June 2007

doc.: IEEE 802.11-07/1987r0

IEEE P802.11
Wireless LANs

	Mesh Key Holder Protocol Improvements

	Date:  2007-06-13

	Author(s):

	Name
	Company
	Address
	Phone
	email

	Tony Braskich
	Motorola Inc.
	1301 E Algonquin Rd, Schaumburg, IL 60196
	+18475380760
	Tony.Braskich@motorola.com

	Steve Emeott
	Motorola Inc.
	1301 E Algonquin Rd, Schaumburg, IL 60196
	+18475768268
	Steve.Emeott@motorola.com



· Status Code field

Insert the following rows into Table 23 and change the last row (Reserved) as shown.

	· Status codes

	Reason code
	Meaning

	· 
	“MESH-LINK-ESTABLISHED”. The mesh peer link has been successfully established

	· 
	“MESH-LINK-CLOSED”.  The mesh peer link has been closed completely

	59
	No listed Key Holder Transport type is supported.

	60
	The Mesh Key Holder Security Handshake message was malformed.

	5561-65 535
	Reserved


· Message integrity check field

Modify 7.3.1.35 and the figure as shown.

The Message integrity check field contains a MIC value calculated over the contents of an action frame.  The MPTK-KDShortName subfield contains the shortened name defined in 8.8.8 that identifies the MPTK-KD used to calculate the MIC.  The MIC subfield contains the MIC value calculated using the AES-128-CMAC algorithm.  AES-128-CMAC is defined by FIPS SP800- 38B.  The length of the MIC subfield is 16 octets.

The Message integrity check field is defined in  Figure s10.

	Octets: 1
	16

	MPTK-KDShortName
	MIC

	· Message integrity check field


· Mesh Key Transport Control field

Modify 7.3.1.36 and the figure as shown.

The Mesh Key Transport Control field is used in the Mesh Action frames that implement the Mesh Key Transport protocols (see  7.4a.1).

The Mesh Key Transport Control field is 58 octets in length and is defined in  Figure s11A.

	Octets: 4
	6
	16
	32

	Replay Counter
	SPA
	PMK-MKD
Name
	ANonce

	· Mesh Key Transport Control field


The Replay Counter field contains a sequence number, represented as an unsigned binary number, used to detect replayed frames.  

The SPA field contains the MAC address of the supplicant MP that, during its Initial MSA Authentication, created the PMK-MA that is the subject of the Mesh Key Transport Protocol message.

The PMK-MKDName field contains the identifier of the PMK-MKD that was used to derive the PMK-MA that is the subject of the Mesh Key Transport Protocol message.

The ANonce field contains the pseudo-random value selected by the MKD and used in the derivation of the PMK-MKD identifier provided in the PMK-MKDName field.

7.3.2.80 MSA information element [MSAIE]

Modify clause 7.3.2.80 as shown:

The format of the optional parameters is shown in Figure s65.

	Octets: 1
	1
	variable

	Sub-element ID
	Length
	Data

	· Optional parameters field


The Sub-element ID is one of the values from Table s6.

	· Sub-element IDs

	Value
	Contents of data field
	Length

	0
	Reserved
	

	1
	MKD-ID
	6

	2
	Key Holder Transport List
	variable

	3
	PMK-MKDName
	16

	4
	MKD-NAS-ID
	variable

	5-255
	Reserved
	


MKD-ID indicates the MKD that the supplicant MP may contact to initiate the mesh key holder security handshake.

Key Holder Transport List contains a series of transport type selectors that indicate the Key Holder Transport protocols.  A transport type selector has the format shown in Figure s66.

	Octets: 3
	1

	OUI
	Transport Type

	· Transport type selector format


The order of the organizationally unique identifier (OUI) field follows the ordering convention for MAC addresses from 7.1.1.  The transport types defined by this standard are provided in Table s7.

	· Transport types

	OUI
	Transport Type
	Meaning

	
	
	Key Transport
	EAP Transport

	00-0F-AC
	0
	None specified
	None specified

	00-0F-AC
	1
	Mesh Key Transport protocols defined in 11A.2.4
	Mesh EAP Message Transport protocol defined in 11A.2.5 

	00-0F-AC
	2-255
	Reserved
	Reserved

	Vendor OUI
	Any
	Vendor specific
	Vendor specific

	Other
	Any
	Reserved
	Reserved


The transport type 00-0F-AC:1 is the default transport type selector value.

PMK-MKDName contains an identifier of a PMK-MKD as defined in 8.8.4.
MKD-NAS-ID contains the identity of the MKD that facilitates authentication, and that will be bound into the first-level keys PMK-MKD and MKDK.

· Mesh Action (4-addr action frames)

· MSA mesh action details

Modify Table s9 as shown.  Further modify subclauses within 7.4a.1 as shown, including modifications to subclause headings, deletion of subclause 7.4a.1.3, and renumbering as required.

Six Mesh Action frame formats are defined for MSA.  An Action Value field, in the octet field immediately after the Category field, differentiates the formats. The Action Value field values associated with each frame format are defined in  Table s9.  

	· MSA Action field values

	Action Field Value
	Description

	0
	Mesh Key Holder Handshake

	1
	PMK-MA Notification

	2
	PMK-MA Request

	3
	PMK-MA Response

	4
	PMK-MA Delete 

	
	

	5
	Mesh EAP Encapsulation

	6-255
	Reserved


· Mesh Key Holder Handshake frame format

The Mesh Key Holder Handshake frame uses the Mesh Action frame body format and is transmitted by a mesh key holder to perform the Mesh Key Holder Security Handshake.  The format of the Mesh Key Holder Handshake frame body is shown in  Table s10.
	· Mesh Key Holder Handshake frame body format

	Order
	Information

	1
	Category

	2
	Action Value

	3
	Mesh ID (see  7.3.2.55)

	4
	MSCIE (see  7.3.2.79)

	5
	Key Holder Security

	6
	Key Holder Transport List

	7
	Status Code (see 7.3.1.9)

	8
	Message integrity check (optional, see  7.3.1.35)


The Category field is one octet and is set to 0 (representing MSA).

The Action Value field is one octet and is set to 0 (representing a Mesh Key Holder Handshake frame).

The Mesh ID information element is described in  7.3.2.55.

The MSCIE is described in  7.3.2.79.

The Key Holder Security field is 77 octets in length and is defined in  Figure s82.
	Octets: 1
	32
	32
	6
	6
	

	Handshake Sequence
	MA-Nonce
	MKD-Nonce
	MA-ID
	MKD-ID
	

	· Key holder security field


The Handshake Sequence subfield contains a sequence number, represented as an unsigned binary number, used to differentiate messages in a handshake.

The MA-Nonce field contains a pseudo-random value chosen by the MA. It is encoded following the conventions from 7.1.1.

The MKD-Nonce field contains a pseudo-random value chosen by the MKD. It is encoded following the conventions from 7.1.1.

The MA-ID field contains the MAC address of the MA. It is encoded following the conventions from 7.1.1.

The MKD-ID field contains the MAC address of the MKD. It is encoded following the conventions from 7.1.1.

The Key Holder Transport field is defined in Figure A.

	Octets: 1
	variable

	Key Holder Transport Count
	Key Holder Transport List

	Figure A – Key Holder Transport field


The Key Holder Transport Count subfield indicates the number of transport type selectors that are contained in the Key Holder Transport List subfield.

The Key Holder Transport List subfield contains a series of transport type selectors that indicate Key Holder Transport protocols.  The transport type selector format is given in  Figure s66. The transport types defined by this standard are provided in  Table s7.  If the Key Holder Transport Count field is set to zero, then this subfield is not present.
The Status Code field is described in 7.3.1.9.
The optional Message integrity check field is described in  7.3.1.35.  The inclusion of the Message integrity check field is dependent upon the value of the Handshake Sequence subfield of the Key Holder Security field.  The Message integrity check field is omitted when Handshake Sequence is 1; otherwise, it is present.

· PMK-MA Notification frame format

The PMK-MA Notification frame uses the Mesh Action frame body format and is transmitted by an MKD in the Mesh Key Push protocol.  The format of the PMK-MA Notification frame body is shown in  Table s11.
	· PMK-MA Notification frame body format

	Order
	Information

	1
	Category

	2
	Action Value

	3
	Mesh Key Transport Control (see  7.3.1.36)

	
	

	4
	Message integrity check (see  7.3.1.35)


The Category field is one octet and is set to 0 (representing MSA).

The Action Value field is one octet and is set to 1 (representing a PMK-MA Notification frame).

The Mesh Key Transport Control field is described in  7.3.1.36.


The Message integrity check field is described in  7.3.1.35.

· 

	· 

	
	

	
	

	
	

	
	

	
	






7.4a.1.3 PMK-MA Request frame format

The PMK-MA Request frame uses the Mesh Action frame body format and is transmitted by an MA in the Mesh Key Pull Protocol.  The format of the PMK-MA Request frame body is shown in  Table s13.
	· PMK-MA Request frame body format

	Order
	Information

	1
	Category

	2
	Action Value

	3
	Mesh Key Transport Control (see  7.3.1.36)

	4
	Message integrity check (see  7.3.1.35)


The Category field is one octet and is set to 0 (representing MSA).

The Action Value field is one octet and is set to 2 (representing a PMK-MA Request frame).

The Mesh Key Transport Control field is described in  7.3.1.36.

The Message integrity check field is described in  7.3.1.35.

7.4a.1.4 PMK-MA Response frame format

The PMK-MA Response frame uses the Mesh Action frame body format and is transmitted by an MA or an MKD in a Mesh Key Transport protocol.  The format of the PMK-MA Response frame body is shown in  Table s14.
	· PMK-MA Response frame body format

	Order
	Information

	1
	Category

	2
	Action Value

	3
	Key Transport Response

	4
	Mesh Key Transport Control (see  7.3.1.36)

	5
	Mesh Wrapped Key (optional; see  7.3.1.37)

	6
	Message integrity check (see  7.3.1.35)


The Category field is one octet and is set to 0 (representing MSA).

The Action Value field is one octet and is set to 3 (representing a PMK-MA Response frame).

The Key Transport Response field contains unsigned binary integer indicating a response type.  The valid Key Transport Response values are given in Table a.
Table a - Key Transport Response values

	Key Transport Response
	Meaning

	0
	PMK-MA Delivery

	1
	Unable to deliver requested PMK-MA

	2
	Key Delete Acknowledged

	3-255
	Reserved


The Mesh Key Transport Control field is described in  7.3.1.36.


The optional Mesh Wrapped Key field is described in  7.3.1.37.  The inclusion of the Mesh Wrapped Key field is dependent upon the value of the Key Transport Response field.  The Mesh Wrapped Key field is included when Key Transport Response is zero; otherwise, it is omitted.

The Message integrity check field is described in  7.3.1.35.

7.4a.1.5 PMK-MA Delete frame format

The PMK-MA Delete frame uses the Mesh Action frame body format and is transmitted by an MKD in the Mesh Key Delete protocol.  The format of the PMK-MA Delete frame body is shown in  Table s15.
	· PMK-MA Delete frame body format

	Order
	Information

	1
	Category

	2
	Action Value

	3
	Mesh Key Transport Control (see  7.3.1.36)

	4
	Message integrity check (see  7.3.1.35)


The Category field is one octet and is set to 0 (representing MSA).

The Action Value field is one octet and is set to 4 (representing a PMK-MA Delete frame).

The Mesh Key Transport Control field is described in  7.3.1.36.

The Message integrity check field is described in  7.3.1.35.

· Mesh EAP Encapsulation frame format

The Mesh EAP Encapsulation frame uses the Mesh Action frame body format and is transmitted by a mesh key holder in the Mesh EAP Message Transport Protocol.  The frame body of the Mesh EAP Encapsulation frame contains the information shown in  Table s16.
	· Mesh EAP Encapsulation frame body

	Order
	Information

	1
	Category

	2
	Action Value

	3
	EAP Authentication

	4
	Message integrity check (see  7.3.1.35)


The Category field is one octet and is set to 0 (representing MSA).

The Action Value field is one octet and is set to 5 (representing a Mesh EAP Encapsulation frame).

The EAP Authentication field is 13 octets or greater in length and is defined in  Figure s83.
	Octets: 1
	4
	6
	2
	variable

	Encapsulation Type
	Replay Counter
	SPA
	EAP Message Length
	EAP Message

	· EAP Authentication field


The Encapsulation Type subfield identifies whether the message is an EAP Encapsulation Request or EAP Encapsulation Response message, and is set to a value described in  Table s17.
	· Encapsulation Type values

	Value
	Message Type

	0
	Reserved

	1
	Request

	2
	Response – Accept

	3
	Response – Reject

	4-10
	Reserved

	11
	Response

	12-255
	Reserved


The Replay Counter field contains a sequence number, represented as an unsigned binary number, used to detect replayed frames.
The SPA subfield contains the MAC address of the supplicant MP that is performing EAP authentication.

The EAP Message Length subfield is two octets and contains an unsigned binary integer indicating the length in octets of the EAP message subfield.  The EAP Message Length subfield contains the value zero if the EAP Message field is omitted.

The EAP Message subfield, when present, contains an EAP packet, with format as defined in IETF RFC 3748.
The Message integrity check field is described in  7.3.1.35.
8.8 Key Distribution for MSA

· MPTK-KD

Add the following text to the end of 8.8.8:

Alternatively, the first 8 bits of the MPTK-KDName may be used to reference the MPTK-KD, such as within the context of a security association between MA and MKD, as follows:

MPTK-KDShortName = L(MPTK-KDName, 0, 8)

· Layer management

· MLME SAP interface

Insert the following new subclauses:

10.3.44 MLME-MeshKeyPull
The following primitives describe how a mesh entity requests a key from an MKD, using the Mesh Key Pull protocol. 

10.3.44.1 MLME-MeshKeyPull.request

10.3.44.1.1 Function

This primitive requests that the mesh entity request a PMK-MA from the MKD.

10.3.44.1.2 Semantics of the service primitive

The primitive parameters are as follows:

MLME-MeshKeyPull.request(





PeerMAC




Content of PMK-MA Request frame




)

	Name
	Type
	Valid range
	Description

	PeerMAC
	MAC Address
	Valid individual MAC address
	Specifies the address of the peer MAC entity providing the MKD function.

	Content of PMK-MA Request frame
	Sequence of octets
	As defined in 7.4a.1.3
	The Mesh Action frame to send to the MKD


10.3.44.1.3 When generated

This primitive is generated by the SME to request that a PMK-MA Request frame be sent to the MKD to request delivery of a PMK-MA.

10.3.44.1.4 Effect of receipt

On receipt of this primitive, the MLME constructs a PMK-MA Request frame containing the information specified.  The frame is scheduled for transmission.
10.3.44.2 MLME-MeshKeyPull.confirm

10.3.44.2.1 Function

This primitive reports the results of a request for a PMK-MA from the MKD.

10.3.44.2.2 Semantics of the service primitive

The primitive parameters are as follows:

MLME-MeshKeyPull.confirm(





PeerMAC





ResultCode





Content of PMK-MA Response frame





)

	Name
	Type
	Valid range
	Description

	PeerMAC
	MAC Address
	Valid individual MAC address
	Specifies the address of the peer MAC entity providing the MKD function.

	ResultCode
	Enumeration
	KEY_DELIVERY, ERROR, TIMEOUT
	Status

	Content of PMK-MA Response frame
	Sequence of octets
	As defined in 7.4a.1.4
	The Mesh Action frame received from the MKD, if ResultCode is SUCCESS or ERROR.  If ResultCode is TIMEOUT, this parameter is omitted.


10.3.44.2.3 When generated

This primitive is generated by the MLME as a result of an MLME-MeshKeyPull.request primitive or receipt of a PMK-MA Response frame from the MKD.

10.3.44.2.4 Effect of receipt

The SME is notified of the results of the Mesh Key Pull protocol.

10.3.44.3 MLME-MeshKeyPull.indication

10.3.44.3.1 Function

This primitive indicates that an MA function at a remote MP is requesting the delivery of a PMK-MA through the Mesh Key Pull protocol.

10.3.44.3.2 Semantics of the service primitive

The primitive parameters are as follows:

MLME-MeshKeyPull.indication(





PeerMAC




Content of PMK-MA Request frame





)

	Name
	Type
	Valid range
	Description

	PeerMAC
	MAC Address
	Valid individual MAC address
	Specifies the address of the peer MAC entity that sent the PMK-MA Request frame.

	Content of PMK-MA Request frame
	Sequence of octets
	As defined in 7.4a.1.3
	The Mesh Action frame received from the peer MAC entity.


10.3.44.3.3 When generated

This primitive is generated by the MLME as a result of the receipt of a PMK-MA Request frame from a remote MP.

10.3.44.3.4 Effect of receipt

The SME is notified of the receipt of the key request initiating the Mesh Key Pull protocol.

10.3.44.4 MLME-MeshKeyPull.response

10.3.44.4.1 Function

This primitive is used to send a response to a remote MP that initiated the Mesh Key Pull protocol.

10.3.44.4.2 Semantics of the service primitive

The primitive parameters are as follows:

MLME-MeshKeyPull.response(





PeerMAC





Content of PMK-MA Response frame






)

	Name
	Type
	Valid range
	Description

	PeerMAC
	MAC Address
	Valid individual MAC address
	Specifies the address of the peer MAC entity to which the PMK-MA Response frame is to be sent.

	Content of PMK-MA Response frame
	Sequence of octets
	As defined in 7.4a.1.4
	The Mesh Action frame to send to the peer MAC entity.


10.3.44.4.3 When generated

This primitive is generated by the SME of an MKD as a response to an MLME-MeshKeyPull.indication primitive.

10.3.44.4.4 Effect of receipt

This primitive causes transmission of a PMK-MA Response MSA mesh action frame to the remote MP that initiated the Mesh Key Pull protocol.

10.3.45 MLME-MeshKeyPush

The following primitives describe how an MKD performs the Mesh Key Push Protocol. 

10.3.45.1 MLME-MeshKeyPush.request

10.3.45.1.1 Function

This primitive requests that the mesh entity initiate the Mesh Key Push Protocol to the specified MP.

10.3.45.1.2 Semantics of the service primitive

The primitive parameters are as follows:

MLME-MeshKeyPush.request(





PeerMAC




Content of PMK-MA Notification frame





)

	Name
	Type
	Valid range
	Description

	PeerMAC
	MAC Address
	Valid individual MAC address
	Specifies the address of the peer MAC entity to which the PMK-MA Notification frame is to be sent.

	Content of PMK-MA Notification frame
	Sequence of octets
	As defined in 7.4a.1.2
	The Mesh Action frame to send to the peer MAC entity.


10.3.45.1.3 When generated

This primitive is generated by the SME to request that the Mesh Key Push Protocol be initiated in order to notify the specified MP to retrieve the referenced PMK-MA.
10.3.45.1.4 Effect of receipt

On receipt of this primitive, the MLME constructs a PMK-MA Notification frame containing the information specified.  The frame is scheduled for transmission.  
10.3.45.2 MLME-MeshKeyPush.indication

10.3.45.2.1 Function

This primitive indicates to the SME that the MKD has initiated an instance of the Mesh Key Push Protocol.
10.3.45.2.2 Semantics of the service primitive

The primitive parameters are as follows:

MLME-MeshKeyPush.indication(





PeerMAC




ResultCode





Content of PMK-MA Notification frame




)

	Name
	Type
	Valid range
	Description

	PeerMAC
	MAC Address
	Valid individual MAC address
	Specifies the address of the peer MAC entity providing the MKD function.

	Content of PMK-MA Notification frame
	Sequence of octets
	As defined in 7.4a.1.2
	The Mesh Action frame received from the MKD.


10.3.45.2.3 When generated

This primitive is generated by the MLME as a result of the receipt of a PMK-MA Notification frame or a PMK-MA Response frame from an MKD.

10.3.45.2.4 Effect of receipt

The SME is notified of the Mesh Key Push Protocol that was initiated by the MKD.  The SME shall initiate the Mesh Key Pull protocol for the key referenced in the PMK-MA Notification frame, using the MLME-MeshKeyPull.request primitive.
10.3.46 MLME-MeshKeyDelete

The following primitives describe how an MKD requests the deletion of a key at an MA. 

10.3.46.1 MLME-MeshKeyDelete.request

10.3.46.1.1 Function

This primitive requests that the mesh entity initiate the Mesh Key Delete Protocol with the MA.

10.3.46.1.2 Semantics of the service primitive

The primitive parameters are as follows:

MLME-MeshKeyDelete.request(





PeerMAC




Content of PMK-MA Delete frame





)

	Name
	Type
	Valid range
	Description

	PeerMAC
	MAC Address
	Valid individual MAC address
	Specifies the address of the peer MAC entity to which the PMK-MA Delete frame is to be sent.

	Content of PMK-MA Delete frame
	Sequence of octets
	As defined in 7.4a.1.5
	The Mesh Action frame to send to the peer MAC entity.


10.3.46.1.3 When generated

This primitive is generated by the SME to request that a PMK-MA Delete frame be sent to an MP to request deletion of a PMK-MA.

10.3.46.1.4 Effect of receipt

On receipt of this primitive, the MLME constructs a PMK-MA Delete frame containing the information specified.  The frame is scheduled for transmission.

10.3.46.2 MLME-MeshKeyDelete.confirm

10.3.46.2.1 Function

This primitive reports the results of a Mesh Key Delete Protocol instance.

10.3.46.2.2 Semantics of the service primitive

The primitive parameters are as follows:

MLME-MeshKeyDelete.confirm(





PeerMAC





ResultCode






Content of PMK-MA Response frame




)

	Name
	Type
	Valid range
	Description

	PeerMAC
	MAC Address
	Valid individual MAC address
	Specifies the address of the peer MAC entity to which the PMK-MA Delete frame was sent.

	ResultCode
	Enumeration
	SUCCESS, TIMEOUT
	Status

	Content of PMK-MA Response frame
	Sequence of octets
	As defined in 7.4a.1.4
	The Mesh Action frame received from the peer MAC entity, if ResultCode is SUCCESS.  If ResultCode is TIMEOUT, this parameter is omitted.


10.3.46.2.3 When generated

This primitive is generated by the MLME as a result of an MLME-MeshKeyDelete.request primitive or receipt of a PMK-MA Response frame from the MA.

10.3.46.2.4 Effect of receipt

The SME is notified of the results of the Mesh Key Delete Protocol.

10.3.46.3 MLME-MeshKeyDelete.indication

10.3.46.3.1 Function

This primitive indicates that the MKD requests that a specified PMK-MA be deleted.

10.3.46.3.2 Semantics of the service primitive

The primitive parameters are as follows:

MLME-MeshKeyDelete.indication(





PeerMAC




Content of PMK-MA Delete frame





)

	Name
	Type
	Valid range
	Description

	PeerMAC
	MAC Address
	Valid individual MAC address
	Specifies the address of the MKD that sent the PMK-MA Delete frame.

	Content of PMK-MA Delete frame
	Sequence of octets
	As defined in 7.4a.1.5
	The Mesh Action frame received from the MKD.


10.3.46.3.3 When generated

This primitive is generated by the MLME as a result of the receipt of a PMK-MA Delete frame from the MKD.

10.3.46.3.4 Effect of receipt

The SME is notified of the Mesh Key Delete Protocol initiated by the MKD.

10.3.46.4 MLME-MeshKeyDelete.response

10.3.46.4.1 Function

This primitive is used to send a response to the MKD that requested deletion of a PMK-MA.

10.3.46.4.2 Semantics of the service primitive

The primitive parameters are as follows:

MLME-MeshKeyDelete.response(





PeerMAC





Content of PMK-MA Response frame






)

	Name
	Type
	Valid range
	Description

	PeerMAC
	MAC Address
	Valid individual MAC address
	Specifies the address of the peer MAC entity providing the MKD function.

	Content of PMK-MA Response frame
	Sequence of octets
	As defined in 7.4a.1.4
	The Mesh Action frame to send to the MKD


10.3.46.4.3 When generated

This primitive is generated by the SME of an MA as a response to an MLME-MeshKeyDelete.indication primitive.

10.3.46.4.4 Effect of receipt

This primitive causes transmission of a PMK-MA Response frame, containing the information specified, to the MKD that requested the deletion of the PMK-MA.

10.3.47 MLME-MeshEAPTransport
The following primitives describe how mesh entities manage the transport of EAP messages between mesh key holders, using the Mesh EAP Message Transport Protocol.
10.3.47.1 MLME-MeshEAPTransport.request

10.3.47.1.1 Function

This primitive requests that the mesh entity send an EAP message or EAP-Start indication to the MKD.

10.3.47.1.2 Semantics of the service primitive

The primitive parameters are as follows:

MLME-MeshEAPTransport.request(





PeerMAC




Content of EAP Encapsulation Request message





)

	Name
	Type
	Valid range
	Description

	PeerMAC
	MAC Address
	Valid individual MAC address
	Specifies the address of the peer MAC entity providing the MKD function.

	Content of EAP Encapsulation Request message
	Sequence of octets
	As defined in 7.4a.1.7
	The Mesh Action frame to send to the MKD


10.3.47.1.3 When generated

This primitive is generated by the SME to request that an EAP Encapsulation Request message be sent to the MKD to deliver an EAP message or an EAP-Start indication.

10.3.47.1.4 Effect of receipt

On receipt of this primitive, the MLME constructs a Mesh EAP Encapsulation frame containing the information specified.  The frame is scheduled for transmission.

10.3.47.2 MLME- MeshEAPTransport.confirm

10.3.47.2.1 Function

This primitive provides an EAP message to the SME as the result of a receiving an EAP Encapsulation Response message.

10.3.47.2.2 Semantics of the service primitive

The primitive parameters are as follows:

MLME-MeshEAPTransport.confirm(





PeerMAC





Content of EAP Encapsulation Response message






)

	Name
	Type
	Valid range
	Description

	PeerMAC
	MAC Address
	Valid individual MAC address
	Specifies the address of the peer MAC entity providing the MKD function.

	Content of EAP Encapsulation Response message
	Sequence of octets
	As defined in 7.4a.1.7
	The Mesh Action frame received from the MKD.


10.3.47.2.3 When generated

This primitive is generated by the MLME as a result of receiving an EAP Encapsulation Response message from the MKD.

10.3.47.2.4 Effect of receipt

The SME is provided with the EAP message sent by the MKD.

10.3.47.3 MLME- MeshEAPTransport.indication

10.3.47.3.1 Function

This primitive indicates that an MA function at a remote MP has sent an EAP message or an EAP-Start indication.

10.3.47.3.2 Semantics of the service primitive

The primitive parameters are as follows:

MLME-MeshEAPTransport.indication(





PeerMAC




Content of EAP Encapsulation Request message




)

	Name
	Type
	Valid range
	Description

	PeerMAC
	MAC Address
	Valid individual MAC address
	Specifies the address of the peer MAC entity that sent the EAP Encapsulation Request message.

	Content of EAP Encapsulation Request message
	Sequence of octets
	As defined in 7.4a.1.7
	The Mesh Action frame received from the peer MAC entity.


10.3.47.3.3 When generated

This primitive is generated by the MLME as a result of the receipt of an EAP Encapsulation Request message from a remote MP.

10.3.47.3.4 Effect of receipt

The SME is provided with the EAP message sent by the MA function at a remote MP.

10.3.47.4 MLME-MeshEAPTransport.response

10.3.47.4.1 Function

This primitive provides an EAP message to be sent to a remote MP that had previously sent an EAP Encapsulation Request message.
10.3.47.4.2 Semantics of the service primitive

The primitive parameters are as follows:

MLME- MeshEAPTransport.response(





PeerMAC





Content of EAP Encapsulation Response message






)

	Name
	Type
	Valid range
	Description

	PeerMAC
	MAC Address
	Valid individual MAC address
	Specifies the address of the peer MAC entity to which the EAP Encapsulation Response message is to be sent.

	Content of EAP Encapsulation Response message
	Sequence of octets
	As defined in 7.4a.1.7
	The Mesh Action frame to be sent to the peer MAC entity.


10.3.47.4.3 When generated

This primitive is generated by the SME of an MKD when it has an EAP message to be sent to the remote MP.

10.3.47.4.4 Effect of receipt

On receipt of this primitive, the MLME constructs a Mesh EAP Encapsulation frame containing the information specified.  The frame is scheduled for transmission to the remote MP that previously sent an EAP Encapsulation Request message to the MKD.

· Mesh link security 
· Overview of MSA

Modify the figures in subclauses 11A.2.1.7 and 11A.2.1.8 as shown.
· Mesh key holder security association

The mesh key holder security association may be established between an MP and an MKD to permit the MP to begin operating as an MA.  To establish the security association, the MP may initiate the Mesh Key Holder Security Handshake after it has completed Initial MSA Authentication.  The Mesh Key Holder Security Handshake is shown in  Figure s91, with procedures specified in  11A.2.3.


[image: image1]
· Mesh Key Holder Security Handshake

· Mesh Key and EAP Message Transport protocols

Three Mesh Key Transport Protocols are defined for performing key delivery and key management within a mesh key hierarchy.  

The Mesh Key Pull Protocol is initiated by the MA to request delivery of a PMK-MA, is shown in  Figure s92, and is specified in  11A.2.4.1.


[image: image4]
· Mesh Key Pull protocol

The Mesh Key Push Protocol is initiated by the MKD to deliver a PMK-MA Notification message to the MA, followed by the Mesh Key Pull protocol initiated by the MA.  This sequence is shown in  Figure s93, and is specified in  11A.2.4.2. 


[image: image6]
· Mesh Key Push protocol

The Mesh Key Delete Protocol is initiated by the MKD to request revocation of a PMK-MA, is shown in  Figure s94, and is specified in 11A.2.4.3.


[image: image8]
· Mesh Key Delete protocol

The Mesh EAP Message Transport Protocol may be initiated by the MA to facilitate EAP authentication with the supplicant during a supplicant MP’s Initial MSA Authentication.  The protocol permits an EAP message received from the supplicant to be transported from MA to MKD, and permits EAP messages received from the authentication server to be transported from MKD to MA.  

A single request/response EAP message transport frame exchange is shown in  Figure s95.  The authentication of a supplicant typically requires several such exchanges.  The protocol is specified in  11A.2.5.


[image: image10]
· Mesh EAP Message Transport Protocol (single exchange)

· MSA establishment procedure
11A.2.2.2 MSA authentication mechanism
11A.2.2.2.3 Peer Link Confirm message contents

Modify the list in 11A.2.2.2.3 as shown.

The peer link confirm message is sent according to the peer link management procedures of 11A.1.5.  In addition to the peer link management element, the peer link confirm message shall contain:

· RSNIE, identical to the RSNIE included in the peer link open message sent by the local MP during this protocol.  If the local MP has not sent a peer link open message during this protocol, the RSNIE is configured as advertised by the local MP in its Beacon frames and Probe Response frames.  However, the PMKID list shall be empty if Initial MSA Authentication will occur; otherwise, it shall contain the PMK-MAName identifying the PMK-MA chosen by the key selection procedure.

· MSCIE, identical to the MSCIE included in the peer link open message sent by the local MP during this protocol.  If the local MP has not sent a peer link open message during this protocol, the MSCIE is configured exactly as advertised by the local MP in its Beacon frames and Probe Response frames.

· MSAIE, where

· “Requests Authentication” in the Handshake Control field shall be set to 1 if the local MP requests Initial MSA Authentication during this protocol.

· MA-ID is set to the MAC address of the 802.1X authenticator 

· Selected AKM Suite and Selected Pairwise Cipher Suite shall be set using the following procedure:  If the local MP is the Selector MP but has not sent a peer link open message, the fields shall contain the local MP’s selection of each suite from among those supported by both MPs.  Otherwise, the fields shall contain the suites chosen by the Selector MP in the MSAIE of the peer link open message that it sent during this protocol.

· If Initial MSA Authentication will occur and if the local MP is the 802.1X authenticator, MKD-ID shall be included in the Optional Parameters field, and shall contain the identifier of the MKD with which the local MP’s MA has a security association.

· If Initial MSA Authentication will occur and if the local MP is the 802.1X authenticator, Key Holder Transport List shall be included in the Optional Parameters field.  If the local MP’s MA implements the MKD function, the Key Holder Transport List shall contain the list of transport types supported by the MKD.  If the MKD function does not support external communication with other MAs, the Key Holder Transport List shall contain the single entry 00-0F-AC:0.  If the local MP’s MA does not implement the MKD function, Key Holder Transport List shall contain the list that the local MP received during its Mesh Key Holder Security Handshake with the MKD identified by MKD-ID.
· If the local MP is the 802.1X authenticator, MKD-NAS-ID shall be included in the Optional Parameters field.  If the local MP implements the MKD function, MKD-NAS-ID shall contain the value of dot11MeshMKDNASID.  Otherwise, MKD-NAS-ID shall contain the value that the local MP received during its Initial MSA Authentication within the same MKD domain.
· All other fields are set to zero.

· Mesh key holder security association

Modify 11A.2.3 as shown, including insertion of new subclause 11A.2.3.3.

A security association is established between an MA and MKD to provide secure communications between key holders within a mesh.  The mesh key holder security association is used to enable message integrity and data origin authenticity in all messages passed between MA and MKD after the security association is established.  Further, it provides confidentiality of derived keys and key context during key delivery protocols.  Establishing the mesh key holder security association begins with discovery of the MKD, followed by a handshake initiated by the MA.  The result of the security association is the pairwise transient key for key derivation (MPTK-KD), used to provide the security services between MA and MKD.

· Mesh key distributor discovery

Prior to initiating the Mesh Key Holder Security Handshake described in  11A.2.3.2, an MA shall obtain the address of its MKD.  If the MA is not also an MKD, it may obtain the MKD-ID address of its MKD from the MSAIE conveyed during its Initial MSA Authentication.

· Mesh Key Holder Security Handshake

The Mesh Key Holder Security Handshake may commence after an MP has completed its Initial MSA Authentication.  This handshake permits an “aspirant MA” to establish a security association with the MKD that derived its PMK-MKD during Initial MSA Authentication. An “aspirant MA” is defined as an MP that has completed Initial MSA Authentication with an MKD, and that will become an MA after completing the Mesh Key Holder Security Handshake with the same MKD.

The Mesh Key Holder Security Handshake consists of 4 messages.  While the fourth message is not required for authentication and establishment of the MPTK-KD, its presence permits the aspirant MA alone to manage retries of handshake messages.  That is, the aspirant MA is responsible for retransmitting handshake messages 1 and 3 if it does not receive responses to those messages, while the MKD only responds to messages that it receives.  The aspirant MA initiates the exchange by constructing Mesh Key Holder Security Handshake message 1 (see 11A.2.3.2.1), and sending the message to the MKD identified by the MKD-ID received during the aspirant MA’s Initial MSA Authentication.  
During the handshake, the aspirant MA selects a Key Holder Transport type from among those advertised by the MKD during the handshake.  Supported transport types are also provided in the MSAIE received during the aspirant MA’s Initial MSA Authentication.  The aspirant MA shall not establish a mesh key holder security association with the MKD if the Key Holder Transport protocols supported by the aspirant MA and MKD do not overlap, or if the Key Holder Transport List received by the aspirant MA contains the single entry 00-0F-AC:0 . 


After completing the handshake, the aspirant MA sets both the “Mesh Authenticator” and “Connected to MKD” bits to 1 in the MSCIE in its Beacon frames and Probe Response frames to advertise that it is configured as a mesh authenticator that is connected to the MKD.  The MSCIE shall contain the MKDD-ID that is received from the MKD in mesh key holder security handshake message 2.  

An MA shall maintain a mesh path to the MKD.  If the mesh path is lost and cannot be repaired, the MA shall set the “Connected to MKD” bit to 0 in the MSCIE.  The MA may maintain cached keys (but a PMK-MA must be deleted when its lifetime expires).  In such a case, the “Mesh Authenticator” bit may remain set to 1 to indicate the presence of cached keys.  After the mesh path is re-established, the MA may again set the “Connected to MKD” bit to 1.

The MA and the MKD maintain separate key replay counters for sending messages that are protected using the MPTK-KD, as described in 11A.2.3.3.  Immediately upon deriving the MPTK-KD, both the MKD and MA shall reset their replay counters to zero.  The lifetime of the MPTK-KD is the same as that of the MKDK.
· Mesh Key Holder Security Handshake message 1

Mesh Key Holder Security Handshake message 1 is a Mesh Key Holder Handshake frame (see 7.4a.1.1) with the following contents:

The MAC address of the MKD shall be asserted in the DA field of the message header.  

The MAC address of the aspirant MA shall be asserted in the SA field of the message header.

The Mesh ID information element shall contain the Mesh ID that the aspirant MA advertises in its Beacon frames and Probe Response frames.

The MSCIE shall contain the value of MKDD-ID that was contained in the MSCIE received in peer link establishment messages during the aspirant MA’s Initial MSA Authentication.  The Mesh Security Configuration field shall be set to zero.

The Key Holder Security field shall be set as follows:

· Handshake Sequence shall be set to 1.

· MA-Nonce shall be set to a value chosen randomly by the aspirant MA, following the recommendations of 8.5.7.

· MKD-Nonce shall be set to zero.

· MA-ID shall be set to the MAC address of the aspirant MA.

· MKD-ID shall be set to the MAC address of the MKD.

· 
The Key Holder Transport Count subfield of the Key Holder Transport field shall be set to zero, and the Key Holder Transport List subfield shall be omitted.

The Status Code field shall be set to zero.

The message integrity check field shall be omitted.
Upon receiving handshake message 1, the MKD verifies that the values of Mesh ID, MKDD-ID, and MKD-ID match the local values of dot11MeshID, dot11MeshKeyDistributorDomainID, and the local MAC address; if not, handshake message 1 is silently discarded.  Then, the MKD shall determine if the aspirant MA (as identified by MA-ID in the received message) is authorized to become an MA; see 8.8.9.2.  If not, message 1 is discarded.

If authorized, the MKD chooses MKD-Nonce, a value chosen randomly (following the recommendations of 8.5.7), and computes the MPTK-KD using the MA-Nonce received in handshake message 1 and MKD-Nonce (see 8.8.8).  If MPTK-KD derivation fails, the MKD silently discards message 1.  Otherwise, the MKD sends handshake message 2, with contents as given in 11A.2.3.2.2.  
If the MKD receives a duplicate handshake message 1 after sending handshake message 2, it shall retransmit handshake message 2.
· Mesh Key Holder Security Handshake message 2

Mesh Key Holder Security Handshake message 2 is a Mesh Key Holder Handshake frame with the following contents:

The MAC address of the aspirant MA shall be asserted in the DA field of the message header.  

The MAC address of the MKD shall be asserted in the SA field of the message header.

The Mesh ID information element shall contain the Mesh ID as configured in dot11MeshID.

The MSCIE shall contain the MKDD-ID as configured in dot11MeshKeyDistributorDomainID.  The Mesh Security Configuration field shall be set to zero.

The Key Holder Security field shall be set as follows:

· Handshake Sequence shall be set to 2.

· MA-Nonce, MA-ID, and MKD-ID shall be set to the values contained in handshake message 1.

· MKD-Nonce shall be set to the value chosen randomly by the MKD, prior to computation of the MPTK-KD.
The Key Holder Transport Count subfield of the Key Holder Transport field shall contain the number of transport type selectors present in the Key Holder Transport List subfield.  The Key Holder Transport List subfield shall contain the list of transport types supported by the MKD.
· 
The Status Code field shall be set to zero.

The MPTK-KDShortName subfield of the message integrity check field shall contain the identifier of the MPTK-KD derived after receiving message 1.  The MIC subfield shall contain a 16-octet MIC calculated using the MKCK-KD portion of the identified MPTK-KD, using the AES-128-CMAC algorithm (AES-128-CMAC is defined by FIPS SP800-38B), on the concatenation in the following order, of:

· 
· 
· Contents of the Category field of the Mesh Key Holder Handshake MSA mesh action frame.

· Contents of the Action Value field of the Mesh Key Holder Handshake MSA mesh action frame.

· Contents of the Mesh ID information element, from the element ID to the end of the Mesh ID information element.

· Contents of the MSCIE, from the element ID to the end of the MSCIE.

· Contents of the Key Holder Security field.

· Contents of the Key Holder Transport field.
· Contents of the Status Code field.
Upon receiving handshake message 2, the aspirant MA shall compute the MPTK-KD as defined in 8.8.8.  The aspirant MA shall compute the MPTK-KDShortName and shall verify that it matches that received in handshake message 2, and subsequently shall verify the MIC.  If either verification fails, the aspirant MA shall silently discard handshake message 2.
The aspirant MA shall verify that Mesh ID, MKDD-ID, MA-Nonce, MA-ID, and MKD-ID match the values from handshake message 1; if not, handshake message 3 shall indicate an error status code “The Mesh Key Holder Security Handshake message was malformed.”  The aspirant MA shall verify that it supports one or more of the Key Holder Transport types listed in the Key Holder Transport field; if not, handshake message 3 shall indicate an error status code “No listed Key Holder Transport type is supported.”
Subsequently, the aspirant MA sends handshake message 3, with contents as given in  11A.2.3.2.3.  Handshake message 3 shall be sent within time dot11MeshKHHandshakeTimeout of receiving handshake message 2.  If the aspirant MA sent handshake message 3 with a nonzero status code, it shall securely delete the MPTK-KD and shall ensure “Connected to MKD” is set to 0 in the MSCIE that it advertises in Beacon Frames and Probe Response Frames.
If the aspirant MA does not receive handshake message 2 in response to handshake message 1, it shall retransmit handshake message 1, if it has not yet attempted dot11MeshKHHandshakeAttempts transmits of handshake message 1.  The timeout value between retransmissions shall be dot11MeshKHHandshakeTimeout.  If handshake message 2 has not been received after dot11MeshKHHandshakeAttempts transmissions and a final timeout, the aspirant MA shall ensure “Connected to MKD” is set to 0 in the MSCIE that it advertises in Beacon Frames and Probe Response Frames, and abort the handshake.
· Mesh Key Holder Security Handshake message 3

Mesh Key Holder Security Handshake message 3 is a Mesh Key Holder Handshake frame with the following contents:

The MAC address of the MKD shall be asserted in the DA field of the message header.  

The MAC address of the aspirant MA shall be asserted in the SA field of the message header.

The Mesh ID information element shall contain the Mesh ID information element received in handshake message 2.

The MSCIE shall contain the MSCIE received in handshake message 2.

The Key Holder Security field shall be set as follows:

· Handshake Sequence shall be set to 3.  
· MA-Nonce, MKD-Nonce, MA-ID, and MKD-ID shall be set to the values contained in handshake message 2.

The Key Holder Transport Count subfield of the Key Holder Transport field shall contain the number of transport type selectors present in the Key Holder Transport List subfield (0 or 1).  If the Status Code field is nonzero, the Key Holder Transport List subfield shall be omitted.  Otherwise, the Key Holder Transport List subfield shall contain a single transport type selector from among those received in handshake message 2 and that is selected by the aspirant MA.

The Status Code field shall indicate the error resulting from the processing of handshake message 2.  If no error resulted, then Status Code shall be set to zero.
The MPTK-KDShortName subfield of the message integrity check field shall contain the identifier of the MPTK-KD derived after receiving message 2.  The MIC subfield shall contain a MIC. The 16-octet MIC shall be calculated using the MKCK-KD portion of the identified MPTK-KD, using the AES-128-CMAC algorithm (AES-128-CMAC is defined by FIPS SP800-38B), on the concatenation in the following order, of:

· 
· 
· Contents of the Category field of the Mesh Key Holder Handshake MSA mesh action frame.

· Contents of the Action Value field of the Mesh Key Holder Handshake MSA mesh action frame.

· Contents of the Mesh ID information element, from the element ID to the end of the Mesh ID information element.

· Contents of the MSCIE, from the element ID to the end of the MSCIE.

· Contents of the Key Holder Security field.

· Contents of the Key Holder Transport field.

· Contents of the Status Code field.

Upon receiving handshake message 3, the MKD shall verify that MPTK-KDShortName identifies the MPTK-KD derived during this handshake, and subsequently shall verify the MIC.  If either verification fails, the MKD shall silently discard handshake message 3.
If the status code is nonzero, the MKD shall securely delete the MPTK-KD, and handshake message 4 shall not be sent.
Otherwise, the MKD shall verify that Mesh ID, MKDD-ID, MA-Nonce, MA-ID, and MKD-ID match the values from handshake message 2; if not, handshake message 4 shall indicate an error status code “The Mesh Key Holder Security Handshake message was malformed.”  The MKD shall verify that it supports the selected Key Holder Transport type listed in the Key Holder Transport field; if not, handshake message 4 shall indicate an error status code “No listed Key Holder Transport type is supported.”  
Subsequently, the MKD sends handshake message 4, with contents as given in  11A.2.3.2.4.  The MKD shall reset all key replay counters (see 11A.2.3.3) for messages protected using the MPTK-KD.  If the MKD sent handshake message 4 with a nonzero status code, it shall securely delete the MPTK-KD, as the handshake has failed.
If the MKD receives a duplicate handshake message 3 after sending handshake message 4, it shall retransmit handshake message 4.
11A.2.3.2.4 Mesh Key Holder Security Handshake message 4

Mesh Key Holder Security Handshake message 4 is a Mesh Key Holder Handshake frame with the following contents:

The MAC address of the aspirant MA shall be asserted in the DA field of the message header.  

The MAC address of the MKD shall be asserted in the SA field of the message header.

The Mesh ID information element shall contain the Mesh ID information element received in handshake message 3.

The MSCIE shall contain the MSCIE received in handshake message 3.

The Key Holder Security field shall be set as follows:

· Handshake Sequence shall be set to 4.  

· MA-Nonce, MKD-Nonce, MA-ID, and MKD-ID shall be set to the values contained in handshake message 3.

The Key Holder Transport Count subfield of the Key Holder Transport field shall contain the number of transport type selectors present in the Key Holder Transport List subfield (0 or 1).  If the Status Code field is nonzero, the Key Holder Transport List subfield shall be omitted.  Otherwise, the Key Holder Transport List subfield shall contain the single transport type selector received in handshake message 3.

The Status Code field shall indicate the error resulting from the processing of handshake message 3.  If no error resulted, then Status Code shall be set to zero.

The MPTK-KDShortName subfield of the message integrity check field shall contain the identifier of the MPTK-KD derived after receiving message 1.  The MIC subfield shall contain a MIC. The 16-octet MIC shall be calculated using the MKCK-KD portion of the identified MPTK-KD, using the AES-128-CMAC algorithm (AES-128-CMAC is defined by FIPS SP800-38B), on the concatenation in the following order, of:

· Contents of the Category field of the Mesh Key Holder Handshake MSA mesh action frame.

· Contents of the Action Value field of the Mesh Key Holder Handshake MSA mesh action frame.

· Contents of the Mesh ID information element, from the element ID to the end of the Mesh ID information element.

· Contents of the MSCIE, from the element ID to the end of the MSCIE.

· Contents of the Key Holder Security field.

· Contents of the Key Holder Transport field.

· Contents of the Status Code field.

Upon receiving handshake message 4, the aspirant MA shall verify that MPTK-KDShortName identifies the MPTK-KD derived during this handshake, and subsequently shall verify the MIC.  If either verification fails, the MKD shall silently discard handshake message 4.

If the status code is nonzero, the handshake fails.  Otherwise, the aspirant MA shall verify that Mesh ID, MKDD-ID, MA-Nonce, MA-ID, MKD-ID, and the Key Holder Transport field match the values from handshake message 3; if not, the handshake fails.
If the aspirant MA does not receive handshake message 4 in response to handshake message 3, it shall retransmit handshake message 3, if it has not yet attempted dot11MeshKHHandshakeAttempts transmits of handshake message 3.  The timeout value between retransmissions shall be dot11MeshKHHandshakeTimeout.  If handshake message 4 has not been received after dot11MeshKHHandshakeAttempts transmissions and a final timeout, the handshake fails.
If the handshake failed, the aspirant MA shall securely delete the MPTK-KD and shall ensure “Connected to MKD” is set to 0 in the MSCIE that it advertises in Beacon Frames and Probe Response Frames. Otherwise, the handshake completed succesfully, and the aspirant MA shall set both the “Mesh Authenticator” and “Connected to MKD” bits to 1 in the MSCIE.  Further the aspirant MA shall reset the key replay counters defined in 11A.2.3.3 for use with the MPTK-KD.
11A.2.3.3 Key Replay Counters

The MA and MKD each maintain key replay counters for use in the Mesh Key Transport and Mesh EAP Message Transport protocols indicated by Key Holder Transport type selector 00-0F-AC:1.  The following key replay counters are defined:
· MA-KEY-TRANSPORT is used to protect the Mesh Key Pull Protocol (11A.2.4.1).
· MA-EAP-TRANSPORT is used to protect the Mesh EAP Message Transport Protocol (11A.2.5).
· MKD-KEY-TRANSPORT is used to protect the Mesh Key Push Protocol (11A.2.4.2) and Mesh Key Delete Protocol (11A.2.4.3).
All key replay counters for use between an MA and MKD shall be set to zero upon successful completion of the Mesh Key Holder Security Handshake by the same MA and MKD.
In each protocol that is protected by a key replay counter, the sender shall increment the value of the appropriate replay counter prior to sending the first message.  Upon receiving the first message, the recipient shall verify that the replay counter value contained in the first message is a value not yet used by the sender in a first message.  If the replay counter value has been previously used, the message shall be discarded. 

Further, subsequent messages of a protocol shall contain the same replay counter value as in the first message of the protocol, to permit matching messages within a protocol instance.
· Mesh Key Transport Protocols
Modify 11A.2.4 as shown.

The Mesh Key Transport Protocols describe how the MKD manages the transport of keys to MAs.  The use of these protocols is selected during the Mesh Key Holder Security Handshake defined in 11A.2.3.2 and is described by transport type selector 00-0F-AC:1.  When the transport type selector specifies any other value, the mechanism for Key Transport is beyond the scope of this standard.

The Mesh Key Transport Protocols permit the MKD to securely transmit a derived PMK-MA to an MA, along with related information (e.g., the key lifetime).  The MKD may also request that the MA delete a key that has previously been delivered.

Three protocols are defined for mesh key delivery and management.  The Mesh Key Pull Protocol is initiated by the MA by sending a request message, followed by the MKD delivering the PMK-MA.  The Mesh Key Push Protocol is initiated by the MKD sending a notification of the key, after which the MA initiates the Mesh Key Pull protocol to retrieve the referenced key.  Finally, the Mesh Key Delete Protocol is initiated by the MKD by sending a message requesting key deletion to the MA, followed by the MA sending a confirmation message.




· Mesh Key Pull Protocol

The Mesh Key Pull Protocol is a two-message exchange consisting of a PMK-MA Request frame sent to the MKD, followed by a PMK-MA Response frame providing key delivery sent to the MA.  Both messages contain a MIC for integrity protection, and the PMK-MA being delivered is encrypted.

Mesh Key Pull Protocol message 1 is a PMK-MA Request frame (see 7.4a.1.3).  The MAC address of the MKD shall be asserted in the DA field of the message header, and the MAC address of the MA shall be asserted in the SA field of the message header.  Prior to constructing the message, the MA shall increment the MA-KEY-TRANSPORT replay counter associated with the MPTK-KD by 1.  

The contents of the Mesh Key Transport Control field shall be as follows:

· Replay counter shall be set to the value of the MA-KEY-TRANSPORT replay counter.

· SPA shall be set to the MAC address of the MP that, during its Initial MSA Authentication, generated the mesh key hierarchy that includes the PMK-MA being requested

· PMK-MKDName shall be set to the identifier of the key from which the PMK-MA being requested was derived.

· ANonce shall be set to zero.

The MPTK-KDShortName subfield of the message integrity check field shall contain the identifier of the MPTK-KD currently valid for secure communications with the MA.  The MIC subfield shall contain a MIC. The 16-octet MIC shall be calculated using the MKCK-KD portion of the identified MPTK-KD, using the AES-128-CMAC algorithm (AES-128-CMAC is defined by FIPS SP800-38B) on the concatenation in the following order, of:

· MA MAC address

· MKD MAC address

· Contents of the Category field of the PMK-MA Request MSA mesh action frame.

· Action Value field of the PMK-MA Request MSA mesh action frame, which contains the value shown for “PMK-MA Request” in Table s9.

· Contents of the Mesh Key Transport Control field.

Upon receiving message 1, the MKD shall verify that the MPTK-KDShortName identifies the MPTK-KD currently valid for secure communications with the MA, shall verify the MIC, and shall verify that the Replay counter field contains a value larger than the current value of the MA-KEY-TRANSPORT replay counter.  If any verification fails, the MKD shall silently discard the received message.  If verified, the MKD shall set the local MA-KEY-TRANSPORT replay counter to the value received in message 1.  The MKD shall attempt to derive the PMK-MA for use between the MP identified by SPA and the MA that sent message 1, using the key identified by PMK-MKDName.  Subsequently, the MKD constructs and sends message 2.

Mesh Key Pull Protocol message 2 is a PMK-MA Response frame (see 7.4a.1.4).  The MAC address of the MA shall be asserted in the DA field of the message header, and the MAC address of the MKD shall be asserted in the SA field of the message header.  

The Key Transport Response field shall be set to zero if a PMK-MA is being delivered in this message.  If the MKD was unable to derive the requested PMK-MA using the information in message 1, the Key Transport Response field shall be set to 1.

The contents of the Mesh Key Transport Control field shall be as follows:

· Replay counter shall be set to the current value of the MA-KEY-TRANSPORT replay counter (i.e., the value of replay counter in message 1).

· SPA and PMK-MKDName shall be set to the values contained in message 1.

· 
· ANonce shall be set to the pseudo-random value that was selected by the MKD for derivation of the PMK-MKDName that was indicated in message 1.  However, if the Key Transport Response field is nonzero, then the ANonce subfield shall be set to zero.

The Mesh Wrapped Key field shall be included only if the Key Transport Response field is zero, and is configured as follows:

· Wrapped Context Length field shall be set to the length in octets of the Wrapped Context field.

· 
· 
· The Wrapped Context field shall contain the concatenation: key_data = {PMK-MA || PMK-MAName || Lifetime KDE}.  

· Lifetime KDE is defined in Figures 143 and 149.  The KDE contains a 4-octet value containing the number of seconds remaining in the lifetime of the PMK-MA.

· The concatenation key_data shall be wrapped using NIST AES Key Wrap algorithm, as defined in RFC 3394, with the MKEK-KD portion of the MPTK-KD identified in the MPTK-KDShortName subfield in this message, prior to being inserted in the Wrapped Context field.

The MPTK-KDShortName subfield of the message integrity check field shall contain the identifier of the MPTK-KD currently valid for secure communications with the MA.  The MIC subfield shall contain a MIC. The 16-octet MIC shall be calculated using the MKCK-KD portion of the identified MPTK-KD, using the AES-128-CMAC algorithm (AES-128-CMAC is defined by FIPS SP800-38B) on the concatenation in the following order, of:

· MA MAC address

· MKD MAC address

· Contents of the Category field of the PMK-MA Response MSA mesh action frame.

· Action Value field of the PMK-MA Response MSA mesh action frame, which contains the value shown for “PMK-MA response” in Table s9.

· Contents of the Key Transport Response field.

· Contents of the Mesh Key Transport Control field.

· Contents of the Mesh Wrapped Key field, if it is present.

Upon receiving message 2, the MA shall verify the MIC, shall verify that the replay counter field contains the current value of the MA-KEY-TRANSPORT replay counter, and shall verify that the SPA and PMK-MKDName values match those in message 1.  If any verification fails, the MA shall silently discard the received message 2.
If the received message 2 contained a wrapped PMK-MA, the MA shall issue the MLME-MeshKeyPull.confirm primitive with result KEY_DELIVERY.  If received message 2 did not contain a PMK-MA, the MA shall issue the MLME-MeshKeyPull.confirm primitive with status ERROR.
If the MA does not receive a message 2 within time dot11MeshKeyTransportTimeout after sending message 1, the MA shall issue the MLME-MeshKeyPull.confirm primitive with result TIMEOUT.  The MA shall silently discard any message 2 received after time dot11MeshKeyTransportTimeout of sending message 1.
· Mesh Key Push Protocol
The Mesh Key Push protocol consists of a PMK-MA Notification message sent to the MA, followed by the MA initiating the Mesh Key Pull Protocol.
Mesh Key Push Protocol message 1 is a PMK-MA Notification frame (see 7.4a.1.2).  The MAC address of the MA shall be asserted in the DA field of the message header, and the MAC address of the MKD shall be asserted in the SA field of the message header.  Prior to constructing the message, the MKD shall increment the MKD-KEY-TRANSPORT replay counter associated with the MPTK-KD by 1.  

The contents of the Mesh Key Transport Control field shall be as follows:

· Replay counter shall be set to the value of the MKD-KEY-TRANSPORT replay counter.

· SPA shall be set to the MAC address of the MP that, during its Initial MSA Authentication, generated the mesh key hierarchy that includes the PMK-MA to be delivered

· PMK-MKDName shall be set to the identifier of the key from which the PMK-MA to be delivered was derived.

· ANonce shall be set to zero.

The MPTK-KDShortName subfield of the message integrity check field shall contain the identifier of the MPTK-KD currently valid for secure communications with the MA.  The MIC subfield
· 
· 
· 
· 
 shall contain a MIC. The 16-octet MIC shall be calculated using the MKCK-KD portion of the identified MPTK-KD, using the AES-128-CMAC algorithm (AES-128-CMAC is defined by FIPS SP800-38B) on the concatenation in the following order, of:

· MA MAC address

· MKD MAC address

· Contents of the Category field of the PMK-MA Notification MSA mesh action frame.

· Action Value field of the PMK-MA Notification MSA mesh action frame, which contains the value shown for “PMK-MA Notification” in Table s9.

· Contents of the Mesh Key Transport Control field.

· 
Upon receiving message 1, the MA shall verify that the MPTK-KDShortName identifies the MPTK-KD currently valid for secure communications with the MKD, shall verify the MIC, and shall verify that the replay counter field contains a value larger than the current value of the MKD-KEY-TRANSPORT replay counter.  If any verification fails, the MA shall silently discard the received message.  If verified, the MA shall set the local MA-KEY-TRANSPORT replay counter to the value received in message 1, and shall initiate the Mesh Key Pull Protocol as specified in 11A.2.4.1.  The MKD-KEY-TRANSPORT replay counter value shall not be used during the Mesh Key Pull Protocol; the MA shall increment and use MA-KEY-TRANSPORT as specified in 11A.2.4.1.



· 
· 
· 
· 
· 
If the MKD does not receive the first message of the Mesh Key Pull Protocol within time dot11MeshKeyTransportTimeout after sending the PMK-MA Notification message, the SME of the MKD may reissue the notification (i.e., reissue primitive MLME-MeshKeyPush.request).  Note that the MKD shall increment MKD-KEY-TRANSPORT before reissuing the notification.  The MKD shall not send PMK-MA Notification frames referencing the same PMK-MA more frequently than once per time dot11MeshKeyTransportTimeout.
· Mesh Key Delete Protocol

The MKD may initiate the Mesh Key Delete Protocol in order to request that a previously-delivered PMK-MA be revoked.  Revocation of the PMK-MA implies that the PMK-MA shall be deleted and all keys derived from the PMK-MA shall be deleted.

The Mesh Key Delete Protocol is a two-message exchange consisting of a PMK-MA Delete message sent to the MA, followed by a PMK-MA Response message sent in reply.  Both messages contain a MIC for integrity protection.

Mesh Key Delete Protocol message 1 is a PMK-MA Delete frame (see 7.4a.1.5).  The MAC address of the MA shall be asserted in the DA field of the message header, and the MAC address of the MKD shall be asserted in the SA field of the message header.  Prior to constructing the message, the MKD shall increment the MKD-KEY-TRANSPORT replay counter associated with the MPTK-KD by 1.  

The contents of the Mesh Key Transport Control field shall be as follows:

· Replay counter shall be set to the value of the MKD-KEY-TRANSPORT replay counter.

· SPA shall be set to the MAC address of the MP that, during its Initial MSA Authentication, generated the mesh key hierarchy that includes the PMK-MA that shall be deleted.

· PMK-MKDName shall be set to the identifier of the key from which the PMK-MA that shall be deleted was derived.

· ANonce shall be set to zero.

The MPTK-KDShortName subfield of the message integrity check field shall contain the identifier of the MPTK-KD currently valid for secure communications with the MA.  The MIC subfield shall contain a MIC. The 16-octet MIC shall be calculated using the MKCK-KD portion of the identified MPTK-KD, using the AES-128-CMAC algorithm (AES-128-CMAC is defined by FIPS SP800-38B) on the concatenation in the following order, of:

· MA MAC address

· MKD MAC address

· Contents of the Category field of the PMK-MA Delete MSA mesh action frame.

· Action Value field of the PMK-MA Delete MSA mesh action frame, which contains the value shown for “PMK-MA Delete” in Table s9.

· Contents of the Mesh Key Transport Control field.

Upon receiving message 1, the MA shall verify that the MPTK-KDShortName identifies the MPTK-KD currently valid for secure communications with the MKD, shall verify the MIC, and shall verify that the replay counter field contains a value larger than the current value of the MKD-KEY-TRANSPORT replay counter.  If any verification fails, the MA shall silently discard the received message.  If verified, the MA shall set the local MA-KEY-TRANSPORT replay counter to the value received in message 1, and shall compute the value of PMK-MAName using the PMK-MKDName and SPA included in message 1.  The MA shall revoke the PMK-MA named by PMK-MAName, and shall send a response message to the MKD.

Mesh Key Delete Protocol message 2 is a PMK-MA Response frame (see 7.4a.1.4).  The MAC address of the MKD shall be asserted in the DA field of the message header, and the MAC address of the MA shall be asserted in the SA field of the message header.  

The Key Transport Response field shall be set to 2 to indicate “Key Delete Acknowledged.”
The contents of the Mesh Key Transport Control field shall be identical to those values received in message 1.
The Mesh Wrapped Key field shall be omitted.
The MPTK-KDShortName subfield of the message integrity check field shall contain the identifier of the MPTK-KD currently valid for secure communications with the MA.  The MIC subfield shall contain a MIC. The 16-octet MIC shall be calculated using the MKCK-KD portion of the identified MPTK-KD, using the AES-128-CMAC algorithm (AES-128-CMAC is defined by FIPS SP800-38B) on the concatenation in the following order, of:

· MA MAC address

· MKD MAC address

· Contents of the Category field of the PMK-MA Response MSA mesh action frame.

· Action Value field of the PMK-MA Response MSA mesh action frame, which contains the value shown for “PMK-MA Response” in Table s9.

· Contents of the Key Transport Response field.

· Contents of the Mesh Key Transport Control field.

Upon receiving message 2, the MKD shall verify the MIC, shall verify that the replay counter field contains the current value of the MKD-KEY-TRANSPORT replay counter, and shall verify that the SPA and PMK-MKDName values match those in message 1.  If any verification fails, the MKD shall silently discard the received message 2. 
Upon reception of a PMK-MA Response frame indicating response “Key Delete Acknowledged,” the MKD shall issue the primitive MLME-MeshKeyDelete.confirm with result SUCCESS.

If the MKD does not receive a message 2 within time dot11MeshKeyTransportTimeout after sending message 1, the MKD shall issue primitive MLME-MeshKeyDelete.confirm primitive with result TIMEOUT.  The MKD shall silently discard any message 2 received after time dot11MeshKeyTransportTimeout of sending message 1.
· Mesh EAP Message Transport Protocol

Modify 11A.2.5 as shown.

The Mesh EAP Message Transport Protocol describes how the MA may initiate and perform authentication via EAP with the supplicant during the supplicant MP’s Initial MSA Authentication.  The use of this protocol is selected during the Mesh Key Holder Security Handshake defined in  11A.2.3.2 and is described by transport type selector 00-0F-AC:1.  When the transport type selector specifies any other value, the mechanism for EAP Transport is beyond the scope of this standard.

EAP, as described in IETF RFC 3748, is a “lock-step protocol,” with alternating request and response messages exchanged. The Mesh EAP Message Transport Protocol permits transport of these request and response messages through the mesh, between the MA and the MKD.

The MA initiates IEEE 802.1X authentication with the supplicant by sending a first EAP message to the supplicant.  If the MA is configured with the appropriate first EAP message to send, then the MA does so.  Otherwise, the MA may request the first EAP message from the AS, using the EAP-Start indication described below.  When the MA receives an EAP message from the supplicant, the MA sends an EAP Encapsulation Request message to the MKD that contains the received EAP message.  When the MKD has an EAP message, received from the AS and destined for the supplicant, it sends an EAP Encapsulation Response message to the MA containing the EAP message.

The final EAP Encapsulation Response message of a sequence is sent by the MKD, and is given a special type to provide information to the MA.  If the EAP authentication of the supplicant provided an “accept” indication to the MKD, then the MKD sends the final message with type “accept” to indicate to the MA that the supplicant should be granted access.  Alternatively, if EAP failed, the MKD sends the final message with type “reject” to the MA.  Upon reception of an EAP Encapsulation Response message of type “reject,” the MA shall terminate the peer link with the supplicant. 

Mesh EAP Message Transport Protocol messages use the Mesh EAP Encapsulation frame (see 7.4a.1.7).  When an IETF RFC 3748 EAP message is included in a Mesh EAP Encapsulation frame, it is carried in the EAP Message subfield. The maximum length EAP message that may be included in the EAP Message subfield is 2273 octets, due to the maximum length of a Mesh Action Data Unit (see 7.2.4.3).

The EAP-Start indication is sent from MA to MKD by constructing an EAP Encapsulation Request message that omits the EAP Message subfield.

· EAP Encapsulation Request message

An EAP Encapsulation Request message is sent from MA to MKD, either to transport an EAP message from the supplicant, or to request the AS to initiate EAP (“EAP-Start”).

An EAP Encapsulation Request message is defined as a Mesh EAP Encapsulation frame (see 7.4a.1.7) that has the Encapsulation Type subfield set to 1 (“request”).  The MAC address of the MKD shall be asserted in the DA field of the message header, and the MAC address of the MA shall be asserted in the SA field of the message header.  Prior to constructing the message, the MA shall increment the MA-EAP-TRANSPORT replay counter associated with the MPTK-KD by 1.  The contents of the EAP Authentication field are as follows:

· Encapsulation Type shall be set to 1 to indicate “request”.

· Replay Counter shall be set to the value of the MA-EAP-TRANSPORT replay counter.

· SPA shall be set to the MAC address of the supplicant MP that is participating in EAP.

· EAP Message Length shall indicate the length in octets of the EAP message that is included in the EAP Message subfield. If the MA is sending an “EAP-Start” notification, the EAP Message Length subfield shall be set to zero.

· If the EAP Message Length subfield is nonzero, the EAP message subfield shall be present, and shall contain an EAP message with format as defined in IETF RFC 3748. If the EAP Message Length subfield is zero, the EAP message subfield shall be omitted. The EAP message subfield shall be no longer than 2273 octets.

The MPTK-KDShortName subfield of the message integrity check field shall contain the identifier of the MPTK-KD currently valid for secure communications with the MA.  The MIC subfield shall contain a MIC. The 16-octet MIC shall be calculated using the MKCK-KD portion of the identified MPTK-KD, using the AES-128-CMAC algorithm (AES-128-CMAC is defined by FIPS SP800-38B) on the concatenation in the following order, of:

· MA MAC address

· MKD MAC address

· Contents of the Category field of the Mesh EAP Encapsulation MSA mesh action frame

· Contents of the Action Value field of the Mesh EAP Encapsulation MSA mesh action frame

· Contents of the EAP Authentication field.

Upon receiving an EAP Encapsulation Request message, the MKD shall verify that the MPTK-KDShortName identifies the MPTK-KD currently valid for secure communications with the MA, shall verify the MIC, and shall verify that the replay counter field contains a value larger than the current value of the MA-EAP-TRANSPORT replay counter.  If any verification fails, the MKD shall silently discard the received message.  If verified, the MKD shall set the local MA-EAP-TRANSPORT replay counter to the value received in message 1.
· EAP Encapsulation Response message

An EAP Encapsulation Response message is sent from MKD to MA, to transport an EAP message from the AS, and, in the final message of a sequence, provide an indication of the success of EAP to the MA.  

An EAP Encapsulation Response message is defined as a Mesh EAP Encapsulation frame (see 7.4a.1.7) that has the Encapsulation Type subfield set to indicate “response,” “accept,” or “reject.”  The MAC address of the MA shall be asserted in the DA field of the message header, and the MAC address of the MKD shall be asserted in the SA field of the message header.  The contents of the EAP Authentication field are as follows:

· Encapsulation Type shall be set as follows:

· If this is the final message of the sequence, and the EAP authentication of the supplicant resulted in an “accept” indication, Encapsulation Type shall be set to 2, to indicate “accept.”

· If this is the final message of the sequence, and the EAP authentication of the supplicant resulted in a “reject” indication, Encapsulation Type shall be set to 3, to indicate “reject.”

· Otherwise, Encapsulation Type shall be set to 11, to indicate “response.”

· Replay counter shall be set to the current value of the MA-EAP-TRANSPORT replay counter (i.e., the value of replay counter in message 1).
· SPA shall be set to the value contained in the request message to which this response corresponds.

· EAP Message Length shall indicate the length in octets of the EAP message that is included in the EAP message subfield.

· The EAP message subfield shall contain an EAP message with format as defined in IETF RFC 3748. The EAP message subfield shall be no longer than 2273 octets.

The MPTK-KDShortName subfield of the message integrity check field shall contain the identifier of the MPTK-KD currently valid for secure communications with the MA.  The MIC subfield shall contain a MIC. The 16-octet MIC shall be calculated using the MKCK-KD portion of the identified MPTK-KD, using the AES-128-CMAC algorithm (AES-128-CMAC is defined by FIPS SP800-38B) on the concatenation in the following order, of:

· MA MAC address

· MKD MAC address

· Contents of the Category field of the Mesh EAP Encapsulation MSA mesh action frame

· Contents of the Action Value field of the Mesh EAP Encapsulation MSA mesh action frame

· Contents of the EAP Authentication field.

Upon receiving a response message, the MA shall verify that the MPTK-KDShortName identifies the MPTK-KD currently valid for secure communications with the MA, shall verify the MIC, and shall verify that the replay counter field matches the current value of the MA-EAP-TRANSPORT replay counter.  If any verification fails, the MA shall silently discard the received message.  If the final response message received has type “reject,” the MA shall terminate the peer link with the supplicant.

· (normative) Protocol Implementation Conformance Statement (PICS) proforma

· PICS proforma - IEEE Std 802.11, 2006 Edition

· MAC protocol 

· MAC protocol capabilities

Insert rows in & modify the table in A.4.4.1: 

	Item
	Protocol capability
	References
	Status
	Support

	*PC36
	Wireless LAN Mesh
	11A
	O
	Yes o  No o

	PC36.1
	Mesh key holder security association
	11A.2.3
	PC34&PC36:M
	Yes o  No o

	PC36.2
	Mesh key transport protocol
	11A.2.4
	PC34&PC36:O
	Yes o  No o  N/A o

	PC36.3
	EAP Encapsulation Mechanism
	11A.2.5
	PC34&PC36:O
	Yes o  No o  N/A o


· (normative) ASN.1 encoding of the MAC and PHY MIB

Insert the following entries at the end of the dot11MeshPointConfig table:

dot11MeshKHHandshakeAttempts OBJECT-TYPE


SYNTAX INTEGER (1..65535)


MAX-ACCESS read-write


STATUS current


 DESCRIPTION

“The number of times transmission of mesh key holder security handshake messages 1 and 3 will be attempted before indicating failure of the mesh key holder security handshake protocol.”


 ::= { dot11MeshPointConfigEntry 13}

dot11MeshKHHandshakeTimeout OBJECT-TYPE


SYNTAX INTEGER (1..65535)


MAX-ACCESS read-write


STATUS current


 DESCRIPTION

“The time in milliseconds between transmission attempts of mesh key holder security handshake messages 1 and 3, and between the final transmission attempt and indicating failure of the mesh key holder security handshake protocol.”


 ::= { dot11MeshPointConfigEntry 14}

dot11MeshKeyTransportTimeout OBJECT-TYPE


SYNTAX INTEGER (1..65535)


MAX-ACCESS read-write


STATUS current


 DESCRIPTION

“The timeout value in milliseconds that a mesh entity waits for a response message in a key transport protocol before indicating failure of the key transport protocol.”


 ::= { dot11MeshPointConfigEntry 15}

Apply the resolutions to the comment resolution spreadsheet (11-07/0023) as illustrated below.

	CID
	Comment
	Proposed Change by Commenter
	Resolution
	Resolution Notes

	1412
	If the MKD is unable to derive a key, an explicit communication error is more appropriate than an implicit message.
	Change the protocol so that derivation failures are given a specific and extensible error indication.
	Accept
	Accept.  Status code added to Mesh Key Pull protocol response messsage.  See 11-07/1987r0.

	2008
	Protocol description does not include any details on error conditions, such as loss of connectivity between MKD and MA and the effect of such loss on any established PMK-MKDs, PMK-MAs, or PTKs and their security associations.
	Provide details of required behavior in case of errors.  Provide protocol state machines.
	Counter
	Counter. See updated description in 11A.2.3.2.  Error handling for all handshake messages (including timeout & retry behavior) added. See 11-07/1987r0.

	2064
	The key transport protocol is useful but not necessary - it should be optional
	Mark this clause and its subclauses as optional
	Accept
	Accept. See submission 11-07/1987r0.

	3050
	If msg#3 is lost in transit, the effect would be that MKD would never send keys to the MA. How does MA know to retransmit?
	This needs to be a 4-way handskake so that both endpoints receive confirmation that the other knows that it is successful.
	Accept
	Accept.  Fourth message added to permit MA to drive retries of handshake messages.  See 11-07/1987r0.

	3680
	Protocol description does not include any details on error conditions, such as loss of connectivity between MKD and MA and the effect of such loss on any established PMK-MKDs, PMK-MAs, or PTKs and their security associations.
	Provide details of required behavior in case of errors.  Provide protocol state machines.
	Counter
	Counter. See updated description in 11A.2.3.2.  Error handling for all handshake messages (including timeout & retry behavior) added. See 11-07/1987r0.

	3719
	Protocol description does not include any details on error conditions, such as loss of connectivity between MKD and MA and the effect of such loss on any established PMK-MKDs, PMK-MAs, or PTKs and their security associations.
	Provide details of required behavior in case of errors.  Provide protocol state machines.
	Counter
	Counter. See updated description in 11A.2.3.2.  Error handling for all handshake messages (including timeout & retry behavior) added. See 11-07/1987r0.

	4733
	There is no key identifier field in the Mesh key holder IE to tell recipient which key to utilize the verify the MIC
	Add a key identifier field to the Mesh key holder IE format. This should be at least 16 octets in length.
	Accept
	Accept. Key idntifier added to Message integrity check field (7.3.1.35). See submission 11-07/1987r0.

	4736
	The Mesh Encrypted Key IE depicted does not include a key identifier. The receiver needs this to select the correct key with which to verify the MIC, and to be able to select the correct key to decrypt the "Encrypted Contents" field
	Add one or two key identifier fields of at least 16 octets each
	Counter
	Counter.  Key identifier of 1 octet sufficient because of session between MA and MKD. Identified in Message integrity check field (7.3.1.35). See submission 11-07/1987r0.

	4738
	Why is an 8 octet sequence number field needed or even useful?
	A 32 bit sequence number field is fine for this application. There are about 2^24 seconds per year, so this affords 2^8 = 256 years of keying messages at 1 per second.
	Accept
	Accept. See submission 11-07/1987r0.

	4742
	The EAPAIE depicted does not include a key identifier. The receiver needs this to select the correct key with which to verify the MIC
	Add a key identifier field. Since the usage presupposes a session between the MKD and MA, the key identifier can be much smaller than 16 octets--an octet probably suffices, given that the maximum size of a mesh is 32
	Accept
	Accept. Key idntifier added to Message integrity check field (7.3.1.35). See submission 11-07/1987r0.

	4743
	While there is nothing wrong with using a random value in the Message Token field, clause 8.8 implies a session exists between the MKD and the MA, so sequence numbers would be a much more efficient mechanism; in particular, a sequence number field could be 32 bits instead of 128 bits.
	Consider using a sequence number field instead of the random message token mechanism
	Accept
	Accept. See Mesh EAP Encapsulation frame in submission 11-07/1987r0.

	5125
	What is the definition of values for Message Token field ?
	Provide numeration.
	Counter
	Counter. Replay counter replaces Message Token in Mesh EAP Encapsulation frame.  See submission 11-07/1987r0.

	5130
	What is the defioned value for Message Token field ?
	Provide numeration.
	Counter
	Counter. Replay counter replaces Message Token in Mesh EAP Encapsulation frame.  See submission 11-07/1987r0.


Mesh Key Holder sSecurity hHandshake message 3





Abstract


This document aims to resolve 13 comments from LB93 that are described at the end of this document.  The comments are related in general to the descriptions of the mesh key holder communication protocols.  





Modifications to subclauses are shown using the “Track Changes” feature.    





Baseline D1.03 + 11-07/564r2 + 11-07/618r0





Mesh Key Holder sSecurity hHandshake message 2





Mesh Key Holder sSecurity hHandshake message 1





mesh authenticator





mesh key distributor





Mesh Key Holder Security Handshake message 4





PMK-MA delivery pullResponse Mesh Action





PMK-MA request Request Mesh Action





mesh authenticator





mesh key distributor





PMK-MA confirm Request Mesh Action





PMK-MA delivery pushNotification Mesh Action





mesh authenticator





mesh key distributor





PMK-MA Response Mesh Action





PMK-MA confirm Response Mesh Action





PMK-MA dDelete Mesh Action





mesh authenticator





mesh key distributor





Mesh EAP Encapsulation �Mesh Action





Mesh EAP Encapsulation �Mesh Action





mesh authenticator





mesh key distributor











Submission
page 1
Tony Braskich, Motorola

