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Introduction

Note that the content of the document does not directly address any current CIDs, rather its immediate intention is to make a technical contribution for discussion and further consideration in the 802.11n working body. 

The document considers

· The proposals technical argument 

· Simulation results illustrating the benefit of the proposal

· A proposal to modify the text in subclause 21.3.11.2.3 & 7.4.8.10 for compressed steering matrix feedback in TGn Draft D1.03.
· Feedback information length calculations and comparisions for different configurations.

Technical Argument
Currently clauses relating to the compressed steering matrix, 21.3.11.2.3 and 7.4.8.10 in the draft standard D1.03, allow for the feedback of steering matrices with orthonormal columns only. Including power control, in the form of a column scaling of the steering matrix, offers additional performance gains for a small increase in feedback information. 

Consider the usual MIMO channel model
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 is the number of transmit streams. We assume that
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and that the total signal power is constrained, so that
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It is claimed that when the number of transmit streams is equal to the number of transmit antennas,
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 that two reasonable cost functions are constant on the space of unitary steering matrices. Consequently an eigenvector matrix computed with full knowledge of the channel will perform no better than a fixed steering matrix such as a Walsh or Fourier matrix.

The first cost function is the channel capacity, which in the absence of
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is given by the formula [1]
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is the water-filling power allocation (which depends only on 
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is unchanged the eigenvalues, and consequently the capacity, are unaffected by the insertion of the unitary matrix
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The second cost function is the Frobenius norm of the least squares error covariance matrix. In this case we can assume a more general noise covariance
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we obtain
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. The residual error vector
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. The squared Frobenius norm of this matrix is
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 is Hermitian and positive definite it may be expressed as 
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unitary matrix and 
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is a diagonal matrix of eigenvalues. Then the cost function may be expressed as
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is just another unitary matrix, and consequently the eigenvalues and the cost function are unchanged.

These arguments demonstrate that if a performance gain is to be achieved by the insertion of a square steering matrix then that matrix cannot be unitary. Additional arguments, such as optimizing either of the above cost functions under a total power constraint, show that performance improvements may be obtained by using a steering matrix consisting of an eigenvector matrix together with a column scaling:
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These remarks strictly apply to the case of a symmetric MCS with the same modulation on each stream. In the case of an asymmetric MCS, an eigenvector matrix will have an advantage over a Walsh or Fourier matrix in that it will allow the transmission of the stream with the most sensitive modulation over the best mode in the channel. However, the eigenvalues will vary between sub-carriers, and power control will allow an additional fine tuning of the eigenvalues on each sub-carrier.

When the number of transmit streams is less than the number of transmit antennas then a genuine performance gain is obtained by using a 
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matrix consisting of normalized eigenvectors, compared to a fixed steering matrix, because the eigenvector matrix allows for transmission on the
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 best modes in the channel, whereas the performance with a fixed steering matrix is influenced by the worst of the
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eigenvalues. However, in this case power control in the form of a column scaling allows for additional fine-tuning with some performance gain.

Simulation Results
The plots below show the packet error rate as a function of SNR for three types of steering matrix: a fixed steering matrix, a unitary eigenvector matrix, and an eigenvector matrix with power control. The fixed steering matrix is a Walsh matrix in the 2x2 case and a Fourier matrix in the 3x3 case. The first two plots are for channel model B and MCS 14 (two transmit streams) and are for un-quantized column scale factors. The simulation was with impairments as specified in CC67. The third plot is for an asymmetric MCS, MCS 35. 

When the column scale factors were quantized we found very little change in performance when using four or six bits per scale factor.

The first plot is for
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 (K =2). Packet error rate is not one of the cost functions considered above, but the plot shows little difference in performance between the unitary eigenvector matrix and the Walsh steering matrix. Power control (subcarrier grouping = 1) delivers an improvement of about 3dB at a PER of 10% in this case. 

The second plot is for 
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 (and
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). In this case the unitary eigenvector matrix offers a substantial improvement over the Fourier matrix. Power control delivers a small additional improvement of about 0.5 dB at a PER of 10%.
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The next plot is for an asymmetric MCS, MCS 35 (64QAM & 16QAM R1/2). It shows that the eigenvector matrix is slightly better than the Walsh matrix in this case, by about 1.5dB at 10% PER. Power control offers a further improvement of about 1dB.
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Quantisation of the scale coefficients to 4 or 6 bits show negligible performance degradation as illustrated below.
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Proposal for the change of subclause 21.3.11.2.3 & 7.4.8.10
In 21.3.11.2.3 modify the format of the feedback matrix 
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to the following:
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The matrix
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In 7.4.8.10 make the following changes. 

In Table n47, replace the phrase ‘n bits for
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’ with the phrase ‘n bits for
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 and a’.

Replace Table n48 with the following table.

Table n48 – Order of feedback quantities in the Quantized Steering Matrices Feedback Information field.

	V(f)
	Number of feedback quantities
	The order of scale factors and angles in the Quantized Steering Matrices Feedback Information field

	2x1
	2
	f11, y21

	2x2
	4
	a11,a22,f11,y21

	3x1
	4
	f11,f21,y21,y31

	3x2
	8
	a11,a22,f11,f21,y21,y31,f22,y32

	3x3
	9
	a11,a22,a33,f11,f21,y21,y31,f22,y32

	4x1
	6
	f11,f21,f31,y21,y31,y41

	4x2
	12
	a11,a22,f11,f21,f31,y21,y31,y41,f22,f32,y32,y42

	4x3
	15
	a11,a22,a33,f11,f21,f31,y21,y31,y41,f22,f32,y32,y42,f33,y43

	4x4
	16
	a11,a22,a33,a44,f11,f21,f31,y21,y31,y41,f22,f32,y32,y42,f33,y43


The scale factors are quantized according to the formula
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ba (=b) is the number of bits used to quantize a 

Feedback Information Length Examples

The table below illustrates amount of feedback information (bits) (Bandwidth = 20MHz) required when using the different explicit feedback techniques. In the 2x2 configuration the amount of feedback information slightly more than doubles with the newly proposed compressed steering feedback mechanism, whilst in the 4x4 configuration the amount of information only increases by 50%.
	
	2x2
	4x4
	Comments

	 
	No Group
	4 Group
	No Group
	4 Group
	

	H Matrix (also approx. Uncompressed  Steering
	471
	136
	1817
	522
	Nb = 8bits

	Compressed Steering
	56
	16
	80
	280
	3+5 bits

	Newly Proposed Compressed Steering
	126
	36
	120
	420
	3+5bits, 5 bits for amplitude
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Abstract


Note that the content of the document does not directly address any current CIDs, rather its immediate intention is to make a technical contribution for discussion and further consideration in the 802.11n working body. 





Currently clauses relating to the compressed steering matrix, 21.3.11.2.3 and 7.4.8.10 in the draft standard D1.03, allow for the feedback of steering matrices with orthonormal columns only. Including power control, in the form of a column scaling of the steering matrix, offers additional performance gains for a small increase in feedback information. Also included is a proposal to modify the text in subclause 21.3.11.2.3 & 7.4.8.10 for compressed steering matrix feedback in TGn Draft D1.03





In the 2x2 case there is an approximate doubling in the feedback information with this proposal for a performance gain of 3dB at a PER of 10%. It should be noted that a smaller relative increase in feedback information is required for the larger configurations.
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