RJCT, NOAKM_RJCT / (clR, setH)

	
	CNF_RCVD
	
	
	
	CNF_ACPT / --
	
	OPN_ACPT / (clC, sndCNF)
	CLS_ACPT, OPN_RJCT, CNF_RJCT, CNCL/ (sndCLS, clC, setH)

TOC / (sndCLS, setH)

	
	OPN_RCVD
	
	
	
	
	TOR1 / (sndOPN, setR)
	CNF_ACPT / clR
	CLS_ACPT, OPN_RJCT, CNF_RJCT,TOR2, CNCL/ (sndCLS, clR, setH)

	
	ESTAB
	
	
	
	
	
	OPN_ACPT / sndCNF
	CLS_ACPT, OPN_RJCT, CNF_RJCT,CNCL/ (sndCLS, setH)

	
	HOLDING
	TOH, CLS_ACPT / --
	
	
	
	
	
	OPN_ACPT, CNF_ACPT, OPN_RJCT, CNF_RJCT / sndCLS

[image: image2.png]TOH, CLS_ACPT | -

CNCL,

NOKEY_RJCT,

NOAKM_RJCT
/-

PASOPN/--

ACTOPN /
(sndOPN, setR)

TOR1/ (sndOPN, setR)

TOR1/ (sndOPN, setR)

OPN_ACPT / sndCNF

OPN_RCVD

CNF_ACPT/
(cIR, setC)

OPN_AGPT/ | CNFACPT/GR

SNACNF CNF_ACPT /—

OPN_ACPT/ (cIC, SndCNF)
CNF_RCVD

CLS_ACPT,
OPN_RUCT,
LS ACPT, CNF_RJCT,
Pyt TORZ, CNCL /
CNF_RJCT, (SNCLS, ok,
TORZ, CNCL / setH)
(SndCLS, oIk,
setH) &k TOR3,
\ NOKEY_RJCT,
NOAKM_RJCT
(IR, SetH

OPN_ACPT,
CNF_ACPT,
0PN RUECT,
CNF_RICT/
SndCLS

Figure s76 Finite State Machine of Abbreviated Handshake Protocol
Add the following text after T.8

T. 8 Design rationale of Abbreviated Handshake protocol

T.8.1 Protocol Overview
The Abbreviate Handshake is intended to secure peer link establishment and key management under the assumption that the two MPs share a PMK. The description here is informative to explain the design rationale of the protocol.

T.8.1.1 Security Goals

The Abbreviated Handshake is designed to satisfy the following major security goals

iii) Mutual authentication. Achieving mutual authentication in a peer-to-peer environment is challenging. In the client-server model, this always accomplished through some sort of “matching conversations” rule. In the peer-to-peer model, there is no designated initiator or responder; indeed, both parties might initiate, and an initiator cannot tell it is the “only” initiator. This makes the standard approaches to “matching conversations” problematic, because the two peers do not and cannot necessarily have the same view of message order. The design is based on the conjecture that in the peer-to-peer context mutual authentication should means that both peers have sent and received the same set of messages—i.e., both have sent and received both an Open and responding Confirm message, both bound to the same instance of the protocol.
iv) Key secrecy. No party other than the peers authenticated in an Abbreviated Handshake session should learn any information about the resultant session key (in particular, no such third party, watching or interfering with the protocol run, should be able to distinguish the session key from a random key).
v) Consistency property. If the protocol completes successfuly, the two peers should be aware that they share the same security-related session state. This means that each parameter should be confirmed as part of protocol operation. Hugo Krawcyzk introducted the name “consistency property” in his paper rationalizing the SIGMA design (the basis of IKE). We have found this idea to be an extremely useful heuristic, as various sorts of mis-binding attacks appear possible whenever we don’t work toward explicitly consistent state at the two peers.

T.8.1.2 Cryptographic Primitives
The following cryptographic algorithms:

a. Random number generator. This is needed to construct challenge values. We will denote this by rand.

b. Message integrity code. This is needed to protect messages against forgeries. The message integrity code tag of a string a under a key K will be denoted by micK(a).

c. Key wrap. The key wrap algorithm is used to distribute the broadcast key of its sender.

f. Key derivation function. This “stretches” the PMK into other keys for specific purposes. A key derivation of length bits from key K in the context string a will be denoted by kdfK(a, length).
T.8.1.3 Shared data structures and Secure peer link states

When the protocol completes, we expect the protocol achieves consistency property by synchronizing the following shared data structures:

· Data link addresses, which are used as identifiers.

· Random numbers, which are used as challenges and as protocol instance identifiers.

· Pairwise Master Key (PMK).
· Each PMK is named by a PMK-ID.
· Each PMK has an expiry time.

· The PMK is used to derive three other keys:

· the Key Confirmation Key (KCK), which is the “authentication key” for the abbreviated handshake.
· the Key Encryption Key (KEK), which is the key used to wrap the broadcast key.
· the Temporal Key (TK), which is a session key. This key must be ephemeral to make replay work.

· A ciphersuite selector list, identifying the ciphersuites a peer implements and the security policy it enables. The protocol must negotiate the ciphersuite used with the TK from these lists of ciphersuite selectors.

· GTK, the broadcast key for its source.

· A group ciphersuite for the GTK. We do not negotiate the broadcast ciphersuite; the protocol simply fails if there is no match.

· The AKM used by the Abbreviated Handshake itself, for extensibility in the future.

T.8.1.4 Notation

The notation is fairly standard. “a || b” denotes the concatenation of strings a and b. “A → B: m” means that A sends message m to B. By [a]K we mean a || macK(a).
T.8.1.5 Summary of the protocol
The rest of T.8 will explain the design rationale of the major functions of Abbreviated Handshake protocol, by incrementally refining the protocol definition. To help readers to refer back to the whole protocol, the following uses an example to summarize the execution of Abbreviated Handshake. In this case, MPs A and B initiate the protocol independently by sending each other an Open message. Once receiving an Open message, A and B perform negotiation functions of the Abbrevited Handshake. A successful negotiation causes A and B send a Confirm message to notify agreement of the session security states. Each party successfully establishes the secure peer link once receiving the Confirm message. The condition of finishing the Abbreviated Handshake is the same as establishing a basic peer link: both parties have successful sent and received both Open and Confirm messages.

A → B:
Open(A, B, RA ,EA, GroupCiphersuite, CiphersuitesA, AKM, PMKListA,B, KCK)

B → A:
Open(B, A, RB, EB, GroupCiphersuite, CiphersuitesB, AKM, PMKListB,A, KCK)

B → A:
Confirm(B, A, RB, RA, GroupCiphersuite, AKM, Ciphersuite, PMK-ID, KCK)

A → B:
Confirm(A, B, RA, RB, GroupCiphersuite, AKM, Ciphersuite, PMK-ID, KCK)

The description next in T.8 builds up the thinking about the protocol progressively. It begins with a basic protocol that is intended to provide “mutual authentication” and an instance identifier. Revisions successively add broadcast key (GTK) distribution, derive session keys, negotiate the ciphersuite consuming the session key, negotiate which cryptographic algorithms to use in the handshake itself, and finally which key to use if there is more than one.

T.8.2 Protocol Revision 1: Instance Identifier Agreement

 Instance identifier agreement achieves two security goals. First it achieves mutual authentication. Second, it achieves the consistency property for a link instance identifier.

Assume that MPs A and B, but no one else shares the “authentication” key KCK. For the time being, the KCK may be treated as a long lived key. Later in T.8.4, this assumption is removed, using key derivation to replace a long-lived KCK with an ephemeral key. The message integrity code micKCK(.) is also fixed for the following discussion.

The protocol treats the MAC addresses MACA and MACB of the two peer MPs A and B as identifiers for A and B, respectively. Each party also generates a random number RA and RB. The protocol requires that each MP commit to its own value for each instance of the protocol it initiates—A must commit to MACA and RA, while B must commit to MACB and RB. In other words, these values are invariant and fixed for each protocol instance. In particular, if one peer wants to create a new instance of the protocol, it must generate a new random number. It can associate, however, as many instance created by its peer with this one, in order to defend against flooding attacks.

The space of all peer identifiers is lexicographically ordered. The space of random numbers is also ordered lexicographically. The goal of this first version of the protocol is for A and B to agree on a common identifier for an instance of the protocol. The instance identifier is given by <min(MACA, MACB), max(MACA, MACB), min(RA, RB), max(RA, RB)>. The 4-tuple uses the min(.,.) and max(.,.) operators in the instance identifier name, because a peer-to-peer does not have a notion of whether A or B should be named first, so the max and min operators provide the arbitrariness needed to unambiguously identify the instance.

For this first revision of the protocol, let Open(A, B, R, K) represent [MACA || MACB || R]K and Confirm(A,B,R,S,K) represent [MACA || MACB || R || S]K. At least one of the peers sends an Open message to the other (both could initiate at the same time) to begin a new instance of the protocol:

A uses rand to generate a random RA
A → B: Open(A,B,RA,KCK)

 On receipt of the first message, the other party does the following:

 if RA = RB then

[1]

B discards Open(A,B,RA,KCK)

else if MACB is not B’s MAC address then

[2]

B discards Open(A,B,RA,KCK)

else if micKCK(MACA || MACB || RA) is invalid then
[3]

B discards Open(A,B,RA,KCK)

else

B instantiates a protocol instance using MACA and RA
[4]

if B has not sent its own Open(B,A,RB,KCK) then
B → A: Open(B,A,RB,KCK)

endif

B → A: Confirm(B,A, RB, RA,KCK)

endif

 A must also execute the same pseudo-code, with the roles of A and reversed. The rationale for each step is as follows:

· Since the messages used by any peer-to-peer protocol are by necessity symmetric, we need some way to defeat reflection attacks (i.e., the adversary sends A its own messages). The test for equality in [1] is intended to accomplish this.

· Filtering on MAC address is a simple sanity check, to make sure the receiver to whom the adversary delivered the message is the intended destination. The test [2] is meant to accomplish this.

· Including a message integrity code in the first message is not standard, but it appears to help establish the consistency property for other parameters added by later protocol revisions below. The check of the message integrity code in [3] limits the adversary to resorting to retries to create forgeries. This helps defend against flooding attacks. We hypothesize the message integrity code is crucial for the correctness of a 4 message peer-to-peer protocol.

· If all of the basic sanity checking succeeds, in [4] the receiver instantiates an instance of the protocol based on the parameters received from its peer. What this means is that B begins with a half-instantiated link instance and then pairs each RA received with his own RB to create a fully instantiated link instance. In principle this would appear to enable a flooding attack, as the receiver generates a protocol instance for each valid Open message received from the peer MP. However, we believe this is necessary, and it is how other protocols, such as TCP and the 802.11 4-Way Handshake, respond to flooding attacks. Its efficacy depends on the peer MP committing to its identifier and random number at the protocol start. Referring back to the peer link management state machine, since each peer MP commits to a MAC address and random number, at most one of these fully instantiated instances can later advance to the ESTAB state in response to a Confirm message (the one created by the peer holding KCK). The other instances will time out, enter the HOLDING state, and eventually be purged. And once it later receives a verified Confirm message from A, B need never accept any further Open messages for instances of the protocol identified by its own MAC address and random number, except those matching to MACA and RA. Also, since the KCK is ephemeral in practice, the adversary’s opportunity to effectively replay earlier Open messages with other RA values is limited.

When MP A receives a Confirm message it does the following:

if RB = RA then

[5]

A discards Confirm(B,A,RB,RA,KCK)

else if MACA is not A’s MAC address then

[6]

A discards Confirm(B,A,RB,RA,KCK)

else if micKCK(MACB || MACA || RB || RA) is invalid then

[7]

A discards Confirm(B,A,RB,RA,KCK)

else

A enters the ESTAB state (A decides the protocol succeeds)

endif
Peer B runs the mirror image pseudo-code, with the roles of A and B reversed, when it receives a Confirm message after sending an Open.

Steps [5], [6], and [7] are as before, providing integrity for the Confirm message. The message integrity code binds the peer identifiers MACA and MACB to the instance identifiers RA and RB. Since by hypothesis RA is unpredictable, the Confirm message could not have been produced before A’s Open message. Since the message integrity code is valid, it could only be produced by a principal that knows KCK; since A did not produce this Confirm, and since by assumption B is the only other party that knows KCK, this Confirm must have been generated by B in response to A’s Open message.

Note that if RA is not A’s random number, then according to the state machine the Confirm message will not be delivered to this protocol instance.

We believe that the protocol achieves the consistency property for the instance identifiers. Indeed, the Confirm message from A to B attests to B that A is using MACA, MACB, RA, and RB for this protocol instance, and similarly the Confirm message from B to A. We further believe that the consistency property plus the fact that A and B sent and received the same set of Open and Confirm messages ought to be counted as mutual authentication.

T.8.3 Protocol Revision 2: Delivering the Group Key
Next we enhance the version of the protocol from T.8.2 to deliver the broadcast key GTK from each MP. The security goal of this enhancement is to achieve the consistency property for the GTKs. This enhancement assumes that A and B share a key encryption key KEK.

The enhancement proceeds by requiring A to wrap its broadcast key GTKA and inserting it into the Open message it sends:

Let EA = EKEK(GTKA || MACB || KeyRSCA || GTKExpiryTimeA)

Represent Open(A,B,RA,EA),GroupCiphersuiteA, KCK) as
 [MACA || MACB || RA || EA || GroupCiphersuiteA]KCK

Wrapping the GTK context MACB with the GTK is intended to allow A to specify the “contract” that GTKA is A’s broadcast key, that B is a member of A’s broadcast group. The KeyRSCA specifies the counter value A uses to send broadcast frame encrypted by GTK. Once B accepts A’s GTK, it should discard any encrypted broadcast frame with the counter equal to or smaller than the received KeyRSCA.The GTKExpiryTimeA says when the contract expires and received messages constructed using GTKA are no longer valid. The GroupCiphersuiteA specifies the broadcast cipher suite that A uses with GTKA.
The modified protocol proceeds as in T.8.2, with the addition of a new step [8] to unwrap and validate EA on reception of the Open message:

if RA = RB then
B discards Open(A,B,RA,EA, GroupCiphersuiteA, KCK)

else if MACB is not B’s MAC address then
B discards Open(A,B,RA,EA, GroupCiphersuiteA, KCK)

else if micKCK(MACA || MACB || RA || EA) is invalid then
B discards Open(A,B,RA,EA, GroupCiphersuiteA, KCK)

else if EA does not unwrap correctly then

[8]

B discards Open(A,B,RA,EA, GroupCiphersuiteA, KCK)

else if GroupCiphersuiteA is not the same as set by B’s policy then
[9]

B discards Open(A,B,RA,EA, GroupCiphersuiteA, KCK)

B sends a Close message protected by the KCK

B transitions to the HOLDING state (B decides the protocol fails)
else

B instantiates a protocol instance using MACA and RA
GroupCiphersuite (GroupCiphersuiteA
if B has not sent its own Open(B,A,RB,KCK) then
B → A: Open(B,A,RB,EB, GroupCiphersuite, KCK)

endif

B → A: Confirm(B,A,RB, RA, GroupCiphersuite, KCK)

endif
T.8.3.1 Rantionale of wrapping GTK with the other information

To use this modified pseudo-code, we have to specify what “if EA does not unwrap correctly” means. Unwrapping EA can fail in two ways. First, the unwrap operation may not yield the right IV, in which case the unwrap fails. Second, the unwrap operation might not yield the “correct” context MACA in which to interpret the key GTK.

B’s Open message is, of course, symmetric, interchanging the roles of A and B.

[9] points to the policy driven part of the context. Since all parties in the mesh must implement the same broadcast ciphersuite, the message must be discarded and a Close message sent to reject the request with this incorrect broadcast ciphersuite.

T.8.3.2 Rationale of sending GTK in Open messages
Sending the GTK in Open message is to achieve consistency property. This operation must not be delayed to the Confirm message. Indeed, if A sent EA in its Confirm message instead of its Open, then A would not know that B (correctly) received GTKA. Also, if the Open message failed to include a message integrity code, then the adversary could replace EA by a wrapped key transferred in the Open message for a prior protocol instance based on the same KEK. This could be rectified by having B insert EA (or a hash of it) into the Confirm responding to A’s Open. However, this affords more opportunities for the protocol to fail at A and succeed at B, making this choice less attractive. It also represents a significant weakening from the GTK delivery in the 4-Way and Group Key handshakes, where the GTK delivery is always acknowledged.

Since the negotiated GroupCiphersuite is sent in the Confirm message, the pseudo-code for processing a received Confirm must change as well:
if RB = RA then
A discards Confirm(B,A,RB,RA, GroupCiphersuite, KCK)

else if MACA is not A’s MAC address then
A discards Confirm(B,A,RB,RA,GroupCiphersuite,KCK)

else if micKCK(MACB || MACA || RB || RA || GroupCiphersuite || PMK-ID) is invalid then
A discards Confirm(B,A,RB,RA, GroupCiphersuite, KCK)

else if GroupCiphersuite is not the same as sent earlier in an Open message then

[10]

A discards Confirm(B,A,RB,RA,GroupCiphersuite,KCK)

A sends a Close message protected by the KCK

A transitions to the HOLDING state

else

A enters the ESTAB state (the protocol succeeds from A’s perspective)

endif

We believe this construction achieves the consistency property for the GTK, because A will not send its authenticated Confirm message to B unless A can verify GTKB, and vice versa.
This construction is motivated by the design of 4-Way Handshake (8.5.3) and Group Key Handshake (8.5.4) protocols. The GTK belongs to the security association state (see 8.4.1.1), in that failure of confirming the correct delivery of GTK causes the AP to de-authenticate the STA (see 8.5.4.3). A mesh does not remove state from security associations, so the delivery both A’s and B’s GTKs should also belong to the security state as well. Furthermore, the 4-Way Handshake includes GTK delivery for two purposes. First, this construction minimizes a race condition at the receiver regarding the reception of protected broadcast frames—a condition. Second, it is a performance optimization, in that this accomplishes the GTK delivery function by using 4 instead of 6 messages (4 from the 4-Way Handshake and 2 from the Group Key Handshake).

T.8.4 Protocol Revision 3: Deriving the Session Keys

Next, the protocol is enhanced to use the pairwise master key (PMK), which is the top of the 802.11 key hierarchy. The assumptions the design makes about the PMK are the following:

· Secrecy. The PMK is only known to A and B.

· Ephemeral. The PMK was created recently with expiry time. In other words, the PMK is only valid within certain period of time.

· PMK has sufficient entropy.

The security goal here is to establish a session key TK known only to the two peers.
The MPs share the PMK and apply a key derivation function kdf:

KCK || KEK ← kdfPMK(0n || min(MACA, MACB) || max(MACA, MACB))

TK ← kdfPMK(min(RA, RB) || max(RA, RB) || min(MACA, MACB) || max(MACA, MACB))

where n = length RA + length RB in bits, and 0n denotes the string of n zero bits. Here the first assignment is meant to say that KCK and KEK are derived together as one string, with KCK being the first substring of KCK || KEK and KEK being the remaining bits. It is standard to assume that the kdf is implemented by a pseudo-random function. Under this assumption, this represents a counter-mode construction for a pseudo-random function, because 0n and min(RA, RB) || max(RA, RB) are distinct counter values, applying kdfPMK(.) to arguments constructed from them provides key separation.
Including MACA and MACB is a way to express the “contract” that all of the derived keys are to be used for communication only between A and B (or, more technically, between addresses MACA and MACB). T.8.2 and T.8.3, have already explained how KCK and KEK are used. TK is used to secure data traffic between A and B once link establishment protocol succeeds.

Observe that this construction treats KCK and KEK as long-lived keys; they can be reused multiple times to form links after PMK has been set. This is of practical significance, because a wireless link can go up and down frequently due to RF disruptions, and it can be relatively expensive to set the PMK.
We believe this construction is acceptable, because this change does not affect the security of GTK wrapping or the freshness of the communication.

· the GTK, not the KEK, provides the randomization needed to make the keywrap secure
· the random values RA and RB, not KCK, provide the freshness of the message exchange. In particular, there is no security requirement that KCK and KEK differ from one protocol instance to the next. Including the random numbers RA and RB in the derivation of the TK, however, means that TK will always be “fresh” after each instance of the protocol.

This construction raises other issues, however. In 802.11s, the PMK is always ephemeral, in the sense that it is created from random inputs whenever an MP joins the mesh. This means that MACA is no longer an effective key identifier for B, and similarly MACB is not a good key identifier for A. A better key identifier is the peer MAC address plus the shared PMK-ID. It is therefore prudent to add the PMK-ID of the PMK being used to the Open and Confirm messages exchanged for the receiver to properly identify which key was used to derive the KCK, KEK, and TK.

We believe that our construction meets its security goal of creating a TK known only to A and B if (a) PMK has sufficient entropy and (b) PMK is itself known only to A and B.

T.8.5 Protocol Revision 4: Negotiating the Session Ciphersuite
It is possible for peers A and B to implement different ciphersuites to protect unicast traffic protected by the session key TK. However, for communication to be possible, A and B must agree on a common ciphersuite to use with TK. This section attempts to enhance the protocol version defined in T.8.4 with this new capability.
The security goal is to achieve the consistency property for the instance ciphersuite.

Each peer identifies the ciphersuites it is willing to use with a list of identifiers for each enabled ciphersuite. 802.11 calls each ciphersuite identifier a selector. Let us call A’s list of selectors CiphersuitesA, and B’s list CiphersuitesB. We require that each party orders its ciphersuite selectors by preference, from most to least preferred. A adds its ciphersuites list to its Open message:

Open(A) = [MACA || MACB || RA || EA) || GroupCiphersuiteA || CiphersuitesA || PMK-ID]{K}

and similarly for B. The receiver pseudo-code for the Open message is modified as follows:

if RA = RB then
B discards Open(A,B,RA,EA, GroupCiphersuiteA,CiphersuitesA,KCK)

else if MACB is not B’s MAC address then
B discards Open(A,B,RA,EA,CiphersuitesA,KCK)

else if micKCK(MACA || MACB || RA || EA || GroupCiphersuiteA || CiphersuitesA || PMK-ID) is invalid then
B discards Open(A,B,RA,EA, GroupCiphersuiteA,CiphersuitesA,KCK)

else if EA does not unwrap correctly then
B discards Open(A,B,RA,EA, GroupCiphersuiteA,CiphersuitesA,KCK)

else if GroupCiphersuiteA is not the same as set by B’s policy then
B discards Open(A,B,RA,EA, GroupCiphersuiteA, CiphersuitesA,KCK)
B sends a Close message protected byKCK
B transitions to the HOLDING state
else if CiphersuitesA and CiphersuitesB have an empty intersection then
[11]

B discards Open(A,B,RA,EA,GroupCiphersuiteA,CiphersuitesA,KCK)
B sends a Close message protected by KCK

B transitions to the HOLDING state
else

B instantiates a protocol instance using MACA and RA
GroupCiphersuite (GroupCiphersuiteA
if MACA > MACB then

[12]

Ciphersuite (A’s most preferred choice in the overlap set

else

Ciphersuite (B’s most preferred choice in the overlap set

endif
if B has not sent its own Open then
B → A: Open(B,A,RB,EB, GroupCiphersuite,CiphersuitesB,KCK)

endif

B → A: Confirm(B,A,RB, RA, GroupCiphersuite,Ciphersuite,KCK)
[13]

 endif
The conditional test [11] is intended to check whether A and B share any ciphersuites. If they do not, then it is not possible to form a link, so the Open message is discarded. Otherwise, the peers need some method to select a ciphersuite from those they share. Any such ciphersuite will do, since both parties believe all of those in the overlapping set meet their security requirements. This means we can impose a completely arbitrary rule to select one. [12] uses the ordering of MAC addresses and the preference of the peer with the larger MAC address to make this selection, which the above pseudo-code assigns to a variable called Ciphersuite. The receiver inserts this choice into its Confirm message in [13].

Strict adherence to the consistency goal suggests that B’s Confirm message should also convey A’s Ciphersuite list. However, since CiphersuitesA is bound by the Open message integrity code to RA, A is assured that B received CiphersuitesA instead of some other list in the Open.
Since the selected Ciphersuite is sent in the Confirm message, the pseudo-code for processing a received Confirm must change as well:
if RB = RA then
A discards Confirm(B,A,RB,RA, GroupCiphersuite,Ciphersuite,KCK)

else if MACA is not A’s MAC address then
A discards Confirm(B,A,RB,RA,Ciphersuite,KCK)

else if micKCK(MACB || MACA || RB || RA || GroupCiphersuite || Ciphersuite || PMK-ID) is invalid then
A discards Confirm(B,A,RB,RA, GroupCiphersuite,Ciphersuite,KCK)

else if GroupCiphersuite is not the same as sent earlier in an Open message then

A discards Confirm(B,A,RB,RA,GroupCiphersuite,Ciphersuite, KCK)

A sends a Close message protected by the KCK

A transitions to the HOLDING state

else if Ciphersuite is not in CiphersuitesA sent earlier in an Open message then

[14]

A discards Confirm(B,A,RB,RA,GroupCiphersuite,Ciphersuite,KCK)

A sends a Close message protected by the KCK

A transitions to the HOLDING state

else

A enters theESTAB state (the protocol succeeds from A’s perspective)

endif
Step [14] checks for failures to conform to the protocol. A can end the protocol instance in this case, because the Confirm acknowledges A’s random instance identifier RA, so A knows the Confirm is not a replay from the adversary.

We believe this revision accomplishes its security goal of achieving the consistency property for the selected pairwise ciphersuite, because B will not respond to A with an authenticated Confirm message unless (a) its policy enables a ciphersuite that A’s policy also allows in A’s Open message and (b) both parties apply the same (arbitrary) selection rule to select a ciphersuite from the overlapping set.

Implementation Note: In order to simplify future instances based on the same PMK, A and B can cache the selected ciphersuite and use this to short-circuit the intersection construction by truncating their ciphersuite lists in their Open messages. The utility of this depends on the fact that policy changes are relatively rare—they usually depend on software or hardware upgrades.

T.8.6 Protocol Revision 5: Negotiating the Instance AKM
If we haven’t yet botched the design by this point, we get an entirely new chance to do so now. Real protocols need the extensibility property. Even if the existing protocol is “correct,” progress in computing, cryptography, and fashion will someday render, e.g., AES-128, insecure or otherwise unusable, and different cryptographic primitives will be needed to secure the abbreviated handshake itself.

802.11 calls the suite of cryptographic algorithms and protocol used to establish keys an authenticated key management suite, or AKM. It is therefore necessary to be able to negotiate the AKM, which the present section attempts to add to the functionality of the protocol of Section 8. This would be trivial in the client-server model, but it is messy in the peer-to-peer case.

The security goal for this latest enhancement is to establish the consistency property for the AKM.

The techniques of Section 8 easily apply to this negotiation, but there is an added complication in that our proposed protocol structure requires “premature” commitment to an AKM before it is negotiated. We attempt to circumvent this by abandoning a protocol instance started using the “wrong” AKM and starting a new protocol instance based on the “right” AKM.

The first thing to note is that the key derivation procedure from Section 7 must change, or else we end up using the same KCK and KEK with different AKMs, violating basic key hygiene. We obviate this problem by incorporating the AKM selector into the derived keys:

KCK || KEK (kdfPMK(0n || AKM-ID || min(MACA, MACB) || max(MACA, MACB))

TK (kdfPMK(min(RA, RB) || max(RA, RB) || AKM-ID || min(MACA, MACB) || max(MACA, MACB))

The next step is to insert the AKM-ID into each of the protocol messages. We also require the list of enabled AKMs in the protocol messages, because each party needs to know whether an alternative can be selected if the first doesn’t work. We order the AKMList by the preference of the party sending the message, with the most preferred AKM first and least preferred last:

 Open(A) = [MACA || MACB || RA || EA || GroupCiphersuiteA || CiphersuitesA || AKMListA || AKMA || PMK-ID] KCK
 Confirm(A) = [MACA || MACB || RA || RB || EA || GroupCiphersuite || Ciphersuite || AKMA || PMK-ID]KCK
The messages include the AKM selector explicitly, because otherwise the list would have to play conflicting roles in the Confirm message.

Finally, we need abort the current instance if the two parties cannot agree on an AKM. There are three cases:

 Case 1: AKMListA has the same first element with AKMListB
Both parties agree from the outset. The protocol instances execute correctly as specified through Section 8 (but with the key derivation and message formats as modified by this section). All we need to do is add the check that the AKMs selected by each peer already match.

 Case 2: AKMListA and AKMListB overlap but have different first elements.

Obviously (or perhaps not so obviously) the message authentication code on the received Open or Confirm message must be verified before this case becomes interesting. Otherwise, the adversary can cause one or both of the peers to misbehave and potentially violate AKM consistency.

We need an arbitrary rule to choose the AKM. The arbitrary rule we impose is the same as in Section 8, viz. the most preferred AKM of the device with the larger MAC address wins.

In the following we simply discard Confirm messages that arrive while a peer is in this state, because Confirm messages should never happen until the AKM is resolved.

Subcase 1. MACA > MACB.

Let AKMA be A’s most preferred AKM in the overlap between AKMListA and AKMListB.

If AKMA is the first element of A’s AKMListA, then A discards B’s Open message and wait for a new one whose AKMListB begins with the “correct” AKMA. A executes its current instance of the protocol as specified above. It can accept validated Confirm messages that prescribes AKMA for its use. It must discard other Confirms.

Otherwise A (resp. B) creates a new AKMListA((resp. AKMListB() by truncating AKMListA (resp. AKMListB) to begin with AKMA. A (resp. B) then creates a new instance of the protocol based on AKMListA((resp. AKMListB() instead of AKMListA (resp. AKMListB), identified by new random instance identifier RA((resp. RB() using the MLME-PeerLinkActiveOpen primitive (Clause 10.3.40). (“resp.” means respectively)

Subcase 2. MACA < MACB.

Let AKMB be B’s most preferred AKM in the overlap between AKMListA and AKMListB. Same algorithm as in subcase 1, with the roles of A and B reversed..

 Case 3: AKMListA has empty intersection with AKMListB
In this case, conversation is impossible. But wait! The message may be a forgery from the adversary instead of the peer. Since we have no way of verifying this case, all we can do is ignore the message and wait for the protocol instance to time out and enter the Holding state.

We believe this achieves the consistency goal for the AKM while working around the problem of premature AKM usage. The key derivation of different KCKs and KEKs for different AKMs works around the key reuse problem that would result otherwise. Verifying the message authentication code (where possible) allows us to at least conclude that the Open is no worse than a replay. Starting a new protocol instance whenever a peer’s AKM list does not begin with the “correct” first element allows the peers to achieve consistency of the AKM within a new protocol instance while abandoning the old.

T.8.6
 Protocol Revision 6: Negotiating the Instance PMK

The last enhancement regards the use of multiple PMKs, a situation which can naturally arise in an 802.11s mesh, at least with its current authentication and key management architecture.
The security goal here is to achieve the consistency property to select a PMK from a list of PMKs.
The techniques of T.8.5 apply to this negotiation, but there is an added complication in that our proposed protocol structure requires premature commitment to a PMK before it is negotiated. We attempt to circumvent this by abandoning a protocol instance started using the “wrong” PMK and starting a new protocol instance based on the “right” PMK.

Note that the current version of the Abbreviated Handshake uses a default value “MSA Abbreviated Handshake”. In fact, for the extensibility, the AKM should be able to be negotiated via two lists. This procedure shares exactly the same property with negotiation PMK, given that both parties need to comit to a AKM prematurely before it is negotiated finally.
We can ignore unresolved PMK issues with the Confirm message; if the pair of peers have not yet resolved the PMK to use, they cannot progress beyond an exchange of Open messages; Confirms with the wrong PMK will be unceremoniously dropped.

We use PMKListA,B to denote an MP A’s list of pairs <PMK-ID, Expiry>, consisting of PMK-IDs for the PMKs it shares with another MP B, along with thei expiration times. We order PMKListA,B by the expiration time, with the later expiries preferred over more recent expiries. The updated messages are

Open(A) = [MACA || MACB || RA || EA || GroupCiphersuiteA || CiphersuitesA || AKM || PMKListA,B]KCK
Confirm(A) = [MACA || MACB || RA || RB || GroupCiphersuite || Ciphersuite || AKM || PMK-ID]KCK
We assume that for each shared PMK both parties share the same expiry time value; this is not a hard condition to fulfill given the 802.11s architecture. We include the expiry times explicitly in the list, because otherwise we cannot provide the explicit confirmation the consistency property demands. We can also replace the PMK-ID in the Open messages with the PMKList, making the implementation hack that identifies the first list element as the PMK actually used to protect the Open and Confirm messages.

Case 1:
PMKListA has the same first element with PMKListB
Both parties agree from the outset. The protocol instances execute correctly as specified through T.8.5 (but with the key derivation and message formats as modified here). All we need to do is add the check that the PMKs selected by each peer already match.

Case 2:
PMKListA and PMKListB overlap but have different first elements

The message integrity code on the received Open message must be verified before this case becomes interesting. Otherwise, the adversary can cause one or both of the peers to misbehave and potentially violate PKM consistency. So use the indicated PMK to derive the right KCK and verify the Open’s message authentication code.

We will need an arbitrary rule to choose which PMK to use. The arbitrary rule we impose is to use the common PMK that expires last. This minimizes the number of times the peers will have to undertake the expense of establishing a link.

Let us use PMK-ID-latest for this PMK. (Corner case: order PMK-IDs with the same expiry time from smallest to largest, where the PMK-IDs are ordered lexicographically.).

If PMK-ID-latest is first in A’s PMKListA, then A can act just as in Case 1, but must discard messages from B that do not include PMK-ID-latest first. B behaves similarly if PMK-ID-latest is first in its list, although this can be true for at most one of A or B.
If PMK-ID-latest is not the first element of A’s PMKListA, then A creates a new protocol instance (complete with a new instance identifier RA(), using a truncated PMKListA(that begins with PMK-ID-latest instead of some other key that expires later, and using the MLME-PeerLinkActiveOpen primitive. A should also identify the “correct” AKM to use before initiating the new protocol instance.
If A has sent out an Open message, the old protocol instance enters the HOLDING state without sending a Close message. Otherwise, the old protocol instance should transition to IDLE state directly to close the link instance. On the other hand, the new protocol instance is intended to reduce the problem to case 1.

Case 3: PMKListA has empty intersection with PKMListB
In this case, conversation is impossible. The message may be a forgery from the adversary instead of the peer. Since we have no way of verifying this case, if A has sent out an Open message, the old protocol instance enters the HOLDING state without sending a Close message. Otherwise, the old protocol instance should transition to IDLE state directly to close the link instance. On the other hand, the new protocol instance is intended to reduce the problem to case 1.

peerNonce

TK (PRF-X(PMK-MA,

“Temporal Key Derivation”,

minMax(localNonce, peerNonce) || maxMin(localNonce, peerNonce) ||

Selected AKM Suite ||

minMax(localMAC, peerMAC) || maxMin(localMAC, peerMAC))

KCK || KEK (PRF-256(PMK-MA, “KCK KEK Derivation”,

0512 ||

Selected AKM Suite ||

minMax(localMAC, peerMAC) || maxMin(localMAC, peerMAC))

localNonce

Temporal key (TK)

KCK and KEK

PMK-MA

Abstract

This submission proposes an MSA Abbreviated Handshake protocol that establishes an authenticated peer link efficiently when cached PMK exists between two MPs. With the proposed text, this submission intends to resolve LB93 comments CIDs 735, 1057, 4763, 4764, and partially resolves CID 4761.

PAGE
Submission
page 1
Meiyuan Zhao, Intel Corp.

