November 2006

doc.: IEEE 802.11-06/1470r3

IEEE P802.11
Wireless LANs

	Efficient Mesh Security and Link Establishment

	Date: 2006-11-12

	Author(s):

	Name
	Company
	Address
	Phone
	email

	Tony Braskich
	Motorola Inc.
	1301 E Algonquin Rd, Schaumburg, IL 60196
	+18475380760
	Tony.Braskich@motorola.com

	W. Steven Conner
	Intel Corporation
	JF3-206, 2111 NE 25th Ave, Hillsboro OR 97124
	+1-503-712-4990
	w.steven.conner@intel.com

	Jan Kruys
	Cisco Systems
	 10 Haarlerbergweg

110-1CH Amsterdam, Netherlands
	+31 20357 2447
	jkruys@cisco.com

	Steve Emeott
	Motorola Inc.
	1301 E Algonquin Rd, Schaumburg, IL 60196
	+18475768268
	Steve.Emeott@motorola.com

	Jesse Walker
	Intel Corporation
	JF3-206, 2111 NE 25th Ave, Hillsboro, OR USA 97124
	+1-503-264-8036
	jesse.walker@intel.com

	Meiyuan Zhao
	Intel Corporation
	200 Mission College Blvd RNB-6-61, Santa Clara, CA 95052
	+1-408-653-5517
	meiyuan.zhao@intel.com

	Rainer Falk
	Siemens
	Otto-Hahn-Ring 6, 81730 München, Germany
	+49 8963651653
	rainer.falk@siemens.com

3. Definitions

4. Abbreviations and acronyms

Insert the following new abbreviations and acronyms in alphabetical order:
EAPAIE
EAP Authentication information element

EAPMIE
EAP Message information element

EMSA
Efficient Mesh Security Association

EMSAIE
EMSA Handshake information element

KCK-KD
Key confirmation key for key distribution

KDK
Key Distribution Key

KEK-KD
Key encryption key for key distribution

MA
Mesh Authenticator

MA-ID
Mesh Authenticator Identifier

MEKIE
Mesh encrypted key information element

MKD
Mesh Key Distributor

MKD-ID
Mesh Key Distributor Identifier

MKHSIE
Mesh key holder security information element

MKDD-ID
MKD domain Identifier

MKDDIE
MKD domain information element
PMK-MA
Mesh Authenticator PMK

PMK-MKD
Mesh Key Distributor PMK

PTK-KD
Pairwise transient key for key distribution

7 Frame Formats

7.1 MAC Frame Formats

7.1.2 General frame format
Insert the underlined text into clause 7.1.2 as shown:

The MAC frame format comprises a set of fields that occur in a fixed order in all frames. Figure 19 depicts the general MAC frame format. The first three fields (Frame Control, Duration/ID, and Address 1) and the last field (FCS) in Figure 19 constitute the minimal frame format and are present in all frames, including reserved types and subtypes. The fields Address 2, Address 3, Sequence Control, Address 4, QoS Control, Mesh Header, and Frame Body are present only in certain frame types and subtypes. When present, the Mesh Header Field is prepended to the Frame Body and handled identically to the contents of the body with respect to MPDU processing. Each field is defined in 7.1.3. The format of each of the individual subtypes of each frame types is defined in 7.2. The components of management frame bodies are defined in 7.3. The formats of management frames of subtype Action are defined in 7.4. The formats of mesh management frames of subtype Mesh Action are defined in 7.4A.

The Frame Body field is of variable size. The maximum frame body size is determined by the maximum MSDU size (2304 octets) plus any overhead from security encapsulation.

	Octets: 2
	2
	6
	6
	6
	2
	0 or 6
	2
	4 or 16
	0-23142
	4

	Frame Control
	Duration / ID
	Address 1
	Address 2
	Address 3
	Sequence Control
	Address 4
	QoS Control
	Mesh Header
	Body
	FCS

Figure 19 – MAC Frame Format

7.1.3 Frame fields

7.1.3.1 Frame Control Field
7.1.3.1.2 Type and Subtype fields
Add a row to Table 1 as shown:

Table 1—Valid type and subtype combinations (numeric values in Table 1 are shown in binary)

	
	
	
	

	Type value
b3 b2
	Type description
	Subtype value
b7 b6 b5 b4
	Subtype description

	11
	Mesh Management
	0010
	Mesh Action

	11
	ReservedExtended
	00000011-1111
	Reserved

	
	
	
	

7.2 Format of individual frame types

7.2.3 Management Frames
7.2.3.1 Beacon frame format

Add the following to the contents of Table 8 as shown:

	Order
	Information
	Notes

	TBD
	MKDDIE
	The MKDDIE element shall be present only when dot11WLANMeshService is true

7.2.3.3 Disassociation frame format

Add the following to the contents of Table 9 as shown:
	Order
	Information
	Notes

	TBD
	Peer Link Close IE
	The Peer Link Close IE shall be present only when dot11WLANMeshService is true

7.2.3.4 Association Request frame format

Add the following to the contents of Table 10 as shown:
	Order
	Information
	Notes

	TBD
	Peer Link Open IE
	The Peer Link Open IE shall be present only when dot11WLANMeshService is true

	TBD
	MKDDIE
	The MKDDIE element shall be present only when dot11WLANMeshService is true

	TBD
	EMSAIE
	The EMSAIE element shall be present only when dot11WLANMeshService is true

7.2.3.5 Association Response frame format

Add the following to the contents of Table 11 as shown:
	Order
	Information
	Notes

	TBD
	Peer Link Confirm IE
	The Peer Link Confirm IE shall be present only when dot11WLANMeshService is true

	TBD
	MKDDIE
	The MKDDIE element shall be present only when dot11WLANMeshService is true

	TBD
	EMSAIE
	The EMSAIE element shall be present only when dot11WLANMeshService is true

	TBD
	RSNIE
	The RSNIE element shall be present only when dot11WLANMeshService is true

7.2.3.9 Probe Response frame format

Add the following to the contents of Table 15 as shown:
	Order
	Information
	Notes

	TBD
	MKDDIE
	The MKDDIE element shall be present only when dot11WLANMeshService is true

Insert new subclause 7.2.4.3 after end of 7.2.4.2:
7.2.4.3 Mesh Management frames
The frame format for a mesh management frame is independent of frame subtype and is as defined in Figure A.
	Octets: 2
	2
	6
	6
	6
	2
	6
	4 or 16
	0-23142
	4

	Frame Control
	Duration / ID
	Address 1 (RA)
	Address 2 (TA)
	Address 3 (DA)
	Sequence Control
	Address 4 (SA)
	Mesh Header
	Body
	FCS

Figure A - Mesh Management Frame Format
The Duration field contains a duration value as defined in 7.1.4.

The duration value calculation for the mesh management frame is based on the rules in 9.6 that determine the data rate at which the control frames in the frame exchange sequence are transmitted. If the calculated duration includes a fractional microsecond, that value is rounded up to the next higher integer. All MPs process Duration field values less than or equal to 32 767 from valid management frames to update their NAV settings as appropriate under the coordination function rules.

The address fields for mesh management frames do not vary by frame subtype.

The RA field is the unicast address of the MP that is the immediate intended receiver of the frame or the multicast or broadcast address of the MPs that are the immediate intended receivers of the frame.
The TA field is the address of the MP that is transmitting the frame.

The Address 3 field (DA) is typically the address of the MP that is the destination of the Mesh management frame.
The SA field is the address of the MP that initiated the Mesh management frame.
A MP uses the contents of the RA field to perform address matching for receive decisions. In cases where the RA field contains a group address, the TA also is validated to ensure that the broadcast or multicast originated from a MP with which the receiving MP has an established link. A MP uses the contents of the TA field to direct the acknowledgment if an acknowledgment is necessary.

The Mesh Header field is defined in 7.1.3.5A.

Detailed usage of the Address 3 and Mesh Header fields is specified in 11A.2.4.

The Sequence Control field is defined in 7.1.3.4.
The frame body consists of Mesh Action Data Units and a security header and trailer (if and only if the Protected Frame subfield in the Frame Control field is set to 1). A Mesh Action Data Unit is a MMPDU sent between two mesh MAC entities. The Mesh Action Data Unit contains the Mesh Action field, defined in 7.3.1.18. The Mesh Action field comprises Category and Action fields followed by the information elements defined for each Mesh Action. All fields and information elements are mandatory unless stated otherwise and appear in the specified, relative order. Destination MPs that encounter an element ID they do not recognize in the frame body of a received management frame ignore that element and continue to parse the remainder of the management frame body (if any) for additional information elements with recognizable element IDs. A MP receiving a vendor-specific IE that it does not support shall ignore the vendor-specific IE. Unused element ID codes are reserved.
The maximum size of a Mesh Action Data Unit is 2304 octets.
Gaps may exist in the ordering of elements within frames. The order that remains shall be ascending.
7.3 Management Frame Body Components

7.3.1 Fields that are not information elements
Insert the following new subclause:

7.3.1.18 Mesh Action field

The Mesh Action field provides a mechanism for specifying mesh management actions. The format of the Mesh Action field is shown in Figure B.

	
	Category
	Mesh Action Details

	Octets:
	1
	variable

Figure B - Mesh Action field
The Category field is set to one of the nonreserved values shown in Table a. Mesh Action frames of a given category are referred to as <category name> Mesh Action frames.

If a STA receives a unicast Mesh Action frame with an unrecognized Category field or some other syntactic error and the MSB of the Category field set to 0, then the STA shall return the Mesh Action frame to the source without change except that the MSB of the Category field is set to 1.

The Action Details field contains the details of the action. The field contains an action value followed by zero or more non-information element fields, and zero or more information elements. The details of the actions allowed in each category are described in the appropriate subclause referenced in Table a.
Table a - Mesh Action Category values

	Code
	Meaning
	See subclause

	0
	EMSA
	7.4A.1

	1-126
	Reserved
	–

	127
	Vendor Specific
	–

	128-255
	Error
	–

7.3.2 Information Elements

7.3.2.25 RSN Information Element

7.3.2.25.2 AKM Suites

Change Table 34 as follows:

Table 34 AKM Suite Selectors

	OUI
	Suite Type
	Authentication type
	Key management type

	00-0F-AC
	5
	EMSA Authentication negotiated over IEEE 802.1X, or using PMKSA caching as defined in 8.4.6.2
	EMSA Key Management

	00-0F-AC
	6
	EMSA Authentication using PSK
	EMSA Key Management

	00-0F-AC
	7-255
	Reserved
	Reserved

Replace Clause 7.3.2.47 with the following text:

7.3.2.47 Peer Link Close element
The Peer Link Close element is transmitted by a Mesh Point Requesting to close a link with a peer Mesh Point.
This element may be transmitted in a Disassociate frame sent from one Mesh Point to another. The format of the Peer Link Close element is shown in Figure C.

	
	Element ID
	Length
	Reason Code
	Local Link ID
	Peer Link ID

	Octets:
	1
	1
	1
	4
	4

Figure C - Peer link close element

The fields contained in the element are as shown in Table b.
Table b - Peer link close element fields

	Field
	Value/description

	ID
	TBD

	Length
	9

	Reason Code
	The Reason Code field is set to value that represents the reason to close a peer link. The reason code is specified in Table c.

	Local Link ID
	Random value generated by local system in the effort to identify link instance with the peer

	Peer Link ID
	Random value received from the peer in the effort to identify the same link instance

The Local Link ID field contains a random number generated by the local system in order to create a unique identifier for this link instance with the peer MP.

The Peer Link ID field contains a random number received from the peer, via a Peer Link Open or a Peer Link Confirm frame. The pair <Local Link ID, Peer Link ID> together with both MPs’ identifier (e.g., their MAC addresses) uniquely identifies this link instance to be established between these two MPs.
Table c - Peer link close reason code field values

	Reason Code value
	Meaning

	0
	Cancelled

	1
	Close received

	2
	Invalid parameters

	3
	Exceed maximum retries

	4
	Timeout

Replace Clause 7.3.2.48 with the following:

7.3.2.48 Peer Link Open element
The Peer Link Open element is transmitted by a Mesh Point requesting to open a link with a peer Mesh Point. This element may be transmitted in an Association Request frame sent from one Mesh Point to another. The format of the Peer Link Open element is shown in Figure D.

	
	Element ID
	Length
	Local Link ID

	Octets:
	1
	1
	4

Figure D - Peer link open element

The fields contained in the element are as shown in Table d.
Table d - Peer link open element fields

	Field
	Value/description

	ID
	TBD

	Length
	4

	Local Link ID
	Random value generated by local system in the effort to identify link instance with the peer

The Local Link ID field contains a random number generated by the local system in order to create a unique identifier for this link instance with the peer MP. It is one portion of the complete link instance identifier. The pair <Local Link ID, Peer Link ID> together with both MPs’ identifier (e.g., their MAC addresses) uniquely identifies this link instance to be established between these two MPs.

Insert the following new subclause after 7.3.2.48:
7.3.2.49 Peer Link Confirm element
The Peer Link Confirm frame element is transmitted by a Mesh Point requesting to confirm a link with a peer Mesh Point. This element may be transmitted in an Associate Response frame sent from one Mesh Point to another. The format of the Peer Link Confirm element is shown in Figure E.
	
	Element ID
	Length
	Local Link ID
	Peer Link ID

	Octets:
	1
	1
	4
	4

Figure E - Peer link confirm element

The fields contained in the element are as shown in Table e.
Table e - Peer link confirm element fields

	Field
	Value/description

	ID
	TBD

	Length
	8

	Local Link ID
	Random value generated by local system in the effort to identify link instance with the peer

	Peer Link ID
	Random value received from the peer in the effort to identify the same link instance

The Local Link ID field contains a random number generated by the local system in order to create a unique identifier for this link instance with the peer MP.

The Peer Link ID field contains a random number received from the peer, via a Peer Link Open or a Peer Link Confirm frame. The pair <Local Link ID, Peer Link ID> together with both MPs’ identifier (e.g., their MAC addresses) uniquely identifies this link instance to be established between these two MPs.
Insert the following new subclauses:
7.3.2.63 MKD domain element [MKDDIE]
The MKD domain information element contains the MKD domain Identifier. A mesh authenticator uses the MKD domain information element to advertise its status as a MA, and to advertise that it is included in the group of MAs that constitute a MKD domain. The format for this information element is given in Figure F.

	
	Element ID
	Length
	MKD domain ID
	Mesh Security Configuration

	Octets:
	1
	1
	6
	1

Figure F - MKD domain information element
The Element ID of this element shall be TBD. The Length field shall be set to 7.
The MKD domain Identifier is a 6-octet value, following the ordering conventions from 7.1.1.
The Mesh Security Configuration field is one octet and is defined in Figure G.

	
	Mesh Authenticator
	Connected to MKD
	Default Role Negotiation
	Reserved

	Bit:
	B0
	B1
	B2
	B3-B7

Figure G - Mesh Security Configuration field
The Mesh Authenticator bit is set to one to indicate that a MP is configured as a mesh authenticator in the MKD domain identified in this IE, and that the MP may act in the IEEE 802.1X Authenticator role during an EMSA handshake.
The Connected to MKD bit is set to one to indicate that the MP has a valid route to the MKD and a current security association with the MKD. The Connected to MKD bit shall not be set to one if the Mesh Authenticator bit is set to zero.
The interpretation of the Mesh Authenticator and Connected to MKD bits is described in Table f.

Table f - Meaning of Mesh Security Configuration bits

	Mesh Authenticator
	Connected to MKD
	Meaning

	0
	0
	The device is not configured to act as a mesh authenticator.

	0
	1
	Invalid

	1
	0
	The device is configured to act as a mesh authenticator but does not have a connection to the MKD. The device may successfully act as an IEEE 802.1X authenticator, for example, if it possesses a cached key for the supplicant MP.

	1
	1
	The device is configured to act as a mesh authenticator and has a connection to the MKD.

The Default Role Negotiation bit is set to one by an MP if it is using the default method to select IEEE 802.1X Authenticator and Supplicant roles, and shall set this bit to 0 otherwise. When set to 0, the Authenticator/Supplicant selection method to use is specified by a mechanism outside the scope of this standard.
7.3.2.64 EMSA Handshake element [EMSAIE]
The EMSA handshake information element includes information needed to perform the authentication sequence during an EMSA handshake. This information element is depicted in Figure H.
	
	Element ID
	Length
	ANonce
	SNonce
	MA-ID
	Optional Parameters
	MIC Control
	MIC

	Octets:
	1
	1
	32
	32
	6
	variable
	2
	16

Figure H - EMSA Handshake information element

The Element ID of this element shall be TBD. The Length field for this information element indicates the number of octets in the information field (fields following the Element ID and Length fields).
The ANonce field contains a nonce value chosen by the MA. It is encoded following the conventions from 7.1.1.
The SNonce field contains a nonce value chosen by the supplicant MP. It is encoded following the conventions from 7.1.1.

The MA-ID field contains the MA’s identity, which is used by the supplicant MP for deriving the PMK-MA. It is encoded following the conventions from 7.1.1.

The format of the optional parameters is shown in Figure I.

	
	Sub-element ID
	Length
	Data

	Octets:
	1
	1
	variable

Figure I - Optional parameters field

The Sub-element ID is one of the values from Table g.
Table g - Sub-element IDs

	Value
	Contents of data field
	Length

	0
	Reserved
	

	1
	MKD-ID
	6

	2
	GTK
	variable

	3
	EAP Transport List
	variable

	4-255
	Reserved
	

MKD-ID indicates the MKD that the supplicant MP may contact to initiate the mesh key holder security handshake.

GTK contains a KDE containing the Group Key; it is encrypted. The KDE is defined in Figures 143 and 144 of 8.5.2.

EAP Transport List contains a series of transport selectors that indicate the EAP transport mechanism. A transport selector has the format shown in Figure J.

	
	OUI
	Transport Type

	Octets:
	3
	1

Figure J - Transport selector format
The order of the organizationally unique identifier (OUI) field shall follow the ordering convention for MAC addresses from 7.1.1. The transport selectors defined by this amendment are provided in Table h.

Table h - Transport selectors

	OUI
	Transport Type
	Meaning

	00-0F-AC
	0
	EAP Transport mechanism as defined in 8.8.3.3.3.

	00-0F-AC
	1-255
	Reserved

	Vendor OUI
	Any
	Vendor specific

	Other
	Any
	Reserved

The transport selector 00-0F-AC:0 shall be the default transport selector value.

The MIC Control field is two octets and is defined in Figure K.

	
	MIC Algorithm
	Reserved
	Information element count

	Bit:
	B0-B3
	B4-B7
	B8-B15

Figure K - MIC Control field

The MIC algorithm is one of the values from Table i.

Table i - MIC Algorithms

	Value
	Algorithm description

	0
	Reserved

	1
	HMAC-SHA1-128

	2-15
	Reserved

The Information Element count of the MIC Control field contains the number of information elements that are included in the MIC calculation. A value of zero indicates no MIC is present.

The MIC field contains a Message Integrity Check, calculated using the algorithm selected by the MIC algorithm field of the MIC Control field.
7.3.2.65 Mesh Key Holder Security element [MKHSIE]
The Mesh key holder security information element includes information needed to perform the authentication sequence during a mesh key holder security handshake. This information element is depicted in Figure L.

	
	Element ID
	Length
	MA-Nonce
	MKD-Nonce
	MA-ID
	MKD-ID
	Transport Type Selector
	MIC Control
	MIC

	Octets:
	1
	1
	32
	32
	6
	6
	4
	2
	16

Figure L - Mesh key holder security information element
The Element ID field shall be TBD. The Length field shall contain the value 98.

The MA-Nonce field contains a nonce value chosen by the MA. It is encoded following the conventions from 7.1.1.

The MKD-Nonce field contains a nonce value chosen by the MKD. It is encoded following the conventions from 7.1.1.

The MA-ID field contains the MAC address of the MA. It is encoded following the conventions from 7.1.1.

The MKD-ID field contains the MAC address of the MKD. It is encoded following the conventions from 7.1.1.

The Transport Type Selector field contains a single transport selector that indicates the supported transport types. The transport selector format is given in Figure J. The transport selectors defined by this amendment are provided in Table h.

The MIC Control field is two octets and is defined in Figure K.

The MIC algorithm is one of the values from Table i.

The Information Element count of the MIC Control field contains the number of information elements that are included in the MIC calculation. A value of zero indicates no MIC is present.

The MIC field contains a Message Integrity Check, calculated using the algorithm selected by the MIC algorithm field of the MIC Control field.
7.3.2.66 Mesh Encrypted Key element [MEKIE]

The Mesh Encrypted Key information element is used to request, deliver, or confirm delivery of a PMK-MA. It is also used to request deletion of a PMK-MA. This information element is depicted in Figure M.
	
	Element ID
	Length
	Replay Counter
	SPA
	PMK-MKD
Name
	ANonce
	Encrypted Contents Length
	Encrypted Contents
	MIC Control
	MIC

	Octets:
	1
	1
	8
	6
	16
	32
	2
	variable
	2
	16

Figure M - Mesh Encrypted Key information element
The Element ID field shall be TBD. The Length field shall contain the number of octets in the information field (fields following the Element ID and Length fields).
The Replay Counter field contains a sequence number, represented as an unsigned binary number, used to detect replayed frames.

The SPA field contains the MAC address of the supplicant MP that, during its Initial EMSA Authentication, created the PMK-MA that is being requested, delivered, confirmed, or deleted.
The PMK-MKDName field contains the identifier of the PMK-MKD that was used to derive the PMK-MA that is being requested, delivered, confirmed, or deleted.

The ANonce field contains a random nonce selected by the MKD and used in the derivation of the PMK-MKD identifier provided in the PMK-MKDName field.

The Encrypted Contents Length field indicates the number of octets contained in the Encrypted Contents field.

The Encrypted Contents field contains an PMK-MA and related key context information. All information in the field shall be encrypted using an algorithm selected using the value of the MIC algorithm subfield.
The MIC Control field is two octets and is defined in Figure K.

The MIC algorithm is one of the values from Table i.
The Information Element count of the MIC Control field contains the number of information elements that are included in the MIC calculation. A value of zero indicates no MIC is present.

The MIC field contains a Message Integrity Check, calculated using the algorithm selected by the MIC algorithm field of the MIC Control field.
7.3.2.67 EAP Authentication element [EAPAIE]

The EAP Authentication information element is depicted in Figure N.
	
	Element ID
	Length
	EAP Message Type
	Message Token
	SPA
	Message Fragments
	MIC Control
	MIC

	Octets:
	1
	1
	1
	16
	6
	1
	2
	16

Figure N - EAP Authentication information element

The Element ID field shall be TBD. The Length field shall contain the value 42.

The EAP Message Type field identifies the type of EAP Encapsulation message, and is set to a value described in Table Table j.
Table j – EAP Message Type values

	Value
	Message Type

	0
	Reserved

	1
	Request

	2
	Response – Accept

	3
	Response – Reject

	4-10
	Reserved

	11
	Response

	12-255
	Reserved

The Message Token field contains a random nonce in messages of type request. In messages of type response, response-accept, and response-reject, the Message Token field contains the value of the Message Token field in the request message to which the response message corresponds.

The SPA field contains the MAC address of the supplicant MP that is performing EAP authentication.
The Message Fragments field is one octet and contains an unsigned binary integer indicating the number of EAP Message elements that follow this EAPAIE, containing fragments of an EAP message. The Message Fragments field may contain the value zero if no EAP Message elements follow.
The MIC Control field is two octets and is defined in Figure K.

The MIC algorithm is one of the values from Table i.
The Information Element count of the MIC Control field contains the number of information elements that are included in the MIC calculation. A value of zero indicates no MIC is present.

The MIC field contains a Message Integrity Check, calculated using the algorithm selected by the MIC algorithm field of the MIC Control field.

7.3.2.68 EAP Message element [EAPMIE]

The EAP Message element is defined in Figure O.

	
	Element ID
	Length
	Fragment Control
	EAP Message Fragment

	Octets:
	1
	1
	1
	variable

Figure O - EAP Message information element
The Element ID field shall be TBD. The Length field shall contain the number of octets in the information field (fields following the Element ID and Length fields).
The Fragment Control field is one octet and contains an unsigned binary integer indicating the number of each fragment of an EAP message. The fragment number is set to 0 in the first or only fragment of an EAP message and is incremented by one for each successive fragment of that EAP message.
The EAP Message Fragment field contains an EAP packet, or fragment thereof, with format as defined in IETF RFC 3748.
Insert the following new subclause:
7.4A Mesh Action

This subclause describes the Mesh Action frame formats, including the Mesh Action Details field, allowed in each of the mesh action categories defined in Table a in 7.3.1.18.
7.4A.1 EMSA mesh action details

Seven Mesh Action frame formats are defined for EMSA. An Action Value field, in the octet field immediately after the Category field, differentiates the five formats. The Action Value field values associated with each frame format are defined in Table k.
Table k - EMSA Action field values

	Action Field Value
	Description

	0
	Mesh key holder security establishment

	1
	PMK-MA delivery push

	2
	PMK-MA confirm

	3
	PMK-MA request

	4
	PMK-MA delivery pull

	5
	PMK-MA delete

	6
	Mesh EAP encapsulation

	7-255
	Reserved

7.4A.1.1 Mesh key holder security establishment frame format

The Mesh key holder security establishment frame uses the Mesh Action frame body format and is transmitted by a mesh key holder to perform the mesh key holder security handshake. The format of the mesh key holder security establishment frame body is shown in Figure P.
	
	Category
	Action Value
	Mesh ID IE
	MKDDIE
	MKHSIE

	Octets:
	1
	1
	variable
	9
	100

Figure P - Mesh key holder security establishment frame body format
The Category field shall be set to 0 (representing EMSA).

The Action Value field shall be set to 0 (representing a Mesh key holder security establishment frame).
The Mesh ID IE shall be set as described in 7.3.2.39.

The MKDDIE shall be set as described in 7.3.2.63.

The MKHSIE shall be set as described in 7.3.2.65.
7.4A.1.2 PMK-MA delivery push frame format

The PMK-MA delivery push frame uses the Mesh Action frame body format and is transmitted by a MKD in the mesh key transport push protocol. The format of the PMK-MA delivery push frame body is shown in Figure Q.

	
	Category
	Action Value
	MKDDIE
	MEKIE

	Octets:
	1
	1
	9
	variable

Figure Q - PMK-MA delivery push frame body format

The Category field shall be set to 0 (representing EMSA).

The Action Value field shall be set to 1 (representing a PMK-MA delivery push frame).
The MKDDIE shall be set as described in 7.3.2.63.

The MEKIE shall be set as described in 7.3.2.66.
7.4A.1.3 PMK-MA confirm frame format

The PMK-MA confirm frame uses the Mesh Action frame body format and is transmitted by a MA in the mesh key transport push or the mesh key delete protocol. The format of the PMK-MA confirm frame body is shown in Figure R.
	
	Category
	Action Value
	MKDDIE
	MEKIE

	Octets:
	1
	1
	9
	variable

Figure R - PMK-MA confirm frame body format

The Category field shall be set to 0 (representing EMSA).

The Action Value field shall be set to 2 (representing a PMK-MA confirm frame).
The MKDDIE shall be set as described in 7.3.2.63.

The MEKIE shall be set as described in 7.3.2.66.
7.4A.1.4 PMK-MA request frame format

The PMK-MA request frame uses the Mesh Action frame body format and is transmitted by a MA in the mesh key transport pull protocol. The format of the PMK-MA request frame body is shown in Figure S.

	
	Category
	Action Value
	MKDDIE
	MEKIE

	Octets:
	1
	1
	9
	variable

Figure S - PMK-MA request frame body format

The Category field shall be set to 0 (representing EMSA).

The Action Value field shall be set to 3 (representing a PMK-MA request frame).
The MKDDIE shall be set as described in 7.3.2.63.

The MEKIE shall be set as described in 7.3.2.66.
7.4A.1.5 PMK-MA delivery pull frame format

The PMK-MA delivery pull frame uses the Mesh Action frame body format and is transmitted by a MKD in the mesh key transport pull protocol. The format of the PMK-MA delivery pull frame body is shown in Figure T.

	
	Category
	Action Value
	MKDDIE
	MEKIE

	Octets:
	1
	1
	9
	variable

Figure T - PMK-MA delivery pull frame body format

The Category field shall be set to 0 (representing EMSA).

The Action Value field shall be set to 4 (representing a PMK-MA delivery pull frame).
The MKDDIE shall be set as described in 7.3.2.63.

The MEKIE shall be set as described in 7.3.2.66.

7.4A.1.6 PMK-MA delete frame format

The PMK-MA delete frame uses the Mesh Action frame body format and is transmitted by a MKD in the mesh key delete protocol. The format of the PMK-MA delete frame body is shown in Figure U.

	
	Category
	Action Value
	MKDDIE
	MEKIE

	Octets:
	1
	1
	9
	variable

Figure U - PMK-MA delete frame body format

The Category field shall be set to 0 (representing EMSA).

The Action Value field shall be set to 5 (representing a PMK-MA delete frame).
The MKDDIE shall be set as described in 7.3.2.63.

The MEKIE shall be set as described in 7.3.2.66.
7.4A.1.7 Mesh EAP encapsulation frame format

The Mesh EAP encapsulation frame uses the Mesh Action frame body format and is transmitted by a mesh key holder in the mesh EAP message transport protocol. The frame body of the Mesh EAP encapsulation frame contains the information shown in Table l.

Table l – Mesh EAP encapsulation frame body

	Order
	Information

	0
	Category

	1
	Action Value

	3
	EAPAIE

	4–n
	EAPMIE (optional)

The Category field is one octet and shall be set to 0 (representing EMSA).

The Action Value field is one octet and shall be set to 6 (representing a Mesh EAP encapsulation frame).
The EAPAIE shall be set as described in 7.3.2.67.
There may be zero or more EAPMIEs in the Mesh EAP encapsulation frame. If present, EAPMIEs shall be set as described in 7.3.2.68.
8 Security

8.5 Keys and key distribution

8.5.2 EAPOL-Key frames
8.5.2.2 EAPOL-Key frame notation
Change the text as follows:

Lifetime
is the key lifetime KDE used for sending the expiry timeout value for SMK used during PeerKey Handshake for STA-to-STA SMK key identification. The lifetime KDE is also used during EMSA Authentication in a mesh to express the timeout value of the PMK-MA.
Editorial Note: protection for management frames defined in the base standard is outside the scope of this clause. This will change if 802.11w is finished prior to the completion of 802.11s. In that case, this clause will be updated to protect management frames from the base standard as well.

Replace Clause 8.8 with the following:
8.8 Mesh Link Security

8.8.1 Overview of EMSA
Efficient mesh security association (EMSA) services are used to permit efficient establishment of link security between two MPs in a wireless mesh network, and support both centralized and distributed authentication schemes. EMSA services are provided through the use of a mesh key hierarchy, a hierarchy of derived keys that is established through the use of a PSK or when a MP performs IEEE 802.1X authentication.

The operation of EMSA relies on mesh key holders, which are functions that are implemented at MPs within the wireless mesh network. Two types of mesh key holders are defined: mesh authenticators (MAs) and mesh key distributors (MKDs). A single MP may implement both types of key holders, or the MKD and the MA key holders may be implemented on different MPs.
EMSA requires information to be exchanged during a MP’s initial security association with a MA, and is referred to as “Initial EMSA Authentication.” Subsequent security associations to other MAs within the same MKD domain (and the same WLAN mesh, as identified by the Mesh ID) may utilize the mesh key hierarchy that is established during Initial EMSA Authentication.

If a MP implements a MA key holder but does not implement a MKD key holder,, EMSA provides mechanisms for secure communications between mesh key holders. The “Mesh Key Holder Security Association” provides the mechanism for establishing a security association between a MA and MKD. Secure mesh key transport protocols and an optional EAP message transport protocol are defined.
8.8.1.1 Mesh Key Holders

Mesh key holders, MAs and MKDs, manage the mesh key hierarchy by performing key derivation and secure key distribution. A mesh key distributor (MKD) domain is defined by the presence of a single MKD. Within the MKD domain, several MAs may exist, each implemented at a MP, and each MA maintains both a route to and a security association with the MKD. The MKD derives keys to create a mesh key hierarchy, and distributes derived keys to MAs.
A MP implementing the MA key holder function may play the IEEE 802.1X Authenticator role during an EMSA exchange (e.g., Initial EMSA Authentication) as determined according to the procedures in 8.8.1.3. The MA receives derived keys from the MKD, and derives additional keys for use in securing a link with a supplicant MP.
The design of EMSA assumes that the AS and MKD have a trustworthy channel between them that can be used to exchange cryptographic keys without exposure to intermediate parties. The IEEE 802.1X AS never exposes the MSK to any party except the MKD implementing the NAS Client functionality of the IEEE 802.1X Authenticator with which the supplicant is communicating. The communication between AS and MKD is outside the scope of this standard.
8.8.1.2 Discovery & EMSA Capability Advertisement

The support of EMSA is advertised by MPs in Beacon and Probe Response frames through the inclusion of the MKDDIE. Moreover, when a MP wants to utilize EMSA to authenticate with other MPs, it shall advertise its security policy by inserting an RSN information element into its Beacons and Probe Responses.

The MKDDIE shall be included in Beacon and Probe Response frames to advertise support for EMSA and to advertise the MKD domain identifier (MKDD-ID) and the Mesh Security Configuration field. The value of MKDD-ID that is advertised by the MP is the value received from the MKD during the mesh key holder security handshake (as specified in 8.8.3.3.1.2), or the value of dot11MeshKeyDistributorDomainID if the MP implements the MKD function. If the MP has not yet received the MKDD-ID value, it shall set the MKD domain ID field in the MKDDIE to zero, and shall set the Mesh Authenticator and Connected to MKD bits of the Mesh Security Configuration field to zero.
The Mesh Security Configuration field in the MKD domain information element shall be set as follows:

· Bit 0 (Mesh Authenticator): The MP shall set this bit to 1 if the MP is configured to play the IEEE 802.1X Authenticator role during an EMSA handshake. The selection of the IEEE 802.1X Authenticator and Supplicant roles is described in 8.8.1.3.
· Bit 1 (Connected to MKD): The MP shall set this bit to 0 if bit 0 (Mesh Authenticator) is set to 0. Otherwise, the MP shall set this bit to 1 if the MP has a security association with the MKD and has a valid route to the MKD. If the MA and MKD are both implemented at the MP and bit 0 is set to 1, the MP shall set this bit to 1.

· Bit 2 (Default Role Negotiation): The MP shall set this bit to 1 if it uses the mesh default role determination scheme specified in 8.8.1.3. The MP shall set this bit to 0 if it uses some other role determination scheme, such as a proprietary scheme. The specification of other schemes is outside the scope of this standard.

A MKD may support one or more EAP transport mechanisms. A MA advertises the mechanisms supported by the MKD with which it has a security association during the Initial EMSA Authentication (using the EAP Transport List optional parameter in the EMSAIE).
8.8.1.3 Role Determination

When EMSA is used, roles must be selected prior to link establishment and policy selection. In this case, the two MPs shall determine the IEEE 802.1X Authenticator and Supplicant roles through the use of the Mesh Authenticator (Bit 0) and Connected to MKD (Bit 1) bits of the Mesh Security Configuration field (in the MKDDIE) as follows:

· If one of the MPs has set Bit 0 to 1 and the other to 0, then the MP that set Bit 0 to 1 shall assume the IEEE 802.1X Authenticator role, and the MP that set Bit 0 to 0 shall assume the IEEE 802.1X Supplicant role.

· If both MPs set Bit 0 to 1, then
If both or neither MPs have set Bit 1 to 1, then the MP with the higher MAC address shall assume the IEEE 802.1X Authenticator role, and the MP with the lower MAC address shall assume the IEEE 802.1X Supplicant role.

If one of the MPs has set Bit 1 to 1 and the other to 0, then the MP that set Bit 1 to 1 shall assume the IEEE 802.1X Authenticator role, and the MP that set Bit 1 to 0 shall assume the IEEE 802.1X Supplicant role.

· If both MPs set Bit 0 to 0, then the MP with the higher MAC address shall assume the IEEE 802.1X Authenticator role, and the MP with the lower MAC address shall assume the IEEE 802.1X Supplicant role.

Note that when both MPs set Bit 1 to 0, it is possible for the secure association to fail because one of the parties lacks credentials in its local database to authenticate and/or authorize the other.
8.8.1.4 Policy Selection

An MP may initiate the link establishment mechanism defined in 11A.1.5. This mechanism leverages Association Request and Association Response frames to exchange Peer Link Open and Peer Link Confirm information elements.
If an IEEE 802.1X-based authentication is used, the MP playing the role of the IEEE 802.1X Supplicant shall include an RSN information element in the Association Request specified by this mechanism. In the RSN information element, the Supplicant MP shall specify one pairwise ciphersuite and one authenticated key management suite.

In a mesh, all STAs must utilize the same group ciphersuite. Therefore, a Supplicant MP shall not send an Association Request frame, and shall reject Association Request frames from the Authenticator MP (with Status Code 41), if the group ciphersuite advertised by the Authenticator MP does not match its own.

The Authenticator MP shall reject the Association Request frame from the Supplicant MP if either the pairwise cipher suite (with Status Code 42) or authenticated key management suite (with Status Code 43) selected by the Supplicant is not included in the corresponding lists of pairwise ciphersuites and authenticated key management suites specified in its own Beacons and Probe Responses. The Authenticator MP may also reject the Supplicant MP’s Association Request frame for other reasons unrelated to security. The Authenticator MP may accept the Association Request frame if the Supplicant selected pairwise and authenticated key management suites from among those specified by the Authenticator in its Beacons and Probe Responses.

If an IEEE 802.1X-based authentication is used, the Supplicant MP shall additionally include an MKDDIE in the Association Request frame. The Authenticator MP shall reject the Association Request frame from the Supplicant MP if the MKDD-ID included in the MKDDIE does not match the value advertised by the Authenticator MP in its beacons and probe responses.

Selection of the EAP Transport mechanism to be used between a MP and MKD is performed during the mesh key holder security handshake described in 8.8.3.3.1.2. The MP shall decline to establish a mesh key holder security association with the MKD if the EAP transport mechanisms supported by the MP and MKD do not overlap.

8.8.1.5 Initial EMSA Authentication

Pre-RSNA authentication shall not be supported for mesh link establishment.
The Initial EMSA Authentication mechanism permits an MP to enable the use of the mesh key hierarchy when establishing security for subsequent links.

If the link establishment mechanism specified in 11A.1.5 succeeds in creating a link, and if it selects IEEE 802.1X authentication, then the Authenticator MP shall initiate the authentication. Clause 8.4.4 specifies the authentication procedure used when IEEE 802.1X is selected. If pre-shared keys (PSKs) are selected instead, then the PMK is derived from the PSK.

If authentication succeeds from the Authenticator MP’s perspective, then it shall initiate a 4-Way Handshake, as specified in 8.8.3.1. After the 4-Way Handshake completes, either MP may initiate a Group Key Handshake (Clause 8.5.4) at any time during the link’s lifetime, to update the GTK.

The Initial EMSA Authentication sequence is depicted in Figure V, with procedures specified in 8.8.3.1.

[image: image1]
Figure V - Initial EMSA Authentication
8.8.1.6 Subsequent EMSA Authentication

Pre-RSNA authentication shall not be supported for mesh link establishment.
The Subsequent EMSA Authentication mechanism permits an MP to establish security for subsequent links with other MPs in the mesh once the mesh key hierarchy has been established.

8.8.1.7 An example Subsequent EMSA Authentication sequence is depicted in Figure W with procedures specified in 8.8.3.2.

[image: image2]
8.8.1.8 Figure W - Subsequent EMSA Authentication
8.8.1.9 Mesh Key Holder Security Association

The mesh key holder security association establishes a security association between an MP and a MKD, permitting the MP to begin operating as a MA. The MP may initiate the mesh key holder security handshake after it has completed Initial EMSA Authentication. The mesh key holder security handshake is shown in Figure X, with procedures specified in 8.8.3.3.1.

[image: image3]
Figure X - Mesh key holder security handshake
8.8.1.10 Mesh key and EAP message transport protocols

The mesh key transport protocol comprises three mechanisms for performing key delivery and key management within a mesh key hierarchy.
The delivery pull protocol is initiated by the MA to request delivery of a PMK-MA, is shown in Figure Y, and is specified in 8.8.3.3.2.1.

[image: image4]
Figure Y - Mesh key transport delivery pull protocol
The delivery push protocol is initiated by the MKD to deliver a PMK-MA, is shown in Figure Z, and is specified in 8.8.3.3.2.2.

[image: image5]
Figure Z - Mesh key transport delivery push protocol
The key delete protocol is initiated by the MKD to request revocation of a PMK-MA, is shown in Figure AA, and is specified in 8.8.3.3.2.3.

[image: image6]
Figure AA - Mesh key delete protocol
The optional EAP message transport protocol may be initiated by the MA to facilitate EAP authentication with the supplicant during a supplicant MP’s Initial EMSA Authentication. The protocol permits an EAP message received from the supplicant to be transported from MA to MKD, and permits EAP messages received from the authentication server to be transported from MKD to MA.
A single request/response EAP message transport frame exchange is depicted in Figure BB. The authentication of a supplicant will typically require several such exchanges. The optional protocol is specified in 8.8.3.3.3.

[image: image7]
Figure BB - EAP message transport protocol (single exchange)
8.8.1.11 Secure Link Operation

In the case when the 4-Way Handshake completes successfully, then both the IEEE 802.1X Authenticator and Supplicant shall open their respective controlled ports, to permit data traffic to be exchanged using the selected ciphersuites.
When key management completes, each MP further uses the session key to protect the contents of mesh action data units using the agreed upon ciphersuites. Each MP permits MPDUs protected by the session key and group key using the agreed upon ciphersuites, and discards received MPDUs that are unprotected.
8.8.2 Key Distribution for EMSA
This subclause describes the mesh key hierarchy and its supporting architecture. The mesh key hierarchy permits a MP to create secure associations with peer MPs without the need to perform an IEEE 802.1X authentication each time. The mesh key hierarchy can be used with either IEEE 802.1X authentication or PSK. It is assumed by this standard that the PSK is specific to a single MP and a single MKD.

8.8.2.1 Overview

A key hierarchy consisting of two branches is introduced for use within a mesh. A link security branch consists of three levels, supporting distribution of keys between mesh key holders to permit the use of the mesh key hierarchy between a supplicant MP and a MA. A key distribution branch provides keys to secure the transport and management of keys between mesh key holders.
As depicted in Figure DD, the mesh key distributor generates the first level key for both branches from either the PSK or from the MSK resulting (per RFC 3748) from a successful IEEE 802.1X Authentication between the AS and the supplicant MP. The second level keys in both branches are generated by the MKD as well.
In the link security branch, the first level key (PMK-MKD) is derived by the MKD from either the PSK or MSK. The second level keys (PMK-MA keys) are generated by the MKD as well. The PMK-MA keys are delivered from the MKD to the MAs using a secure protocol, as described in 8.8.3.3.2. The PMK-MA keys are used for PTK generation.

In the key distribution branch, the first level key (KDK) is derived by the MKD from either the PSK or MSK. The second level key (PTK-KD) is generated by the MKD as well, during the mechanism described in 8.8.3.3.1.2.

Upon a successful authentication between a supplicant MP and the MKD, the supplicant MP and the MKD shall delete the prior PMK-MKD, KDK, and PTK-KD keys and all PMK-MA keys which were created between the supplicant MP and the same MKD domain. Upon receiving a new PMK-MA key for a supplicant MP, a MA shall delete the prior PMK-MA key and all PTKs derived from the prior PMK-MA key.

The lifetime of all keys derived from the PSK or MSK are bound to the lifetime of the PSK or MSK. For example, the 802.1X AS may communicate the MSK key lifetime with the MSK. If such an attribute is provided, the lifetimes of the PMK-MKD and KDK shall be not more than the lifetime of the MSK. If the MSK lifetime attribute is not provided, or for PSK, the key lifetime shall be the value of the MIB variable dot11MeshTopLevelKeyLifetime.

The lifetime of the PTK and PMK-MA shall be the same as that of the PMK-MKD and the lifetime of the PTK-KD shall be the same as that of the KDK, as calculated above. When the key lifetime expires, each key holder shall delete their respective derived keys.

The mesh key hierarchy derives its keys using a Key Derivation Function (KDF) as defined in 8.8.2.3 with separate labels to further distinguish derivations.
The mesh key hierarchy is depicted in Figure CC.

[image: image8]
Figure CC - Mesh key hierarchy
The operations performed by mesh key holders and the movement of keys within the mesh key hierarchy are shown in Figure DD.

[image: image9]
Figure DD - Mesh key holders
The construction of the key hierarchy ensures that compromise of keying material within the link security branch is isolated to only that portion, or sub-branch, of the hierarchy. For example, a mesh authenticator only has knowledge to decrypt those sessions protected by the PTK derived from its PMK-MA.

In some key management systems, PMK-MKD key may be deleted by the MKD after PMK-MA keys have been derived. Such an operation lends itself to the good security practice of protecting the key hierarchy in cases where the PMK-MKD is no longer needed. In such cases, the key management system only needs to maintain information about the PMK-MA keys. Such a removal of the PMK-MKD key does not indicate the invalidity of the key hierarchy.
8.8.2.2 Key Hierarchy

The mesh key hierarchy consists of two branches whose keys are derived using a KDF described in 8.8.2.3.

The first branch, the link security branch, consists of three levels and results in a PTK for use in securing a link.

· PMK-MKD – the first level of the link security branch, this key is derived as a function of the MSK or PSK and the Mesh ID. It is stored by the supplicant MP and the PMK-MKD key holder, namely the MKD. This key is mutually derived by the supplicant MP and the MKD. There is only a single PMK-MKD derived between the supplicant MP and the MKD domain.

· PMK-MA – the second level of the link security branch, this key is mutually derived by the supplicant MP and the MKD. It is delivered by the MKD to a MA to permit completion of an EMSA handshake between the supplicant MP and the MA.
· PTK – the third level of the link security branch that defines the IEEE 802.11 and IEEE 802.1X protection keys. The PTK is mutually derived by the supplicant and the PMK-MA key holder, namely the MA.

The PTK is used as defined by 8.5 for secure link operation.

The second branch, the key distribution branch, consists of two levels and results in a PTK-KD for use in allowing a MP to become a MA, and in securing communications between a MA and the MKD.
· KDK – the first level of the key distribution branch, this key is derived as a function of the MSK or PSK and the Mesh ID and stored by the supplicant MP and the MKD. This key is mutually derived by the supplicant MP and the MKD. There is only a single KDK derived between the supplicant MP and the MKD.

· PTK-KD – the second level of the key distribution branch that defines protection keys for communication between MA and MKD. The PTK-KD is mutually derived by the supplicant MP (when it becomes a MA) and the MKD.

8.8.2.3 Key Derivation Function

The key derivation function for the mesh key hierarchy, KDF, is a variant of the PRF function defined in 8.5.1.1, and defined as follows:

Output = KDF-Length (K, label, Context) where
Input:
K, a 256 bit key derivation key

label, a string identifying the purpose of the keys derived using this KDF

Context, a bit string that provides context to identify the derived key

Length, the length of the derived key in bits

Output: a Length-bit derived key

result = ""

iterations = (Length+255)/256

do i = 1 to iterations

result = result || HMAC-SHA256(K, i || label || 0x00 || Context || Length)

od

return first Length bits of result, and securely delete all unused bits
In this algorithm, i and Length are encoded as 16-bit unsigned integers, represented using the bit ordering conventions of 7.1.1.

8.8.2.4 PMK-MKD
The top level key of the mesh key hierarchy link security branch, PMK-MKD binds the SPA, MKD domain Identifier, and Mesh ID with the keying material resulting from the negotiated AKM. The PMK-MKD is the top level 256-bit keying material used to derive the next level keys (PMK-MAs):
PMK-MKD = KDF-256(XXKey, “MKD Key Derivation”, MeshIDlength || MeshID || MKDD-ID || 0x00 || SPA)
where

· KDF-256 is the KDF function as defined in 8.8.2.3 used to generate a key of length 256 bits.
· If the AKM negotiated is 00-0F-AC:5, then XXKey shall be the second 256 bits of the MSK (MSK being derived from the IEEE 802.1X authentication), i.e., XXKey = L(MSK, 256, 256). If the AKM negotiated is 00-0F-AC:6, then XXKey shall be the PSK.

· “MKD Key Derivation” is 0x4D4B44204B65792044657269766174696F6E.

· MeshIDLength is a single octet whose value is the number of octets in the Mesh ID.

· Mesh ID is the mesh identifier, a variable length sequence of octets, as it appears in the Beacons and Probe Responses.

· MKDD-ID is the 6-octet MKD domain identifier field from the MKD domain information element that was used during Initial EMSA Authentication.

· SPA is the supplicant MP’s MAC address.
The PMK-MKD is referenced and named as follows:
PMK-MKDName = Truncate-128(SHA-256(“MKD Key Name” || MeshIDlength || MeshID || MKDD-ID || 0x00 || SPA || ANonce))
where

· “MKD Key Name” is 0x4D4B44204B6579204E616D65.

· ANonce is an unpredictable 256-bit random value generated by the PMK-MKD holder (MKD), delivered along with PMK-MA to the MA, and provided by the MA to the supplicant MP during Initial EMSA Authentication.

· Truncate-128(-) returns the first 128 bits of its argument, and securely destroys the remainder.

8.8.2.5 PMK-MA
The second level key of the mesh key hierarchy link security branch, PMK-MA, is a 256-bit key used to derive the PTK. The PMK-MA binds the SPA, MKD, and MA:

PMK-MA = KDF-256(PMK-MKD, “MA Key Derivation”, PMK-MKDName || MA-ID || 0x00 || SPA)

where

· KDF-256 is the KDF function as defined in 8.8.2.3 used to generate a key of length 256 bits.
· PMK-MKD is the key defined in 8.8.2.4.

· “MA Key Derivation” is 0x4D41204B65792044657269766174696F6E.

· PMK-MKDName is defined in 8.8.2.4.

· MA-ID is the identifier of the holder of PMK-MA (MA).

· SPA is the supplicant MP’s MAC address.

The PMK-MA is referenced and named as follows:

PMK-MAName = Truncate-128(SHA-256(“MA Key Name” || PMK-MKDName || MA-ID || 0x00 || SPA))
where

· “MA Key Name” is 0x4D41204B6579204E616D65.
8.8.2.6 PTK

The third level key of the mesh key hierarchy link security branch is the PTK. This key is mutually derived by the Supplicant MP and the MA with the key length being a function of the negotiated cipher suites as defined by Table 60 in 8.5.2.

The PTK derivation is as follows:
PTK = KDF-PTKLen(PMK-MA, “Mesh PTK Key derivation”, SNonce || ANonce || SPA || MA-ID || PMK-MAName)

where

· KDF-PTKLen is the KDF function as defined in 8.8.2.3 used to generate a PTK of length PTKLen.

· PMK-MA is the key that is shared between the Supplicant MP and the MA

· “Mesh PTK Key derivation” is 0x4D6573682050544B204B65792064657269766174696F6E.

· SNonce is a 256 bit random bit string contributed by the Supplicant MP

· ANonce is a 256 bit random string contributed by the MKD or MA

· SPA is the Supplicant MP’s MAC address

· MA-ID is the MAC address of the MA.

· PMK-MAName is defined in 8.8.2.5
· PTKlen is the total number of bits to derive, e.g., number of bits of the PTK. The length is dependent on the negotiated cipher suites as defined by Table 60 in 8.5.2.

Each PTK has three associated keys, KCK, KEK, and TK, derived as follows:

The KCK shall be computed as the first 128 bits (bits 0-127) of the PTK:

KCK = L(PTK, 0, 128)

where L(-) is defined in 8.5.1.

The KCK is used to provide data origin authenticity between a supplicant MP and the MA, as defined in 8.8.3.

The KEK shall be computed as bits 128-255 of the PTK:

KEK = L(PTK, 128, 128)
The KEK is used to provide data confidentiality between a supplicant MP and the MA, as defined in 8.8.3.
Temporal keys (TK) shall be computed as bits 256-383 (for CCMP) or bits 256-511 (for TKIP) of the PTK:

TK = L(PTK, 256, 128), or

TK = L(PTK, 256, 256)

The temporal key is configured into the Supplicant MP through the use of the MLME-SETKEYS.request primitive. The MP uses the temporal key with the pairwise cipher suite; interpretation of this value is cipher-suite specific.

The PTK is referenced and named as follows:
PTKName = Truncate-128(SHA-256(PMK-MAName || “Mesh PTK Name” || SNonce || ANonce || MA-ID || SPA))
where

· “Mesh PTK Name” is 0x4D6573682050544B204E616D65.
8.8.2.7 KDK

The first level key of the key distribution branch, KDK binds the MA-ID (the MAC address of the MP establishing the KDK to become a MA), MKD domain identifier, and Mesh ID with the keying material resulting from the negotiated AKM. The KDK is used to derive the PTK-KD.
KDK = KDF-256(XXKey, “Mesh Key Distribution Key”, MeshIDLength || MeshID || MKDD-ID || 0x00 || MA-ID)
where

· KDF-256 is the KDF function as defined in 8.8.2.3 used to generate a key of length 256 bits.
· If the AKM negotiated is 00-0F-AC:5, then XXKey shall be the second 256 bits of the MSK (MSK being derived from the IEEE 802.1X authentication), i.e., XXKey = L(MSK, 256, 256). If the AKM negotiated is 00-0F-AC:6, then XXKey shall be the PSK.

· “Mesh Key Distribution Key” is 0x4D657368204B657920446973747269627574696F6E204B6579.

· MeshIDLength is a single octet whose value is the number of octets in the Mesh ID.

· Mesh ID is the mesh identifier, a variable length sequence of octets, as it appears in the Beacons and Probe Responses.

· MKDD-ID is the 6-octet MKD domain identifier field from the MKD domain information element that was used during Initial EMSA Authentication.

· MA-ID is the MAC address of the MP establishing a security association with the MKD in order to become configured as a MA.
The KDK is referenced and named as follows:
KDKName = Truncate-128(SHA-256(“KDK Name” || MeshIDLength || MeshID || MKDD-ID || 0x00 || MA-ID || ANonce))
where

· “KDK Name” is 0x4B444B204E616D65.

· Truncate-128(-) returns the first 128 bits of its argument, and securely destroys the remainder.
· ANonce is identical to the value used to calculate PMK-MKDName, as described in 8.8.2.4.
8.8.2.8 PTK-KD
The second level key of the key distribution branch, PTK-KD, is a 256-bit key that is mutually derived by a MA and a MKD. The PTK-KD is derived:

PTK-KD = KDF-256(KDK, “Mesh PTK-KD Key”, MA-Nonce || MKD-Nonce || MA-ID || MKD-ID)
where

· KDK is the key defined in 8.8.2.7.
· “Mesh PTK-KD Key” is 0x4D6573682050544B2D4B44204B6579.

· MA-Nonce is a 256-bit random string contributed by the MA.

· MKD-Nonce is a 256-bit random string contributed by the MKD.

· MA-ID is the MAC address of the MA.

· MKD-ID is the MAC address of the MKD.

The PTK-KD has two associated keys, the Key confirmation key for key distribution (KCK-KD) and the Key encryption key for key distribution (KEK-KD), derived as follows:

The KCK-KD shall be computed as the first 128 bits (bits 0-127) of the PTK-KD:

KCK-KD = L(PTK-KD, 0, 128)

where L(-) is defined in 8.5.1.

The KCK-KD is used to provide data origin authenticity in messages exchanged between MA and MKD, as defined in 8.8.3.2.

The KEK-KD shall be computed as bits 128-255 of the PTK-KD:

KEK-KD = L(PTK-KD, 128, 128)

The KEK-KD is used to provide data confidentiality in messages exchanged between MA and MKD, as defined in 8.8.3.2.

The PTK-KD is referenced and named as follows:
PTK-KDName = Truncate-128(SHA-256(KDKName || “PTK-KD Name” || MA-Nonce || MKD-Nonce || MA-ID || MKD-ID))
where

· “PTK-KD Name” is 0x50544B2D4B44204E616D65.
8.8.2.9 Mesh key holders
8.8.2.9.1 Key holder requirements

The MKD and MA are responsible for the derivation of keys in the mesh key hierarchy. For EMSA, the functions of the IEEE 802.1X Authenticator are distributed between the MKD and MA. Each mesh key holder shall have an identity that is communicated to the supplicant MP and other key holders which is bound into the key derivation. Each identity shall be mapped to a physical entity where it resides.

The MKD shall meet the following requirements

· The MKD shall be co-resident with the NAS client functionality of the IEEE 802.1X Authenticator.

· The MKD domain identifier (MKDD-ID) uniquely identifies a MKD (i.e., there is a one-to-one mapping between a MKD domain and a MKD). A MKD’s MKDD-ID shall be set to the value of dot11MeshKeyDistributorDomainID. The MKDD-ID is bound into the derivation of the first level keys (PMK-MKD and KDK).

· The mesh key distributor identifier (MKD-ID) shall be set to the MAC address of the physical entity that stores the MKD. The MKD-ID is used in the generation of the PTK-KD.

· When the PMK-MKD lifetime expires, the MKD shall delete the PMK-MKD SA and should revoke all PMK-MAs derived from the PMK-MKD. A mechanism for PMK-MA revocation is provided in 8.8.3.3.2.3.

The MA shall meet the following requirements.

· The mesh authenticator identity (MA-ID) shall be set to the MAC address of the physical entity that stores the PMK-MA and uses it to generate the PTK. That same MAC address shall be used to advertise the MA identity to mesh points and to the MKD.
· The MA shall provide the IEEE 802.1X Authenticator function to derive and distribute the GTK to connected MPs.

· When the PMK-MA lifetime expires, the MA shall delete the PMK-MA SA and shall revoke all PTKs derived from the PMK-MA using the MLME-DELETEKEYS primitive.

8.8.2.9.2 PMK-MA Distribution within a MKD domain
A MKD domain is identified by the MKD domain identifier (MKDD-ID). A MKD domain contains a single MKD, and the MKD uses the MKDD-ID to identify itself. A MKD domain comprises at least one MA, which has established a security association with the MKD.
An MP creates its mesh key hierarchy during the Initial EMSA Authentication, utilizing information forwarded from the MKD by the MA. During the Initial EMSA Authentication, the MKD derives the PMK-MKD from the MSK acquired during IEEE 802.1X authentication, when the negotiated AKM is 00-0F-AC:5, or from the PSK, when the negotiated AKM is 00-0F-AC:6.

Additionally, the MKD is responsible for deriving a PMK-MA for each MA within the MKD domain. The MKD is responsible for transmitting the derived PMK-MA keys securely to those key holders, along with the PMK-MAName, the key lifetime, and key context information associated with that PMK-MA. The MKD shall also securely transmit the ANonce used in the calculation of PMK-MKDName to the MA for use in the Initial EMSA Authentication mechanism.

The secure transmission of keys and key information from MKD to MA shall be through the use of the mesh key transport protocol described in 8.8.3.2.

Each MA shall derive the PTK mutually with the supplicant MP.
8.8.3 EMSA Establishment Procedure

EMSA defines the following procedures for use within a mesh:
· Initial EMSA Authentication (8.8.3.1) is used by a MP to authenticate and establish the mesh key hierarchy that may be used when securing future links.

· Subsequent EMSA Authentication (8.8.3.2) is used by a MP to securely establish links with peer MPs after it has established a mesh key hierarchy using Initial EMSA Authentication.

· EMSA Key Holder Communication comprises three related mechanisms:

The procedure for establishing communications and security between a MA and a MKD is the mesh key holder security association (8.8.3.3.1).

The mesh key transport protocol (8.8.3.3.2) describes the mechanisms for key delivery and key management within the mesh key hierarchy.

The optional mesh EAP message transport protocol (8.8.3.3.3) describes a mechanism for transporting EAP messages between MKD and MA to facilitate authentication of a supplicant MP.

8.8.3.1 Initial EMSA Authentication Mechanism

During its first authentication in a mesh, a MP establishes the mesh key hierarchy to be used when securing future links. This is referred to as the Initial EMSA Authentication Mechanism, and contains communication exchanged between an MP and a MA with which it is associating.
In this sequence, a MP issues an association request frame containing a Peer Link Open IE and an indication (the MKDDIE) that it wishes to establish the mesh key hierarchy. The MP receives an association response frame containing a Peer Link Confirm IE and information required for the MP to perform key derivations and establish link security. If required, 802.1X authentication occurs next, followed by an EMSA 4-way handshake.

The supplicant MP in the Initial EMSA Authentication mechanism sends an association request frame to the MA. The association request frame shall contain:
· Peer Link Open IE, which shall be set according to 11A.1.5

· MKDDIE, configured exactly as advertised by the supplicant MP in its beacons and probe responses.

· RSNIE, which shall be set according to the policy in 8.4.3 and 8.8.1.4, and with the PMKID list field empty.
The association response frame from the MA shall contain:
· Peer Link Confirm IE, which shall be set according to 11A.1.5

· MKDDIE, configured exactly as advertised by the MA in its beacons and probe responses.

· EMSAIE, where

MA-ID is set to the MAC address of the MA

The Optional Parameters field includes the MKD-ID, which contains the identifier of the MKD with which the MA has a security association.

The Optional Parameters field includes the EAP Transport List, which contains the list of transport types supported by the MKD with which the MA has a security association.

All other fields are set to zero.

· RSNIE, configured exactly as advertised by the MA in its beacons and probe responses, with the PMKID list field empty.
After successful peer link establishment, the supplicant MP and the MA proceed with IEEE 802.1X authentication, if required. The IEEE 802.1X exchange is sent between the supplicant MP and the MA using EAPOL messages carried in IEEE 802.11 data frames. The MA initiates the IEEE 802.1X exchange with the supplicant MP and may transport the 802.1X exchange to the MKD using the optional mesh EAP message transport protocol, as specified in 8.8.3.3.3.
Upon successful completion of the IEEE 802.1X authentication, the MKD receives the MSK and authorization attributes associated with it and with the supplicant MP. If a mesh key hierarchy already exists for this supplicant, the MKD shall delete the old PMK-MKD SA and PMK-MA SAs. It then calculates the PMK-MKD and PMK-MKDName. The PMK-MKD SA includes:

· MKDD-ID

· PMK-MKD
· PMK-MKDName

· SPA, and

· authorization information including PMK-MKD lifetime.

The MKD then generates a PMK-MA for the MA. The PMK-MA SA includes:

· PMK-MA,

· PMK-MA lifetime,

· PMK-MAName,

· MA-ID,

· PMK-MKDName, and

· SPA

The MKD then delivers the PMK-MA to the MA using the mesh key distribution protocol defined in 8.8.3.3.2. Once the PMK-MA is delivered, the MA and supplicant MP then perform an EMSA 4-way handshake. The EAPOL-Key frame notation is defined in 8.5.2.2.

MA -> Supplicant: Data(EAPOL-Key(0, 0, 1, 0, P, 0, 0, ANonce, 0, DataKD_M1)) where DataKD_M1 = 0.
Supplicant -> MA: Data(EAPOL-Key(0, 1, 0, 0, P, 0, 0, SNonce, MIC, DataKD_M2)) where DataKD_M2 = (RSNIE, MKDDIE, GTK KDE).

MA -> Supplicant: Data(EAPOL-Key(1, 1, 1, 1, P, 0, 0, ANonce, MIC, DataKD_M3)) where DataKD_M3 = (RSNIE, MKDDIE, EMSAIE, GTK KDE, Lifetime KDE).

Supplicant -> MA: Data(EAPOL-Key(1, 1, 0, 0, P, 0, 0, MIC, DataKD_M4)) where DataKD_M4 = 0.
The message sequence is similar to that of 8.5.3. The contents of each message shall be as described in 8.5.3, except as follows:
· Message 1: ANonce is the value received by the MA from the MKD during PMK-MA delivery. The Key Data field is empty.
· Message 2: The RSNIE shall contain only the PMK-MAName in the PMKID list field. The remaining fields of the RSNIE and the MKDDIE shall be the same as that provided in the association request frame sent by the supplicant MP. The GTK KDE shall contain the GTK of the supplicant MP. The Key Data field shall be encrypted.
· Message 3: The RSNIE shall contain only the PMK-MAName, as calculated by the MA, in the PMKID list field. The remaining fields of the RSNIE, as well as the MKDDIE and EMSAIE shall be the same as that provided in the association response frame sent by the MA. The Lifetime KDE shall contain the lifetime of the PMK-MA, expressed in seconds.
The PTK shall be calculated by the supplicant and the MA according to the procedures given in 8.8.2.6.
Following a successful EMSA 4-way handshake, the IEEE 802.1X controlled port shall be opened on both the supplicant and MA. Subsequent EAPOL-Key frames shall use the Key Replay Counter to ensure they are not replayed.
8.8.3.2 Subsequent EMSA Authentication Mechanism
The subsequent EMSA authentication mechanism is used by a MP after it has established a mesh key hierarchy using the initial EMSA authentication mechanism. The subsequent EMSA authentication mechanism may only be performed between MPs that advertise the same MKD domain identifiers in the MKDDIE in beacons and probe responses.

The subsequent EMSA authentication mechanism follows the procedure specified in 8.8.3.1, Initial EMSA authentication mechanism, with the following modifications.

The RSNIE sent by the supplicant MP in the association request frame (peer link open message) shall contain a single entry in the PMKID list field. The value of the entry is PMK-MKDName, identifying the PMK-MKD the supplicant MP created during its initial EMSA authentication.

The RSNIE sent by the authenticator MP in the association response frame (peer link confirm message) shall contain the PMKID list entry sent by the supplicant MP in the peer link open message.

After successful peer link establishment, the MA shall calculate the PMK-MAName using the PMK-MKDName sent by the supplicant MP in the peer link open message. If the MA does not have the key identified by PMK-MAName, it may attempt to retrieve that key using the mesh key transport protocol according to 8.8.3.3.2. If the MA is unable to retrieve the PMK-MA, it shall initiate IEEE 802.1X authentication (if required) to establish a mesh key hierarchy for the supplicant MP, and continue with the Initial EMSA Authentication mechanism as specified in 8.8.3.1.

Upon obtaining the specified PMK-MA, the MA omits IEEE 802.1X authentication, and initiates the EMSA 4-way handshake, as specified in 8.8.3.1. However, the ANonce value in message 1 is a random nonce created by the MA, and is not the value received during PMK-MA delivery.

8.8.3.3 Following a successful EMSA 4-way handshake, the IEEE 802.1X controlled port shall be opened on both the supplicant and MA. Subsequent EAPOL-Key frames shall use the Key Replay Counter to ensure they are not replayed.
8.8.3.4 EMSA Key Holder Communication

In order to support the mesh key hierarchy, mesh key holders must communicate securely to provide the following services to mesh points:

· transporting EAP authentication traffic between key holders to permit a supplicant mesh point to perform 802.1X authentication, and

· securely delivering derived keys to facilitate the use of a derived key hierarchy.

A mesh point invokes the mesh key holder security handshake to establish a security association with a mesh key distributor (MKD). The mechanism permits the mesh point to operate as a mesh authenticator (MA). Subsequently, the MA advertises, in beacons and probe responses, its capability to authenticate mesh points using the mesh key hierarchy.

8.8.3.4.1 Mesh key holder security association
A security association is established between a MA and MKD to provide secure communications between these two key holders within a mesh. The mesh key holder security association is used to provide message integrity and data origin authenticity in all messages passed between MA and MKD after the security association is established. Further, it provides encryption of derived keys and key context during key delivery protocols. Establishing the mesh key holder security association begins with discovery of the MKD, followed by a handshake initiated by the MA. The result of the security association is the pairwise transient key for key derivation (PTK-KD), used to provide the security services between MA and MKD.
8.8.3.4.1.1 Mesh key distributor discovery

Prior to initiating the mesh key holder security handshake described in clause 8.8.3.3.1.2, a MA must obtain the address of its MKD. If the MA is not also a MKD, it may obtain the MKD-ID address of its MKD from the EMSAIE conveyed in the Association Response frame received during its initial EMSA security association.
8.8.3.4.1.2 Mesh key holder security handshake

The mesh key holder security handshake may commence after a mesh point has completed its Initial EMSA Authentication. The mechanism permits the MP to establish a security association with the MKD that derived its PMK-MKD during Initial EMSA Authentication.

The MP initiates the exchange by constructing mesh key holder security handshake message 1, and sending the message to the MKD identified by the MKD-ID received in the Association Response frame during the MP’s Initial EMSA Authentication. The MP selects an EAP Transport mechanism from among those listed in the EMSAIE received in the Association Response frame during the MP’s Initial EMSA Authentication. The MP shall decline to establish a mesh key holder security association with the MKD if the EAP transport mechanisms supported by the MP and MKD do not overlap. The contents of handshake message 1 are given in 8.8.3.3.1.2.1.
Upon receiving handshake message 1, the MKD chooses MKD-Nonce, a value chosen randomly, and computes the PTK-KD using the MA-Nonce received in handshake message 1 and MKD-Nonce, as specified in 8.8.2.8. The MKD verifies that it supports the selected EAP Transport mechanism; if not, the handshake fails. The MKD sends handshake message 2, with contents as given in 8.8.3.3.1.2.2. Upon receiving handshake message 2, the MP computes the PTK-KD, and sends handshake message 3, with contents as given in 8.8.3.3.1.2.3.
After completing the handshake, the MP sets both the “Mesh Authenticator and “Connected to MKD” bits to 1 in the MKDDIE in its beacons and probe responses to advertise that it is configured as a mesh authenticator that is connected to the MKD. The MKDDIE shall contain the MKDD-ID that is received from the MKD in mesh key holder security handshake message 2. A MA must maintain a route to the MKD. If the route is lost and cannot be repaired, the MA shall set the “Connected to MKD” bit to 0 in the MKDDIE. In such a case, the “Mesh Authenticator” bit may be set to 1 to advertise the ability to act in the IEEE 802.1X Authenticator role using, for example, cached keys. After the route is re-established, the MP may again set the “Connected to MKD” bit to 1.
The MA and the MKD will maintain separate key replay counters for sending messages providing mesh key transport that are protected using the PTK-KD. Immediately upon deriving the PTK-KD, both the MKD and MA shall reset their replay counters to zero.

8.8.3.4.1.2.1 Mesh key holder security handshake message 1

Mesh key holder security handshake message 1 is a mesh key holder security establishment EMSA mesh action frame with the following contents:

The MAC address of the MKD shall be asserted in the DA field of the message header.

The MAC address of the MP shall be asserted in the SA field of the message header.

The Mesh ID IE shall contain the Mesh ID that the MP advertises in its beacons and probe responses.

The MKDDIE shall contain the value of MKDD-ID that was contained in the MKDDIE received in the Association Response frame during the MP’s Initial EMSA Authentication. The Mesh Security Configuration field shall be set to zero.
The MKHSIE shall be set as follows:

· MA-Nonce shall be set a value chosen randomly by the MP, following the recommendations of 8.5.8.

· MA-ID shall be set to the MAC address of the MP.
· MKD-ID shall be set to the MAC address of the MKD.

· The Transport Type Selector field shall contain a single transport selector (with format as given in Figure J). The specified transport type shall be from among those listed in the EMSAIE received in the Association Response frame during the MP’s Initial EMSA Authentication.

· All other fields shall be set to zero.
8.8.3.4.1.2.2 Mesh key holder security handshake message 2

Mesh key holder security handshake message 2 is a mesh key holder security establishment EMSA mesh action frame with the following contents:

The MAC address of the MP shall be asserted in the DA field of the message header.

The MAC address of the MKD shall be asserted in the SA field of the message header.

The Mesh ID IE shall contain the Mesh ID as configured in dot11MeshID.

The MKDDIE shall contain the MKDD-ID as configured in dot11MeshKeyDistributorDomainID. The Mesh Security Configuration field shall be set to zero.
The MKHSIE shall be set as follows:

· MA-Nonce, MA-ID, and MKD-ID shall be set to the values contained in handshake message 1.

· MKD-Nonce shall be set to a value chosen randomly by the MKD, following the recommendations of 8.5.8.

· The Transport Type Selector field shall be set to the value contained in handshake message 1.

· The MIC algorithm of the MIC control field shall be set to one of the values given in 7.3.2.64.

· The Information element count field of the MIC control field shall be set to 3, the number of information elements in this frame.

· The MIC shall be calculated using the KCK-KD, by the algorithm selected by the MIC algorithm subfield, on the concatenation in the following order, of:

MP MAC address

MKD MAC address

Handshake sequence number (1 octet), set to the value 2.

Contents of the Mesh ID IE, from the element ID to the end of the Mesh ID IE.
Contents of the MKDDIE, from the element ID to the end of the MKDDIE.
Contents of the MKHSIE, from element ID through MIC Control fields, and omitting the MIC field.

8.8.3.4.1.2.3 Mesh key holder security handshake message 3

Mesh key holder security handshake message 3 is a mesh key holder security establishment EMSA mesh action frame with the following contents:

The MAC address of the MKD shall be asserted in the DA field of the message header.

The MAC address of the MP shall be asserted in the SA field of the message header.

The Mesh ID IE shall contain the Mesh ID IE received in handshake message 2.

The MKDDIE shall contain the MKDDIE received in handshake message 2.

The MKHSIE shall be set as follows:

· MA-Nonce, MKD-Nonce, MA-ID, MKD-ID, and Transport Type Selector shall be set to the values contained in handshake message 2.

· The MIC algorithm of the MIC control field shall be set to one of the values given in 7.3.2.64.

· The Information element count field of the MIC control field shall be set to 3, the number of information elements in this frame.

· The MIC shall be calculated using the KCK-KD, by the algorithm selected by the MIC algorithm subfield, on the concatenation in the following order, of:

MP MAC address

MKD MAC address

Handshake sequence number (1 octet), set to the value 3.

Contents of the Mesh ID IE, from the element ID to the end of the Mesh ID IE.
Contents of the MKDDIE, from the element ID to the end of the MKDDIE.
Contents of the MKHSIE, from element ID through MIC Control fields, and omitting the MIC field.

8.8.3.4.2 Mesh key transport protocol

The mesh key transport protocol describes the method by which the MKD securely transmits a derived PMK-MA to a MA, along with key context and additional related information. An additional management protocol permits the MKD to request the MA delete a key that has previously been delivered.
Three protocols are defined for mesh key delivery and management, each consisting of 2 messages. The pull protocol is initiated by the MA by sending a request message, followed by the MKD delivering the PMK-MA. The push protocol is initiated by the MKD delivering (unsolicited) the PMK-MA, followed by the MA sending a confirmation message. Finally, the key delete protocol is initiated by the MKD by sending a message requesting key deletion to the MA, followed by the MA sending a confirmation message.

The MA and MKD maintain separate key replay counters for use in these three protocols. In the pull protocol, the MA’s key replay counter is used to protect the first message, which the MA sends. In both the push protocol and the key delete protocol, the MKD’s key replay counter is used to protect the first message, which the MKD sends.

In each protocol, prior to sending the first message, the sender shall increment the value of its replay counter. Upon receiving the first message, the recipient shall verify that the replay counter value contained in the first message is a value not yet used by the sender in a first message. If the replay counter value has been previously used, the message shall be discarded. Thus, MA and MKD must each maintain the state of two replay counters: the counter used to generate a value for first messages that it sends, and a counter used to detect replay in first messages that it receives.
Further, the second message of each protocol shall contain a replay counter value that equals the value in the first message of the protocol, to permit matching messages within a protocol instance.
8.8.3.4.2.1 Mesh key transport pull protocol

The key transport pull protocol is a two-message exchange consisting of a PMK-MA request message sent to the MKD, followed by a key delivery sent to the MA. Both messages contain a MIC for integrity protection, and the PMK-MA being delivered is encrypted.

Mesh key transport pull message 1 is a PMK-MA request EMSA mesh action frame. The MAC address of the MKD shall be asserted in the DA field of the message header, and the MAC address of the MA shall be asserted in the SA field of the message header. Prior to constructing the message, the value of the MA’s replay counter associated with the PTK-KD shall be incremented by 1.
The MKDDIE shall be configured exactly as advertised by the MA in its beacons and probe responses.

The contents of the MEKIE are as follows:

· Replay counter shall be set to the value of the MA’s replay counter.

· SPA shall be set to the MAC address of the MP that, during its Initial EMSA Authentication, generated the mesh key hierarchy that includes the PMK-MA being requested

· PMK-MKDName shall be set to the identifier of the key from which the PMK-MA being requested was derived.
· ANonce shall be set to zero.

· Encrypted Contents Length field shall be set to 0. The Encrypted Contents field shall be omitted.

· The MIC algorithm of the MIC control field shall be set to one of the values given in 7.3.2.64.

· The Information element count field of the MIC control field shall be set to 2, the number of information elements in this frame.

· The MIC shall be calculated using the KCK-KD, by the algorithm selected by the MIC algorithm subfield, on the concatenation in the following order, of:

MA MAC address

MKD MAC address

Action Value field of the PMK-MA request EMSA mesh action frame, which contains the value 3.

Contents of the MKDDIE, from the element ID to the end of the MKDDIE.

Contents of the MEKIE, from element ID through MIC Control fields, and omitting the MIC field.

Upon receiving message 1, the MKD shall verify the MIC, and shall verify that the Replay counter field contains a value not previously used with the PTK-KD in a first message sent by the MA. If verified, the MKD may attempt to derive the PMK-MA for use between the MP identified by SPA and the MA that sent message 1, using the key identified by PMK-MKDName. Subsequently, the MKD constructs and sends message 2.

Mesh key transport pull message 2 is a PMK-MA delivery pull EMSA mesh action frame. The MAC address of the MA shall be asserted in the DA field of the message header, and the MAC address of the MKD shall be asserted in the SA field of the message header.
The MKDDIE shall contain the MKDDIE received in message 1.

The contents of the MEKIE are as follows:

· Replay counter shall be set to the value of replay counter in message 1.

· SPA shall be set to the value contained in message 1.

· PMK-MKDName shall be set to the value contained in message 1 if an encrypted PMK-MA is included in the Encrypted Contents field. If the Encrypted Contents field is omitted, then PMK-MKDName shall be set to zero.

· ANonce shall be set to the random value that was selected by the MKD for derivation of the PMK-MKDName that was indicated in message 1. If the PMK-MKDName field is set to zero, then the ANonce shall be set to zero.
· Encrypted Contents Length field shall be set to the length in octets of the Encrypted Contents field, or shall be set to zero if the Encrypted Contents field is omitted.

· Encrypted Contents shall be set as follows:

If the MKD does not have a PMK-MA to send to the MA (e.g., it was unable to derive the key), the Encrypted Contents field shall be omitted.

If the MKD is sending an PMK-MA to the MA, then the Encrypted Contents field shall contain the concatenation: key_data = {PMK-MA || PMK-MAName || Lifetime KDE}.

Lifetime KDE is defined in Figures 144 and 149. The KDE contains a 4-octet value containing the number of seconds remaining in the lifetime of the PMK-MA.
If the MIC algorithm is 1 (HMAC-SHA1-128), then the concatenation key_data shall be encrypted using NIST AES Key Wrap algorithm, with the KEK-KD, as defined in RFC 3394, prior to being inserted in the Encrypted Contents field.

· The MIC algorithm of the MIC control field shall be set to one of the values given in 7.3.2.64.

· The Information element count field of the MIC control field shall be set to 2, the number of information elements in this frame.

· The MIC shall be calculated using the KCK-KD, by the algorithm selected by the MIC algorithm subfield, on the concatenation in the following order, of:

MA MAC address

MKD MAC address

Action Value field of the PMK-MA delivery pull EMSA mesh action frame, which contains the value 4.

Contents of the MKDDIE, from the element ID to the end of the MKDDIE.

Contents of the MEKIE, from element ID through MIC Control fields, and omitting the MIC field.

Upon receiving message 2, the MA shall verify the MIC, and shall verify that the Replay counter field contains the value as in message 1.

8.8.3.4.2.2 Mesh key transport push protocol

The key transport push protocol is a two-message exchange consisting of a PMK-MA delivery message sent to the MA, followed by a confirmation message sent in reply. Both messages contain a MIC for integrity protection, and the PMK-MA being delivered is encrypted.

Mesh key transport push message 1 is a PMK-MA delivery push EMSA mesh action frame. The MAC address of the MA shall be asserted in the DA field of the message header, and the MAC address of the MKD shall be asserted in the SA field of the message header. Prior to constructing the message, the value of the MKD’s replay counter associated with the PTK-KD shall be incremented by 1.
The MKDDIE shall contain the MKDD-ID as configured in dot11MeshKeyDistributorDomainID.
The contents of the MEKIE are as follows:

· Replay counter shall be set to the value of the MKD’s replay counter.
· SPA shall be set to the MAC address of the MP that, during its Initial EMSA Authentication, generated the mesh key hierarchy that includes the PMK-MA being delivered

· PMK-MKDName shall be set to the identifier of the key from which the PMK-MA being delivered was derived.
· ANonce shall be set to the random value that was selected by the MKD for derivation of the PMK-MKDName indicated in this message

· Encrypted Contents Length field shall be set to the length in octets of the Encrypted Contents field.

· Encrypted Contents field shall contain the concatenation: key_data = {PMK-MA || PMK-MAName || Lifetime KDE}

Lifetime KDE is defined in Figures 144 and 149. The KDE contains a 4-octet value containing the number of seconds remaining in the lifetime of the PMK-MA.

If the MIC algorithm is 1 (HMAC-SHA1-128), then the concatenation key_data shall be encrypted using NIST AES Key Wrap algorithm, with the KEK-KD, as defined in RFC 3394, prior to being inserted in the Encrypted Contents field.

· The MIC algorithm of the MIC control field shall be set to one of the values given in 7.3.2.64.

· The Information element count field of the MIC control field shall be set to 2, the number of information elements in this frame.

· The MIC shall be calculated using the KCK-KD, by the algorithm selected by the MIC algorithm subfield, on the concatenation in the following order, of:

MA MAC address

MKD MAC address

Action Value field of the PMK-MA delivery push EMSA mesh action frame, which contains the value 1.

Contents of the MKDDIE, from the element ID to the end of the MKDDIE.

Contents of the MEKIE, from element ID through MIC Control fields, and omitting the MIC field.

Upon receiving message 1, the MA shall verify the MIC, and shall verify that the replay counter field contains a value not previously used with the PTK-KD in a first message sent by the MKD. If verified, the MA shall send a confirmation message to the MKD.

Mesh key transport push message 2 is a PMK-MA confirm EMSA mesh action frame. The MAC address of the MKD shall be asserted in the DA field of the message header, and the MAC address of the MA shall be asserted in the SA field of the message header.
The MKDDIE shall contain the MKDDIE received in message 1.

The contents of the MEKIE are as follows:

· Replay counter shall be set to the value of replay counter in message 1.

· SPA, PMK-MKDName, and ANonce shall be set to the values contained in message 1.

· Encrypted Contents Length field shall be set to 0. The Encrypted Contents field shall be omitted.

· The MIC algorithm of the MIC control field shall be set to one of the values given in 7.3.2.64.

· The Information element count field of the MIC control field shall be set to 2, the number of information elements in this frame.

· The MIC shall be calculated using the KCK-KD, by the algorithm selected by the MIC algorithm subfield, on the concatenation in the following order, of:

MA MAC address

MKD MAC address

Action Value field of the PMK-MA confirm EMSA mesh action frame, which contains the value 2.

Contents of the MKDDIE, from the element ID to the end of the MKDDIE.

Contents of the MEKIE, from element ID through MIC Control fields, and omitting the MIC field.

Upon receiving message 2, the MKD shall verify the MIC, and shall verify that the Replay counter field contains the value as in message 1.
8.8.3.4.2.3 Mesh key delete protocol

The MKD may initiate the mesh key delete protocol in order to request that a previously-delivered PMK-MA be revoked. Revocation of the PMK-MA implies that the PMK-MA shall be deleted and all keys derived from the PMK-MA shall be deleted.
The key delete protocol is a two-message exchange consisting of a PMK-MA delete message sent to the MA, followed by a confirmation message sent in reply. Both messages contain a MIC for integrity protection.

Mesh key delete message 1 is a PMK-MA delete EMSA mesh action frame. The MAC address of the MA shall be asserted in the DA field of the message header, and the MAC address of the MKD shall be asserted in the SA field of the message header. Prior to constructing the message, the value of the MKD’s replay counter associated with the PTK-KD shall be incremented by 1.

The MKDDIE shall contain the MKDD-ID as configured in dot11MeshKeyDistributorDomainID.

The contents of the MEKIE are as follows:

· Replay counter shall be set to the value of the MKD’s replay counter.

· SPA shall be set to the MAC address of the MP that, during its Initial EMSA Authentication, generated the mesh key hierarchy that includes the PMK-MA that shall be deleted.

· PMK-MKDName shall be set to the identifier of the key from which the PMK-MA that shall be deleted was derived.

· ANonce shall be set to zero.

· Encrypted Contents Length field shall be set to 0. The Encrypted Contents field shall be omitted.

· The MIC algorithm of the MIC control field shall be set to one of the values given in 7.3.2.64.

· The Information element count field of the MIC control field shall be set to 2, the number of information elements in this frame.

· The MIC shall be calculated using the KCK-KD, by the algorithm selected by the MIC algorithm subfield, on the concatenation in the following order, of:

MA MAC address

MKD MAC address

Action Value field of the PMK-MA delete EMSA mesh action frame, which contains the value 5.

Contents of the MKDDIE, from the element ID to the end of the MKDDIE.

Contents of the MEKIE, from element ID through MIC Control fields, and omitting the MIC field.

Upon receiving message 1, the MA shall verify the MIC, and shall verify that the replay counter field contains a value not previously used with the PTK-KD in a first message sent by the MKD. If verified, the MA shall compute the value of PMK-MAName using the PMK-MKDName and SPA included in message 1. The MA shall revoke the PMK-MA named by PMK-MAName, and shall send a confirmation message to the MKD.
Mesh key delete message 2 is a PMK-MA confirm EMSA mesh action frame. The MAC address of the MKD shall be asserted in the DA field of the message header, and the MAC address of the MA shall be asserted in the SA field of the message header.

The MKDDIE shall contain the MKDDIE received in message 1.

The contents of the MEKIE are as follows:

· Replay counter shall be set to the value of replay counter in message 1.

· SPA, PMK-MKDName, and ANonce shall be set to the values contained in message 1.

· Encrypted Contents Length field shall be set to 0. The Encrypted Contents field shall be omitted.

· The MIC algorithm of the MIC control field shall be set to one of the values given in 7.3.2.64.

· The Information element count field of the MIC control field shall be set to 2, the number of information elements in this frame.

· The MIC shall be calculated using the KCK-KD, by the algorithm selected by the MIC algorithm subfield, on the concatenation in the following order, of:

MA MAC address

MKD MAC address

Action Value field of the PMK-MA confirm EMSA mesh action frame, which contains the value 2.

Contents of the MKDDIE, from the element ID to the end of the MKDDIE.

Contents of the MEKIE, from element ID through MIC Control fields, and omitting the MIC field.

Upon receiving message 2, the MKD shall verify the MIC, and shall verify that the Replay counter field contains the value as in message 1.
8.8.3.4.3 Mesh EAP message transport protocol (optional)
This optional protocol describes how the MA may initiate and perform EAP authentication with the supplicant during the supplicant MP’s Initial EMSA Authentication. The use of this protocol is selected during the mesh key holder security handshake defined in 8.8.3.3.1.2 and is described by transport selector 00-0F-AC:0. When the transport selector specifies any other value, the mechanism for EAP Transport is outside the scope of this standard.
EAP, as described in RFC 3748, is a “lock-step protocol,” with request messages sent from the supplicant always receiving a response from the AS. The mesh authentication message transport protocol permits transport of these request and response messages through the mesh, between the MA and the MKD.

The MA initiates 802.1X authentication with the supplicant by sending a first EAP message to the supplicant. If the MA is configured with the appropriate first EAP message to send, then the MA does so. Otherwise, the MA may request the first EAP message from the AS, using the EAP-Start indication described below. When the MA receives an EAP message from the supplicant, the MA sends an EAP Encapsulation EMSA mesh action frame to the MKD that contains the received EAP message. When the MKD has an EAP message, received from the AS and destined for the supplicant, it sends an EAP Encapsulation EMSA mesh action frame to the MA containing the EAP message.

The final EAP Encapsulation EMSA mesh action frame of a sequence will be sent by the MKD, and is given a special type to provide information to the MA. If the EAP authentication of the supplicant provided an “accept” indication to the MKD, then the MKD sends the final message with type “accept” to indicate to the MA that the supplicant should be granted access. Alternatively, if EAP authentication failed, the MKD sends the final message with type “reject” to the MA. Upon reception of an EAP Encapsulation EMSA mesh action frame of type “reject,” the MA shall terminate the peer link with the supplicant.

When an EAP message is included in a EAP Encapsulation EMSA mesh action frame, it is encapsulated within one or several EAP Message IEs. The maximum length EAP message that may be transported is 2231 octets. If the EAP message has length greater than 254 octets, fragmentation is required. In such a case, the EAP message shall be separated into fragments. Each fragment shall be of length 254 octets except the last or only fragment. The maximum number of fragments shall be 9. The fragments are included in one or several EAPMIEs, which each contain a Fragment Control field value indicating the sequence of the fragment, beginning with the value zero. Upon reception, the contents of the EAPMIE EAP Message Fragment fields are concatenated according to the order indicated in the Fragment Control fields to reconstruct an IETF 3748 EAP message.
The EAP-Start indication is sent from MA to MKD by constructing an EAP Encapsulation request message that contains only a single EAP Authentication IE and no EAP Message IEs.
8.8.3.4.3.1 EAP Encapsulation request message

An EAP Encapsulation mesh action message with EAP message type request is sent from MA to MKD, either to transport an EAP message from the supplicant, or to request the AS to initiate EAP authentication (“EAP-Start”).

EAP Encapsulation request message is an EAP Encapsulation EMSA mesh action frame. The MAC address of the MKD shall be asserted in the DA field of the message header, and the MAC address of the MA shall be asserted in the SA field of the message header. The contents of the EAP Authentication IE are as follows:

· EAP Message Type shall be set to 1 to indicate “request”.

· Message Token shall be set to a unique nonce value chosen by the MA.

· SPA shall be set to the MAC address of the supplicant mesh point that is participating in EAP authentication.

· Message Fragments shall indicate the number of EAP Message IEs that are included in this EAP Encapsulation request message.

If the MA is sending an “EAP-Start” notification, the Message Fragments field shall be set to zero, and no EAP Message IEs are included in the EAP Encapsulation request message.

· The MIC algorithm of the MIC control field shall be set to one of the values given in 7.3.2.64.

· The Information element count field of the MIC control field shall be set to 1, the number of information elements in this frame.

· The MIC shall be calculated using the KCK-KD, by the algorithm selected by the MIC algorithm subfield, on the concatenation in the following order, of:

MA MAC address

MKD MAC address

Contents of the EAP Authentication IE, from element ID through MIC Control fields, and omitting the MIC field.

If present, contents of all EAPMIEs, from the element ID field of the first EAPMIE, through the EAP Message Fragment field of the last EAPMIE. The EAPMIEs shall be ordered with increasing Fragment Control field values.
Zero or more EAP Message IEs may be present. If present, the contents of each EAP Message IE are as follows:

· Fragment Control contains the number of the fragment contained in the EAP Message Fragment field.

· EAP Message Fragment contains an EAP message with format as defined in IETF RFC 3748, or portion thereof. The maximum size of the EAP message portion is 254 octets.

Upon receiving a request message, the MKD shall verify the MIC, and store the Message Token for use in constructing the response message.

8.8.3.4.3.2 EAP Encapsulation response message

An EAP Encapsulation mesh action message with EAP message type response, accept, or reject is sent from MKD to MA, to transport an EAP message from the AS, and, in the final response message of a sequence, provide an indication of the success of the EAP authentication.

EAP Encapsulation response message is an EAP Encapsulation EMSA mesh action frame. The MAC address of the MA shall be asserted in the DA field of the message header, and the MAC address of the MKD shall be asserted in the SA field of the message header. The contents of the EAP Encapsulation IE are as follows:

· EAP Message Type shall be set as follows:

If this is the final message of the sequence, and the EAP authentication of the supplicant resulted in an “accept” indication, EAP Message Type shall be set to 2, to indicate “accept.”

If this is the final message of the sequence, and the EAP authentication of the supplicant resulted in a “reject” indication, EAP Message Type shall be set to 3, to indicate “reject.”

Otherwise, EAP Message Type shall be set to 11, to indicate “response.”

· Message Token shall be set to the value contained in the request message to which this response corresponds.

· SPA shall be set to the value contained in the request message to which this response corresponds.

· Message Fragments shall indicate the number of EAP Message IEs that are included in this EAP Encapsulation request message.
· The MIC algorithm of the MIC control field shall be set to one of the values given in 7.3.2.64.

· The Information element count field of the MIC control field shall be set to 1, the number of information elements in this frame.

· The MIC shall be calculated using the KCK-KD, by the algorithm selected by the MIC algorithm subfield, on the concatenation in the following order, of:

MA MAC address

MKD MAC address

Contents of the EAP Authentication IE, from element ID through MIC Control fields, and omitting the MIC field.

Contents of all EAPMIEs, from the element ID field of the first EAPMIE, through the EAP Message Fragment field of the last EAPMIE. The EAPMIEs shall be ordered with increasing Fragment Control field values.
One or more EAP Message IEs shall be present. The contents of each EAP Message IE are as follows:

· Fragment Control contains the number of the fragment contained in the EAP Message Fragment field.

· EAP Message Fragment contains an EAP message with format as defined in IETF RFC 3748, or portion thereof. The maximum size of the EAP message portion is 254 octets.

Upon receiving a response message, the MA shall verify the MIC, and verify that the Message Token received in the message matches the value sent in the most recent request message. If the final response message receive has type “reject,” the MA shall terminate the peer link with the supplicant.
Add the following text after Clause 10.3.29

10.3.30 PassivePeerLinkOpen
The following primitives describe how a mesh entity passively starts a peer link establishment process.

10.3.30.1 MLME-PassivePeerLinkOpen.request
10.3.30.1.1 Function

This primitive requests that the mesh entity start the link establishment protocol passively.

10.3.30.1.2 Semantics of the service primitive

The primitive parameters are as follows:

MLME-PassivePeerLinkOpen.request(

RetryTimeout,

OpenTimeout,

CancelTimeout,

MaxReqs,

CapabilityInformation,

ListenInterval

)

	Name
	Type
	Valid range
	Description

	RetryTimeout
	Integer
	≥ 1
	Specifies the time limit (in TU) the mesh entity will wait for a confirmation from the neighbor mesh entity before retrying to send another peer link open request.

	OpenTimeout
	Integer
	≥ 1
	Specifies the time limit (in TU) the mesh entity will wait for the peer link open request from the neighbour mesh entity after receiving the corresponding confirm, before declaring the failure of the link establishment

	CancelTimeout
	Integer
	≥ 1
	Specifies a time limit (in TU) after which the link will be cancelled completely after the mesh entity sets the link status as holding.

	MaxReqs
	Integer
	≥ 1
	Specifies the maximal number of retries the mesh entity will issue to the neighbor mesh entity before declaring link establishment failure.

	CapabilityInformation
	As defined in frame format
	As defined in frame format
	Specifies the requested operational capabilities to the neighbor mesh entity.

	ListenInterval
	Integer
	≥ 0
	Specifies the number of beacon intervals that can pass before the mesh entity awakens and listens for the next beacon.

Additional parameters needed to perform PassivePeerLinkOpen procedure are not included in the primitive parameter list since the MLME already has that data (maintained as internal state).

10.3.30.1.2 When generated

This primitive is generated when the mesh entity wishes to establish a link with a neighbor mesh entity, but does not specify a particular neighbor.

10.3.30.1.3 Effect of receipt

This primitive initiates a peer link establishment procedure. The MLME subsequently issues an MLME-PassivePeerLinkOpen.confirm that reflects the results.

10.3.30.2 MLME-PassivePeerLinkOpen.confirm

10.3.30.2.1 Function
This primitive reports the results of a passive open attempt.

10.3.30.2.2 Semantics of the service primitive

The primitive parameters are as follows:

MLME-PassivePeerLinkOpen.confirm(

ResultCode,

Local Link ID

)

	Name
	Type
	Valid range
	Description

	ResultCode
	Enumeration
	SUCCESS,

INVALID_PARAMETERS,

TIMEOUT,

FAILED_OUT_OF_MEMORY
	Indicates the result of the MLME-PassivePeerLinkOpen.request.

	Local Link ID
	Integer
	1—232-1
	Specifies the random number generated by the local mesh entity in the effort of identifying the link instance about to be established with a neighbor mesh entity

10.3.30.2.2 When generated
This primitive is generated as a result of an MLME-PassivePeerLinkOpen.request.

10.3.30.2.2 Effect of receipt
The SME is notified of the results of the passive open procedure.
10.3.31 ActivePeerLinkOpen

The following primitives describe how a mesh entity actively starts a peer link establishment procedure with a specified peer MAC entity that is within a mesh entity.

10.3.31.1 MLME-ActivePeerLinkOpen.request
10.3.31.1.1 Function

This primitive requests that the mesh entity start link establishment procedure actively with a specified peer MAC entity that is within a mesh entity.

10.3.31.1.2 Semantics of the service primitive

The primitive parameters are as follows:

MLME-ActivePeerLinkOpen.request(

PeerAddress,

RetryTimeout,

OpenTimeout,

CancelTimeout,

MaxReqs,

CapabilityInformation,

ListenInterval

)

	Name
	Type
	Valid range
	Description

	PeerAddress
	MACAddress
	Any valid individual MAC address
	Specifies the address of the peer MAC entity with which to perform the link establishment process.

	RetryTimeout
	Integer
	≥ 1
	Specifies the time limit (in TU) the mesh entity will wait for a confirmation from the neighbor mesh entity before retrying to send another peer link open request.

	OpenTimeout
	Integer
	≥ 1
	Specifies the time limit (in TU) the mesh entity will wait for the peer link open request from the neighbour mesh entity after receiving the corresponding confirm, before declaring the failure of the link establishment

	CancelTimeout
	Integer
	≥ 1
	Specifies a time limit (in TU) after which the link will be cancelled completely after the mesh entity sets the link status as holding.

	MaxReqs
	Integer
	≥ 1
	Specifies the maximum number of retries the mesh entity will issue to the neighbor mesh entity before declaring link establishment failure.

	CapabilityInformation
	As defined in frame format
	As defined in frame format
	Specifies the requested operational capabilities to the neighbor mesh entity.

	ListenInterval
	Integer
	≥ 0
	Specifies the number of beacon intervals that can pass before the mesh entity awakens and listens for the next beacon.

Additional parameters needed to perform active open procedure are not included in the primitive parameter list since the MLME already has that data (maintained as internal state).

10.3.31.1.2 When generated

This primitive is generated when the mesh entity wishes to establish a link with a neighbor mesh entity.

10.3.31.1.3 Effect of receipt

This primitive initiates a peer link establishment procedure. The MLME subsequently issues an MLME-ActivePeerLinkOpen.confirm that reflects the results.

10.3.31.2 MLME-ActivePeerLinkOpen.confirm

10.3.31.2.1 Function
This primitive reports the results of an active open attempt.

10.3.31.2.2 Semantics of the service primitive

The primitive parameters are as follows:

MLME-ActivePeerLinkOpen.confirm(

 PeerAddress,

ResultCode,

Local Link ID

)

	Name
	Type
	Valid range
	Description

	PeerAddress
	MACAddress
	Any valid individual MAC address
	Specifies the address of the peer MAC entity with which to perform the link establishment process.

	ResultCode
	Enumeration
	SUCCESS,

DUPLICATED,

INVALID_PARAMETERS,

TIMEOUT,

FAILED_OUT_OF_MEMORY
	Indicates the result of the MLME-ActivePeerLinkOpen.request.

	Local Link ID
	Integer
	1—232-1
	Specifies the random number generated by the local mesh entity in the effort of identifying the link instance about to be established with a neighbor mesh entity

10.3.31.2.2 When generated
This primitive is generated as a result of an MLME-ActivePeerLinkOpen.request.

10.3.31.2.2 Effect of receipt
The SME is notified of the results of the active open procedure.
10.3.32 SignalPeerLinkStatus

The following primitives report the link status to the mesh entity as the result of peer link establishment, at the end of peer link establishment procedure.

10.3.32.1 MLME-SignalPeerLinkStatus.indication

10.3.32.1.1 Function

This primitive indicates that the mesh entity has finishes the link establishment procedure with a specified peer mesh entity and reports the status of the link.

10.3.32.1.2 Semantics of the service primitive

The primitive parameters are as follows:

MLME-SignalPeerLinkStatus.indication(

PeerAddress,

Local Link ID,

Peer Link ID,

Status

)

	Name
	Type
	Valid range
	Description

	PeerAddress
	MACAddress
	Any valid individual MAC address
	Specifies the address of the peer MAC entity with which to perform the link establishment process.

	Local Link ID
	Integer
	1—232-1
	Specifies the random number generated by the local mesh entity to identify this link instance

	Peer Link ID
	Integer
	0—232-1
	Specifies the random number generated by the peer mesh entity and received by the local mesh entity that in order to identify this link instance. The value “0” indicates the Peer Link ID is unknown.

	Status
	Enumeration
	SUCCESS,

FAIURE-CANCELLED,

FAILURE-CLOSE,

FAILURE-INVALID-PARAMETERS,

FAILURE-MAX-REQS,

FAILURE-TIMEOUT
	Indicates the result of the peer link establishment procedure

10.3.32.1.2 When generated

This primitive is generated when the mesh entity finishes the link establishment procedure.

10.3.32.1.3 Effect of receipt

This primitive enables the mesh entity to handle the link status and to end a peer link establishment procedure.
10.3.33 CancelPeerLink
This mechanism supports the process of cancelling the link with a specified peer mesh entity.
10.3.33.1 MLME-CancelPeerLink.request

10.3.33.1.1 Function

This primitive requests the link with a specified peer mesh entity be cancelled.

10.3.33.1.2 Semantics of the service primitive

The primitive parameters are as follows:
MLME-CancelPeerLink.request(

PeerAddress,

Local Link ID,

Peer Link ID

)

	Name
	Type
	Valid range
	Description

	PeerAddress
	MACAddress
	Any valid individual MAC address
	Specifies the address of the peer MAC entity with which to perform the link establishment process.

	Local Link ID
	Integer
	1—232-1
	Specifies the random number generated by the local mesh entity to identify this link instance

	Peer Link ID
	Integer
	0—232-1
	Specifies the random number generated by the peer mesh entity and received by the local mesh entity that in order to identify this link instance. The value “0” indicates the Peer Link ID is unknown.

10.3.33.1.2 When generated
This primitive is generated by the SME to cancel a link instance with a specified peer mesh entity.

10.3.33.1.2 Effect of receipt
This primitive sets the mesh entity to get ready to close the peer link with the specified peer mesh entity. The MLME subsequently issues a MLME-CancelPeerLink.confirm to reflect the results.

10.3.33.1 MLME-CancelPeerLink.confirm
10.3.33.1.1 Function

This primitive reports the result of cancel link request.

10.3.33.1.2 Semantics of the service primitive

The primitive parameters are as follows:
MLME-CancelPeerLink.confirm(

PeerAddress,

Local Link ID,

Peer Link ID,

Result codes

)

	Name
	Type
	Valid range
	Description

	PeerAddress
	MACAddress
	Any valid individual MAC address
	Specifies the address of the peer MAC entity with which to perform the link establishment process.

	Local Link ID
	Integer
	1—232-1
	Specifies the random number generated by the local mesh entity to identify this link instance

	Peer Link ID
	Integer
	0—232-1
	Specifies the random number generated by the peer mesh entity and received by the local mesh entity that in order to identify this link instance. The value “0” indicates the Peer Link ID is unknown.

	Result codes
	Enumeration
	SUCCESS

FAILURE-NOT-FOUND
	Indicate the result of cancel link request

Either or both of Local Link ID and Peer Link ID fields can be null if the SME doesn’t know the values yet.
10.3.33.1.2 When generated
This primitive is generated by the MLME as the result of an MLME-CancelPeerLink.request.

10.3.33.1.2 Effect of receipt
The SME is notified of the results of the cancel link procedure.

Replace the text in Clause 11A.1.5 with the following

11A.1.5 Peer Link Establishment
11A.1.5.1 Overview
The purpose of this procedure is to establish at least one, and in many cases several, peer links with one or more peer MP. MPs shall not transmit data frames or management frames other than the ones used for link establishment until the peer link has been established successfully. The MP shall drop such frames if it considers the link is not established.

A MP must be able to establish at least one mesh link with a peer MP, and may be able to establish many such links simultaneously. It is possible that there are more candidate peer MPs than the device is capable of maintaining peer links with simultaneously. In this case, the MP must select which MPs to establish peer links with based on some measure of signal quality or other information received from candidate neighbor MPs.

The MP shall start the peer link establishment protocol in either of the following two cases. In each case, the MP is issued a command by the IEEE 802.11 SME. In the first case, the MP has not reached the maximum number of neighbors and is willing to accept new connections. In thise case, the command MLME-PassivePeerLinkOpen().request causes the MP to start a link establishment protocol instance and listen to incoming connection requests. In the second case, the MP agrees with the profile carried in a beacon or a probe response from a peer MP and it has not reached the maximum number of neighbors. The command MLME-ActivePeerLinkOpen(peerId).request is issued that causes the MP to initiate a link establishment protocol instance with the peer MP identified as peerId and actively send connection request this peer MP.

The MP shall end the protocol instance in three cases. In the first case, the MP encounters failure during the peer link establishment procedure. As the result, the MP shall send a connection close request. In the second case, the MP receives a connection close request from the peer MP. In the third case, the connection is closed because the MP receives a peer link cancel signal. The 802.11 SME shall issue a MLME-CancelPeerLink().request command. This signal can be triggered by some internal event. For instance, the MP discovers the data transmission failure. The actual specification of the internal events is out of the scope of this specification.

The MP uses three types of management frames to handle the execution of the protocol:
· Association Request frame including a Peer Link Open IE (referred to as a Peer Link Open message)

· Association Response frame including a Peer Link Confirm IE (referred to as a Peer Link Confirm message)

· Disassociate frame including a Peer Link Close IE (referred to as a Peer Link Close message)
Peer Link Open message requests that a link be established between the Peer Link Open sender and the receiver. The Peer Link Confirm message responds to the Peer Link Open message. The Peer Link Close message tries to close the connection between two MPs. The protocol design is based on the rule:

· A link is established when both MPs have sent and received both Peer Link Open and Peer Link Confirm messages
If one of the MPs, say MP A, decides to send the Peer Link Open first, the receiving MP, say MP B, will respond by sending the Peer Link Open and Peer Link Confirm messages. Then MP A will send back a Peer Link Confirm message once receiving the Peer Link Open and Peer Link Confirm messages from MP B. In the end, once the MP B receives the Peer Link Confirm message from MP A, the peer link is considered estlished between MP A and MP B.

In the case where both MP A and MP B initiate a Peer Link Open simultaneously, both MPs shall send back a Peer Link Confirm message. Once both MPs receive the corresponding Peer Link Confirm, the link is considered established.

The protocol has a retransmission process to make sure the robustness of the protocol. After the MP sends a Peer Link Open message, a timer, RetryTimer, is set. If the MP has not received any Peer Link Confirm when the timer expires, the MP shall resend the Peer Link Open message. If the MP has resent MAX-REQS Peer Link Open messages without receiving a corresponding Peer Link Confirm, the MP declares the failure of link establishment and shall send a Peer Link Close message to close the link. If the Peer Link Confirm message is received and processed before the incoming Peer Link Open message, another timer, OpenTimer, is set to guard the time for waiting for the Peer Link Open message. If the timer expires without receiving the corresponding Peer Link Open message, the MP declares the failure of link establishment and shall send a Peer Link Close message to close the link.
When the message processing encounters any error or the MP makes the local decision to close the link, the MP shall send a Peer Link Close message to close the link. The MP shall wait for some time to close the link complete. This graceful time period is governed by a timer—CancelTimer. Before the CancelTimer expires, the MP shall continue to respond to any additional Peer Link Open message from the peer MP by sending back the Peer Link Close message. When the CancelTimer expires, the MP eventually closes the link by releasing the local resource allocated for the link instance. This mechanism allows the protocol to recover from failure quickly.

The link establishment management messages carry the identifiers to specify the link instance between two peer MPs. Each peer MP generates a random number to contribute to the link instance identifier. The link instance is identified by <myId, peerId, LocalLinkID, PeerLinkID>. Link establishment management messages carry these identifiers to bind the communication with a particular instance of the link. As we’ll see later, the finite state automaton that implements the protocol has instance as well. One automaton handles one link instance. The receiving of a Peer Link Open message with a different identifier shall cause the mesh entity to generate a new finite state automaton.

11A.1.5.2 Processing Peer Link Establishment Messages
When receiving a peer link establishment message, the MP shall process the message and report the result of the process. Either the MP accepts the information carried in the message and reports “success” or it denies the message and reports “failure”.

The MP shall reject the Peer Link Close message if it carries a mismatched instance identifier. The received instance identifier is considered a mismatch in three cases. In case one, the MP does not have a record of instance identifier for the peer MP yet. In case two, the message carries the random value in the Local Link ID field, but it does not match the PeerLinkID recorded locally. In case three, the value in the Peer Link ID field (if it is not null) does not match the local record of LocalLinkID. In the rest of the cases, the instance identifier is considered a match, and the MP shall accept the message. Doing so, the MP shall record the link ID from the peer MP.

The MP shall reject the Peer Link Open message if it carries a mismatched instance identifier or the configuration parameters in the received message are not acceptable by the MP. The instance identifier carried in the Peer Link Open contains only the link ID provided by the peer. It is considered a mismatch only when the MP has the local record of the PeerLinkID and it does not match the received value in the Local Link ID field. Besides the instance identifier, the Peer Link Open message contains configuration parameters. The MP shall reject the message if these parameters do not match the local configuration and policy. In other cases, the MP shall accept the message and record the received configurations that are useful for operations once the link has been established. The mesh entity shall also store the received value in the Local Link ID field as PeerLinkID if the mesh entity does not have a record yet.

The MP shall reject the Peer Link Confirm message if it carries a mismatched instance identifier or the configuration parameters in the received message are not acceptable by the MP. It is considered a mismatch of the instance identifier if the value in the Peer Link ID field of the received message does not match the locally recorded LocalLinkID, or the value in the Local Link ID field of the received message does not match the locally recorded PeerLinkID (if the MP has a local record of PeerLinkID). Besides the instance identifier, the Peer Link Confirm message contains configuration parameters as well. The MP shall reject the message if the received parameters do not match the local configuration and policy, or if they are not consistent with the parameters received earlier in the Peer Link Open message.
11A.1.5.3 Finite State Automaton
This clause defines the finite state automaton that specifies the peer link establishment protocol. The finite state automaton has seven states. The terminate states are IDLE state and ESTABLISHED state. That is, in the end of the protocol, either the link is closed or the link is established successfully.

11A.1.5.3.1 States

State 0 represents the IDLE state where the local system refuses any attempt to establish a connection from the remote system

State 1 represents the LISTEN state where the local system is passively listening to incoming Peer Link Open message to establish a link from a peer

State 2 represents the OPEN_SENT state where the local system has actively sent a Peer Link Open message and is waiting for the incoming Peer Link Open and Peer Link Confirm messages

State 3 represents the CONFIRM_RCVD state where the local system has received a Peer Link Confirm message, but has not received a Peer Link Open message. This means that the local system hasn’t sent out the corresponding Peer Link Confirm message either.

State 4 represents the CONFIRM_SENT state where the local system has sent a Peer Link Confirm message upon receiving a Peer Link Open message. But it hasn’t received a Peer Link Confirm.

State 5 represents the ESTABLISHED state where the local system has sent and received both the Peer Link Open and Peer Link Confirm messages.

State 6 represents the HOLDING state where the local system is closing the connection. If the receiving any peer link establishment message, the system is going to ignore it, except the Peer Link Open message.

11A.1.5.3.2 Events and Actions

The following table summarizes the events and actions in the finite state automaton.

	· Events

· CancelPeerLink (CNCL)

· ActivePeerLinkOpen (ACT)

· PassivePeerLinkOpen (PAS)
	· CloseReceived (CLR)

· OpenReceived (OPR)

· ConfirmReceived (CNR)
	· Timeout (RetryTimer) (TOR)

· Timeout (OpenTimer) (TOO)

· Timeout (CancelTimer) (TOC)

	· Actions

· Send-Open (SOP)
	· Send-Confirm (SCN)
	· Send-Close (SCL)

The automaton uses three kinds of events: local commands, events corresponding to protocol messages, and “internal” events.

The local commands are:

· MLME-CancelPeerLink(peerId, LocalLinkID, PeerLinkID).request. The MLME-CancelPeerLink(peerId, LocalLinkID, PeerLinkID).request event represents a local decision to end a link with the peer whose MAC address is peerId. The link to be cancelled is identified as <myId, peerId, LocalLinkID, PeerLinkID>. The value for PeerLinkID is null if it is unknown.

· MLME-PassivePeerLinkOpen().request. The MLME-PassivePeerLinkOpen.request event represents a local decision to start listen to connection request.

· MLME-ActivePeerLinkOpen(peerId).request. The MLME-ActivePeerLinkOpen(peerId).request event represents a local decision to for a link with the peer whose MAC address is peerId.

The events corresponding to protocol messages are:

· CloseReceived(peerId, myId, PeerLinkID, LocalLinkID). This event represents the reception of a Peer Link Close message from the peer to close link instance named by <myId, peerId, LocalLinkID, PeerLinkID>.

· OpenReceived(peerId, myId, PeerLinkID). This event represents the reception of a Peer Link Open message from the peer named by peerId. This message was addressed by myId, and conveys the link instance identifier PeerLinkID generated by the peer MP, which must be non-null.

· ConfirmReceived(peerId, myId, PeerLinkID, LocalLinkID). This event represents the reception of a Peer Link Confirm message from the peer named by peerId. This message was addressed by myId, and conveys the link instance identifiers PeerLinkID and LocalLinkID, both of which must be non-null.

The internal events are:

· Timeout(item). This event represents a timeout identified locally by item. There are three types of timers. The RetryTimer controls the procedure of resending the Peer Link Open message. The RetryCounter is used to record the number of Peer Link Open messages have been resent to the peer MP. The OpenTimer controls the procedure of receiving the Peer Link Open message after processing the Peer Link Confirm message. The CancelTimer controls the procedure of staying in the HOLDING state and eventually transitioning back to IDLE state.
11A.1.5.3.2 State transitions
The following table gives the sketch of state transitions. Columns are states and rows are events. The contents in each table entry represent the action and the result of state transition, encoded as “action/state”. The follow list contains abbreviations of important events and actions (related to messages over the air).

	 States Events
	0
	1
	2
	3
	4
	5
	6

	CNCL
	- / 0
	- / 0
	SCL / 6
	SCL / 6
	SCL / 6
	SCL / 6
	- / 6

	PAS
	- / 1
	- / 1
	- / 2
	- / 3
	- / 4
	- / 5
	- / 6

	ACT
	SOP / 2
	SOP/2
	- / 2
	- / 3
	- / 4
	- / 5
	- / 6

	CLR
	- / 0
	- / 1
	- / 6 or - / 2
	- / 6 or - /3
	- / 6 or - / 4
	- / 6 or - /5
	- / 6

	OPR
	- / 0
	SOP, SCN / 4

or SCL / 1
	SCN / 4

or SCL/6
	SCN / 5

or - / 3
	SCN / 4

or - / 4
	SCN / 5

or - / 5
	SCL / 6 or - / 6

	CNR
	- / 0
	- / 1
	- / 3 or SCL/6
	- / 3
	- / 5 or

SCL / 6
	- / 5
	SCL / 6 or - / 6

	TOR
	- / 0
	- / 1
	SOP / 2 or

SCL / 6
	- / 3
	SOP / 4 or SCL / 6
	- / 5
	- / 6

	TOO
	- / 0
	- / 1
	- / 2
	SCL / 6
	- / 4
	- /5
	- / 6

	TOC
	- / 0
	- / 1
	- / 2
	- / 3
	- / 4
	- / 5
	SCL / 0

The following specify the detailed state transitions.

· IDLE state (0)

In the IDLE state the local MP shall not respond to incoming messages from a remote MP. It only responds to the internal commands.

When MLME-PassivePeerLinkOpen().request occurs, the MP allocates necessary resource for a new peer link, generates a new link identifier, LocalLinkID, and start to listen to connection request. The finite state automaton transitions to LISTEN state.

When MLME-ActivePeerLinkOpen(peerId).request occurs, the local MP actively tries to establish a peer link with the peer MP, identified as peerId. The local MP allocates necessary resource for the peer link, generates a new link identifier, LocalLinkID, and sends out a Peer Link Open message to the peer MP. The RetryTimer is set. The finite state automaton transitions to OPEN_SENT state.

The timers shall be cleared if a timeout event occurs.

All other events are ignored in this state.

· LISTEN state (1)

In the LISTEN state, the local MP listens to the incoming connection request.

The MLME-CancelPeerLink(null, LocalLinkID, null).request event means that the local MP is no longer willing to accept more peer link connections. The allocated resource shall be cleared and the finite state automaton transitions to IDLE state.

PassivePeerLinkOpen() command shall be ignored.

If MLME-ActivePeerLinkOpen(peerId).request event occurs, the local MP actively tries to establish a peer link with the peer MP, identified by peerId, by sending a Peer Link Open message, which contains the LocalLinkID. The RetryTimer is set. The finite state automaton transitions to OPEN_SENT state.

If CloseReceived event or ConfirmReceived event occur, the MP shall verify the received instance identifier. If the number matches LocalLinkID, it means that the peer MP is able to predict my random number. The local MP shall raise an exception to the higher layer to indicate that the local random number generator is broken. If the identifiers do not match, both of these events are silently ignored.

If OpenReceived event occurs, the MP shall process the incoming Peer Link Open message. (Clause 11A.1.5.2 defines the procedure of processing Peer Link Open message). If the process succeeds, the MP shall send the corresponding Peer Link Open message and Peer Link Confirm message. The RetryTimer is set and the finite state automaton transitions to CONFIRM_SENT state. If the process fails, the MP shall send the Peer Link Close message to the peer MP to notify the failure and close the link. The Peer Link Close message shall carry the Peer Link ID value but not the LocalLinkID value. The CancelTimer is set, the failure reason code is recorded as “FAILURE-INVALID-PARAMETERS”, and the finite state automaton transitions to HOLDING state.

The timers shall be cleared if a timeout event occurs.

· OPEN_SENT state (2)

In the OPEN_SENT state, the local MP has sent out a Peer Link Open message to the peer MP and is waiting for a response. In this state, the RetryTimer is set.

If MLME-CancelPeerLink(peerId, LocalLinkID, null).request occurs, the connection attempt to connect to the peer peerId shall abort. A Peer Link Close message shall be sent to indicate a closing link. The CancelTimer is set, the failure reason code is recorded as “FAILURE-CANCELLED”, and the finite state automaton transitions to HOLDING state.

The PassivePeerLinkOpen().request event and ActivePeerLinkOpen(peerId).request event shall be ignored.

If CloseReceived event occurs, the MP shall process the incoming Peer Link Close message. (Clause 11A.1.5.2 defines the procedure of processing a Peer Link Close message). If the process succeeds, the RetryTimer shall be cleared, the CancelTimer shall be set, the failure reason code is recorded as “FAILURE-CLOSE”, and the finite state automaton transitions to HOLDING state. If the process fails, the Peer Link Close message is silently ignored.

If OpenReceived event occurs, the MP shall clear the RetryTimer and process the incoming Peer Link Open message. If the process fails, it means the local MP denies the connection request. A Peer Link Close message shall be sent to close the connection. The CancelTimer is set, the failure reason code is recorded as “FAILURE-MAC-REQS” and the finite state automaton transitions to HOLDING state. If the process succeeds, a Peer Link Confirm message shall be sent, the retryTimer is set, and the finite state automaton transitions to CONFIRM_SENT state.

If ConfirmReceived event occurs, the MP shall clear the RetryTimer and process the incoming Peer Link Confirm message. (Clause 11A.1.5.2 defines the procedure of processing a Peer Link Confirm message). If the process fails, it means the local MP denies the response from the peer MP. In this case, the local MP shall close the link by sending a Peer Link Close to the peer MP to indicate the failure and the reason. The CancelTimer is set, the failure reason code is recorded as “FAILURE-INVALID-PARAMETERS” and the finite state automaton transitions to HOLDING state. If the process succeeds, the OpenTimer shall be set and the finite state automaton transitions to CONFIRM_RCVD state.

If Timeoute(RetryTimer) event occurs, the MP shall verify the RetryCounter. If the RetryCounter exceeds the MAX-REQS limit, the MP shall send a Peer Link Close message to the peer MP, set the CancelTimer, record the failure reason code as “FAILURE-MAC-REQS”, and transition to the HOLDING state. If the MP has not reached the MAX-REQS limit, it shall resend the Peer Link Open message to the peer MP. The RetryCounter is incremented by 1. The backoff algorithm is used to compute the next retry timeout value. The RetryTimer is set to the updated timeout value. No state transition occurs.

If Timeout(OpenTimer) event occurs, clear the OpenTimer, and stays in OPEN_SENT state.

If Timeout(CancelTimer) event occurs, clear the CancelTimer, and stays in OPEN_SENT state.

· CONFIRM_RCVD state (3)

In the CONFIRM_RCVD state, the MP has received a Peer Link Confirm message and is waiting for a Peer Link Open message.

If CancelPeerLink(peerId, LocalLinkID, PeerLinkID).request event occurs, the connection attempt to connect to the peer peerId shall abort. A Peer Link Close message shall be sent to indicate a closing link. The Peer Link Close message shall contain the instance identifiers from both ends. The CancelTimer is set, the failure reason code is recorded as “FAILURE-CANCELLED”, and the finite state automaton transitions to HOLDING state.

The PassivePeerLinkOpen().request event and ActivePeerLinkOpen(peerId).request event shall be ignored in this state.

If CloseReceived event occurs, the MP shall process the incoming Peer Link Close message. (Clause 11A.1.5.2 defines the procedure of processing a Peer Link Close message). If the process succeeds, the RetryTimer shall be cleared, the CancelTimer shall be set, the recoreded failure reason code is set as “FAILURE-CLOSE”, and the finite state automaton transitions to HOLDING state. If the process fails, the Peer Link Close message is silently ignored.

If OpenReceived event occurs, the MP shall process the incoming Peer Link Open message. If the process succeeds, the OpenTimer shall be cleared, a Peer Link Confirm message shall be sent to the peer MP, the finite state automaton transitions to ESTABLISHED state, and the status code “SUCCESS” is reported to the higher layer. The peer link has been successfully established. If the process fails, the MP shall ignore the received message and continues to wait for the Peer Link Open message from the peer MP.

If ConfirmReceived event occurs, the MP shall ignore the incoming message.
If Timeout(RetryTimer) event occurs, clear the RetryTimer, and stays in CONFIRM_RCVD state.

If Timeout(OpenTimer) event occurs, the MP declares the failure of the link establishment and shall send a Peer Link Close message to close the link. The CancelTimer is set, the recorded failure reason code is set as “FAILURE-TIMEOUT”, and the finite state machine transitions to HOLDING state.

If Timeout(CancelTimer) event occurs, clear the CancelTimer, and stays in CONFIRM_RCVD state.

· CONFIRM_SENT state (4)

In the CONFIRM_SENT state, the MP has received a Peer Link Open message and sent the corresponding Peer Link Confirm message. The incoming Peer Link Confirm is expected.

If CancelPeerLink(peerId, LocalLinkID, PeerLinkID) command is received, the connection attempt to connect to the peer peerId shall abort. A Peer Link Close message shall be sent to indicate a closing link. The Peer Link Close message shall contain both ends’ random numbers for this session. The CancelTimer is set, the failure reason code is recorded as “FAILURE-CANCELLED”, and the finite state automaton transitions to HOLDING state.

The PassivePeerLinkOpen() event and ActivePeerLinkOpen event shall be ignored.

If CloseReceived event occurs, the MP shall process the incoming Peer Link Close message. (Clause 11A.1.5.2 defines the procedure of processing a Peer Link Close message). If the process succeeds, the RetryTimer shall be cleared, the cancelTimer shall be set, the failure reason code is recorded as “FAILURE-CLOSE”, and the finite state automaton transitions to HOLDING state. If the process fails, the Peer Link Close message is silently ignored.

If OpenReceived event occurs, the MP shall process the incoming Peer Link Open message. If the process succeeds, a Peer Link Confirm message shall be sent to the peer MP and the finite state automaton shall stay in the CONFIRM_SENT state. If the process fails, the MP shall ignore the received message and continue to wait for the Peer Link Confirm message from the peer MP.

If ConfirmReceived event occurs, the MP shall process the Peer Link Confirm message and clear the RetryTimer. If the process succeeds, the finite state automaton transitions to ESTABLISHED state, and the status code “SUCCESS” is reported to the higher layer. If the process fails, the MP shall clear the RetryTimer, send the Peer Link Close message to notify the failure, set the CancelTimer, the failure reason code is recorded as “FAILURE-INVALID-PARAMETERS”, and the finite state automaton transitions to HOLDING state.

If Timeoute(RetryTimer) event occurs, the MP shall verify the RetryCounter. If the RetryCounter exceeds the MAX-REQS limit, the MP shall send a Peer Link Close message to the peer MP, set the CancelTimer, the failure reason code is recorded as “FAILURE-MAX-REQS”, and transition to the HOLDING state. If the MP has not reached the MAX-REQS limit, it shall resend the Peer Link Open message to the peer MP. The RetryCounter is incremented by 1. The backoff algorithm is used to compute the next retry timeout value. The RetryTimer is set to the updated timeout value. No state transition occurs.

If Timeout(OpenTimer) event occurs, the MP clears the OpenTimer, and stays in CONFIRM_SENT state.

If Timeout(CancelTimer) event occurs, the MP clears the CancelTimer, and stays in CONFIRM_SENT state.

· ESTABLISHED state (5)

In the ESTABLISHED state, the MP has successfully established a peer link with the peer MP. The MPs can start the data transmission and routing functions.

If CancelPeerLink(peerId, LocalLinkID, PeerLinkID).request event occurs, the connection attempt to connect to the peer peerId shall abort. A Peer Link Close message shall be sent to indicate a closing link. The Peer Link Close message shall contain the complete instance identifier from both parties. The CancelTimer is set, the failure reason code is recorded as “FAILURE-CANCELLED”, and the finite state automaton transitions to HOLDING state.

The PassivePeerLinkOpen().request event and ActivePeerLinkOpen(peerId).request event shall be ignored.

If CloseReceived event occurs, the MP shall process the incoming Peer Link Close message. (Clause 11A.1.5.2 defines the procedure of processing a Peer Link Close message). If the process succeeds, the RetryTimer shall be cleared, the CancelTimer shall be set, the failure reason code is recorded as “FAILURE-CLOSE”, and the finite state automaton transitions to HOLDING state. If the process fails, the Peer Link Close message is silently ignored.

If OpenReceied event occurs, the MP shall process the Peer Link Open message. If the process succeeds, a Peer Link Confirm message shall be sent to the peer MP and the finite state automaton shall stay in the ESTABLISHED state. If the process fails, the MP shall ignore the received message and continue to stay in the ESTABLISHED state.

The ConfirmReceived event shall be ignored in this state.

The timeout events shall be ignored in this state. The corresponding timer shall be cleared.

· HOLDING state (6)

If either OpenReceived or ConfirmReceived event occurs, the MP shall process the message. If the process fails, the incoming message is ignored. If the process succeeds, the MP shall send the Peer Link Close message to notify that the MP is closing the link.

If Timeout(CancelTimer) event occurs, the MP shall send the final Peer Link Close message to the peer MP, signal the failure reason code of the link establishment protocol to the higher layer, release all resources for this session, and the finite state automaton transitions to IDLE state.

All other events are ignored in this state.
Change the heading of subclause 11A.2.4 as shown.
11A.2.4 Data Message Forwarding of Mesh Data frames and Mesh Management frames
Notice: This document has been prepared to assist IEEE 802.11. It is offered as a basis for discussion and is not binding on the contributing individual(s) or organization(s). The material in this document is subject to change in form and content after further study. The contributor(s) reserve(s) the right to add, amend or withdraw material contained herein.

Release: The contributor grants a free, irrevocable license to the IEEE to incorporate material contained in this contribution, and any modifications thereof, in the creation of an IEEE Standards publication; to copyright in the IEEE’s name any IEEE Standards publication even though it may include portions of this contribution; and at the IEEE’s sole discretion to permit others to reproduce in whole or in part the resulting IEEE Standards publication. The contributor also acknowledges and accepts that this contribution may be made public by IEEE 802.11.

Patent Policy and Procedures: The contributor is familiar with the IEEE 802 Patent Policy and Procedures <� HYPERLINK "http://%20ieee802.org/guides/bylaws/sb-bylaws.pdf" \t "_parent" �http:// ieee802.org/guides/bylaws/sb-bylaws.pdf�>, including the statement "IEEE standards may include the known use of patent(s), including patent applications, provided the IEEE receives assurance from the patent holder or applicant with respect to patents essential for compliance with both mandatory and optional portions of the standard." Early disclosure to the Working Group of patent information that might be relevant to the standard is essential to reduce the possibility for delays in the development process and increase the likelihood that the draft publication will be approved for publication. Please notify the Chair <� HYPERLINK "mailto:stuart.kerry@philips.com" \t "_parent" �stuart.kerry@philips.com�> as early as possible, in written or electronic form, if patented technology (or technology under patent application) might be incorporated into a draft standard being developed within the IEEE 802.11 Working Group. If you have questions, contact the IEEE Patent Committee Administrator at <� HYPERLINK "mailto:patcom@ieee.org" \t "_parent" �patcom@ieee.org�>.

Abstract

A proposal for efficient mesh security and link establishment is presented. The proposal includes a mechanism for establishing security between two peer MPs in a WLAN mesh, known as Efficient Mesh Security Association, or EMSA. EMSA employs a derived key hierarchy to permit MPs to establish secure peer links without requiring repeated IEEE 802.1X Authentication.

This submission is an extension of 11-06/1001 and 11-06/1353, originally presented in San Diego and on the Sept 6 TGs telecon.

This submission is intended to resolve the following CIDs: 120, 121, 122, 199, 236, 237, 239, 240, 243, 244

Mesh Key Holder security handshake message 2

PTK-KD

KDK

PMK-MA(b)

PMK-MA(a)

PMK-MKD

MSK or PSK

Mesh Key Holder security handshake message 3

Mesh Key Holder security handshake message 1

mesh authenticator

mesh key distributor

PMK-MA delivery pull Mesh Action

PMK-MA request Mesh Action

mesh authenticator

mesh key distributor

PMK-MA confirm Mesh Action

PMK-MA delivery push Mesh Action

mesh authenticator

mesh key distributor

PMK-MA confirm Mesh Action

PMK-MA delete Mesh Action

mesh authenticator

mesh key distributor

PMK-MA(a)

PMK-MA(b)

PSK

MSK

Mesh Authenticator

MA-ID

Derives PTK(a)

Mesh Authenticator

MA-ID

Derives PTK(b)

Mesh Key Distributor

MKD-ID

Derives PMK-MKD, PMK-MAs

Derives KDK and PTK-KD

Authentication Server

(802.1X Authentication only)

4-way Handshake #4

4-way Handshake #3

4-way Handshake #2

4-way Handshake #1

EAP Authentication

Peer Link Open

Peer Link Open

Peer Link Confirm

supplicant

Peer Link Confirm

mesh authenticator

EAP Encapsulation �Mesh Action

EAP Encapsulation �Mesh Action

mesh authenticator

mesh key distributor

PTK(a)

PTK(b)

Peer Link Confirm

Peer Link Confirm

4-way Handshake #4

4-way Handshake #3

4-way Handshake #2

4-way Handshake #1

Peer Link Open

Peer Link Open

supplicant

mesh authenticator

Submission
page 6
Braskich, et al

