March 2007

doc.: IEEE 802.11-07/0087r4

IEEE P802.11
Wireless LANs

	A More Efficient KDF

	Date: 2007-03-08

	Author(s):

	Name
	Company
	Address
	Phone
	email

	Dan Harkins
	Tropos Networks
	555 Del Rey Ave Sunnyvale, CA 94085 USA
	+1 408 470 7372
	dharkins@tropos.com

	Jesse Walker
	Intel Corporation
	211 NE 25th Ave
	+1 503 712 1849
	jesse.walker@intel.com

	Jouni Malinen
	Devicescape Software, Inc
	900 Cherry Ave, 6th floor San Bruno, CA 94066 USA
	+1 650-829-2630
	jkm@devicescape.com

The current KDF derivation in the draft uses HMAC-SHA256. SHA256 by itself is a computationally intensive hashing algorithm (roughly twice as slow as SHA-1). Using it in HMAC form requires two SHA256 operations and is therefore even more computationally intensive.
The draft defines AES-CMAC for MAC computation. Using AES-CMAC as a PRF would allow us to eliminate the number of cryptographic primitives necessary to implement 802.11r to one: AES. A straight-forward extension of the main result of [4] shows that a block cipher in CMAC mode is a PRF. A PRF is a function whose output is infeasible to distinguish from the equivalent-length output of a truly random function. There is a theorem from Goldreich, Goldwasser and Micali that says a cryptographically secure pseudorandom function can be constructed from cryptographically secure pseudorandom bit generators.
Recent work by Phillip Rogaway and Thomas Shrimpton on cryptographic key-wrapping introduces a technique of applying a PRF to a vector of strings (they call it a vPRF) instead of to a single string (which they denote an sPRF). This results in a much more efficient construct. Efficiency is gained through the observation that constants over several iterations of the PRF need only be computed once. For example, an R0KH can take advantage of the fact that only one string changes between PMK-R1 derivations and after computing the first PMK-R1 it need only compute a single sPRF(“R1KH-ID”) for all subsequent PMK-R1s.
This Task Group has agreed to submit our draft for outside cryptographic review. Phillip Rogaway and Thomas Shrimpton are well-known and well-respected cryptographers. In the referenced document they do comment on our draft. Their specific comment is this: “IEEE 802.11r does key derivation by applying a PRF to input that includes long constants (host and user names) that remain fixed across many derivations. We suggest that when a security protocoal wants to apply a PRF to what is logically a vector of strings the protocol should realize this with just such an abstraction. Concatenation should be avoided in achieving that abstraction (because it is, in general, both inefficient and wrong). The vPRF primitive should be realized in the protocol as a higher-level abstraction made from an sPRF.”

8.5.1.5.2 Key derivation function

Replace with:
The key derivation function for the FT key hierarchy, KDF, is defined as follows:

Output = KDF-Length(KEY, X1, X2, … Xn) where

Input:
K, a variable length key derivation key of at least 128 bits

X1, X2, … Xn a variable number of variable-length strings

Output: a Length-bit derived key

K = L(KEY, 0, 128)

result (“”

iterations ((Length + 127)/128

do i = 1 to iterations

result (result || vPRF(K, Length, X1, X2, … Xn,, i)

od

return first Length bits of result, and securely delete all unused bits.

where vPRF(K, P1, P2, … Pm) is defined as

if m = 0 then return AES-128-CMAC(K, 0x01)

S (AES-128-CMAC(K, 0x00)

do j = 1 to m – 1

S (Double(S) (AES-128-CMAC(K, Pj)

od

if |Pm| (128 then T (S (-end Pm else T (Double(S) (Pm10*

return AES-128-CMAC(K, T)
and:

· L(-) is defined in 8.5.1.
· Double(S) means a multiplication of 2 and S modulo the irreducible polynomial x128 + x7 + x2 + x + 1. This can be easily implemented as a left shift and if the bit being shifted off is 1 then exclusive-oring the result with the string 012010000111.
· (is the exclusive-or operation
· N (-end X is an exclusive-or operation of the n-bit string N onto the end of string X which has at least n bits.
· X10* signifies padding of string X with a 1 and as many 0s as necessary to bring the length of the padded string to 128 bits.
· i and Length are encoded as 16 bit unsigned integers, represented using the bit ordering conventions of 7.1.1.
Informative Note:

The vPRF construct allows for various implementation optimizations. For example, if P1, P2, and P3 are passed to a vPRF with the same key and P1 and P2 are constants it is possible to calculate an S value after running the vPRF algorithm through P1 and P2 and stopping before the final calculation of T. This value can be cached and for subsequent calls to vPRF the final T value can be calculated from the cached S and P3. If Pj is a constant over several invocations of the vPRF with the same key it is also possible to calculate the intermediate value AES-128-CMAC(K, Pj) to avoid duplicate work.
8.5a.4 PMK-R0
Change:

The PMK-R0 is the first level 256-bit keying material used to derive the next level keys (PMK-R1s):

To:

The PMK-R0 is the first level 256-bit keying material used to derive and name the next level keys (PMK-R1s):

Change:

R0-Key-Data = KDF-384(XXKey, “R0 Key Derivation”, SSIDlength || SSID || MDID ||
 R0KHlength || R0KH-ID ||S0KH-ID)

To:
R0-Key-Data = KDF-384(XXKey, “R0 Key Derivation” || MDID || S0KH-ID, SSID, R0KH-ID)

Change:

PMKR0Name = Truncate-128(SHA-256(“R0 Key Name” || PMK-R0Name-Salt))

To:

PMKR0Name = AES-128-CMAC(PMK-R0Name-Salt, “R0 Key Name”)

Remove:

-- SSIDlength is a single octet whose value is the number of octets in the SSID.

-- R0KHlength is a single unique octet whose value is the number of octets in the R0KH-ID.

8.5.1.5.4 PMK-R1
Change:

PMK-R1 = KDF-256(PMK-R0, “R1 Key Derivation”, R1KH-ID || S1KH-ID)

To:

R1-Key-Data = KDF-256(PMK-R0, “R1 Key Derivation” || S1KH-ID, R1KH-ID)

PMK-R1 = L(R1-Key-Data, 0, 128)

PMK-R1Name-Salt(L(R1-Key-Data, 128, 128)

Change:

PMKR1Name = Truncate-128(SHA-256(“R1 Key Name” || PMKR0Name || R1KH-ID ||

 S1KH-ID))

To:

PMKR1Name = AES-128-CMAC(PMK-R1Name-Salt, “R1 Key Name” || R1KH-ID || S1KH-ID)
8.5.1.1.5 PTK
Change:

PTK = KDF-PTKLen(PMK-R1, “PTK Key derivation”, SNonce || ANonce || BSID ||

 STA-ADDR)

To:

PTK = KDF-PTKLen(PMK-R1, “PTK Key derivation” || STA-ADDR || BSSID, SNonce,

 ANonce)
Change:

Temporal keys (TK) shall be computed as bits 256-383 (for CCMP) of the PTK:

TK = L(PTK, 256, 128)

To:

Key Name Salt shall be computed as bits 256-383 (for CCMP) of the PTK:

PTK-Name-Salt = L(PTK, 256, 128)

Temporal keys (TK) shall be computed as bits 384-511 (for CCMP) of the PTK:

TK = L(PTK, 384, 128)

Change:

PTKName = Truncate-128(SHA-256(PMKR1Name || “PTK Name” || SNonce || ANonce ||

BSSID || STA-ADDR))

To:

PTKName = AES-128-CMAC(PTK-Name-Salt, “PTK Name” || SNonce || ANonce || BSSID ||

STA-ADDR)
H.6.5 PRF Test Vectors

Add

Table H.13 FT KDF Test Vector 1

	 Test_case
	 1

	 Key
	00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f

	 X1
	52 30 20 4b 65 79 20 44 65 72 69 76 61 74 69 6f
6e da da 01 02 03 04 05 06

	 X2
	74 68 69 73 69 73 61 6e 73 73 69 64

	 X3
	6b 65 79 68 6f 6c 64 65 72

	 Length
	384

	 KDF-384
	41 24 a1 20 7f 34 58 15 96 f2 e0 d7 4d 0a fd 23

f7 1c b3 e3 e3 10 9b f0 2a 3d 78 d4 52 36 55 36

5a ab bc 0e 86 33 8d 46 d8 f7 53 31 b0 39 ab 1e

References:

1. JH Song, et al, The AES-CMAC Algorithm, RFC4493.

2. P. Rogaway and T. Shrimpton, Deterministic Authenticated-Encryption, Advances in Cryptology – EUROCRYPT ’06, St. Petersburg, Russia, 2006.
3. O. Goldreich, S. Goldwasser, and S. Micali, How to construct random functions, Journal of the ACM, vol 33, no. 4, pp. 210-217, 1986.

4. M. Bellare, J. Killian, and P. Rogaway, The Security of the Cipher Block Chaining Message Authentication Code, CRYPTO 2004
Notice: This document has been prepared to assist IEEE 802.11. It is offered as a basis for discussion and is not binding on the contributing individual(s) or organization(s). The material in this document is subject to change in form and content after further study. The contributor(s) reserve(s) the right to add, amend or withdraw material contained herein.

Release: The contributor grants a free, irrevocable license to the IEEE to incorporate material contained in this contribution, and any modifications thereof, in the creation of an IEEE Standards publication; to copyright in the IEEE’s name any IEEE Standards publication even though it may include portions of this contribution; and at the IEEE’s sole discretion to permit others to reproduce in whole or in part the resulting IEEE Standards publication. The contributor also acknowledges and accepts that this contribution may be made public by IEEE 802.11.

Patent Policy and Procedures: The contributor is familiar with the IEEE 802 Patent Policy and Procedures <� HYPERLINK "http://%20ieee802.org/guides/bylaws/sb-bylaws.pdf" \t "_parent" �http:// ieee802.org/guides/bylaws/sb-bylaws.pdf�>, including the statement "IEEE standards may include the known use of patent(s), including patent applications, provided the IEEE receives assurance from the patent holder or applicant with respect to patents essential for compliance with both mandatory and optional portions of the standard." Early disclosure to the Working Group of patent information that might be relevant to the standard is essential to reduce the possibility for delays in the development process and increase the likelihood that the draft publication will be approved for publication. Please notify the Chair <� HYPERLINK "stuart@ok-brit.com" ��stuart@ok-brit.com�> as early as possible, in written or electronic form, if patented technology (or technology under patent application) might be incorporated into a draft standard being developed within the IEEE 802.11 Working Group. If you have questions, contact the IEEE Patent Committee Administrator at <� HYPERLINK "mailto:patcom@ieee.org" \t "_parent" �patcom@ieee.org�>.

Abstract

This document proposes a more efficient KDF for use in 802.11r

�Reading the Rogaway-Shrimpton paper, I believe we have to do this step, because the mechanism is making no assumption about PRF padding

Submission
page 3
Dan Harkins, Tropos Networks

