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Updates based on TGr Draft D2.2
Create a new Section 8A.6
8A.6 FT Security Architecture State Machines 
The Fast Transition state machines describe the interaction between the RSNA key management and 802.11 architectural components.  However, it must be emphasized that the means of implementing this behavior within specific implementations and architectures, is outside the scope of this standard.

The FT key holder architecture diagram A1 describes the FT key management entities.  The cryptographic operations using PMK-R0 shall be conducted in and restricted to the R0KH.  Once delivered from R0KH to the R1KH, the cryptographic operations using a PMK-R1 shall be conducted in and restricted to the corresponding R1KH.  The R0KH and R1KH shall be part of 802.11 SME RSNA Key Management. 

[image: image1]
Fig A1: FT Key Holder Architecture

RSNA Key Management uses the MA_UNITDATA interface to send/receive EAPOL-Key data-frames for FT Initial Association and TKIP countermeasures, MLME interfaces described below for FT mechanisms, and MLME-SETKEYS, MLME-DELETEKEYS and MLME-SETPROTECTION primitives.  FT Key Management defines new interfaces for Key Management delivery and reception:

a. The MLME_ACTION interfaces for FT key management over the DS,

b. The MLME_AUTH interface for key management over the air,
c. The MLME_RESERVATION interface for reservation over the air, and
d. The MLME_REASSOC interface for key management over the air.

Some of the state machine design considerations are as follows:

1. Events received in a state, which are not depicted in the FT state machine diagrams shall be treated as error conditions.
2. The TKIP countermeasure messages can be received in any FT state, as per procedures defined in Clause 8.3.2.4, and shall be processed using the KCK key.
8A.6.1 R0 Key Holder Authenticator State Machine
There is one R0KH state machine, which incorporates the FT Initial Association and the FT mechanisms for key management.
The state diagram in Fig X1 consists of:
1) A set of states which handle R0KH functions including key hierarchy instantiation, key generation, and cleanup.

2) This state machine interacts with the R1KH Authenticator state machines.
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Fig X1: R0KH Authenticator State Machine
8A.6.1.1 R0 Key Holder Authenticator State Machine states
CALC-PMK-R0: This state is entered after the XXKey is computed either from the EAP authenticaton or from the PSK.
CALC-PMK-R0-IDLE: This state is an intermediate state for R0KH.
CALC-PMK-R1: For FT Initial Association, this state is entered as an UCT.  For FT mechanisms, this state is entered through the event from the FT R1KH state machine.
FT-PMK-R1-SA-PUSH: This state is entered if Push-PMK-R1 is set to TRUE.

FT-R0-AUTH-CLEANUP: This state is entered when error conditions are detected.
FT-R0-AUTH: This state is entered through the event from the R1KH FT Initial Association state machine.  The R1KH FT Initial Association state machine sends this event when it determines that a new PMKR0 is needed.
INIT-802-1X-XXKEY: This state is entered after the EAP authentication is completed successfully, and MSK is delivered to the R0KH.
INIT-PSK-XXKEY: This state is entered for PSK.
8A.6.1.2 R0 Key Holder Authenticator State Machine variables
Error – This variable is set to TRUE when an error is generated at any stage in the state machine.
PMK-R0-lifetime-expire – This variable is set to TRUE when PMK-R0 lifetime is deemed expired.

Push-PMK-R1 – This variable is set to TRUE when R0KH can push the PMK-R1 SA to R1KHs.
8A.6.1.3 R0 Key Holder Authenticator State Machine procedures

Authorize-PMK-R1-SM() – This procedure authenticates the R1KH.

Distribute() – Distributes PMK-R1-SAs for the current instance of key hierarchy to the R1KHs.
Derive-Key-PMK-R0() – This procedure derives the PMK-R0 key from the XXKey.
Derive-Key-PMK-R1() – This procedure derives the PMK-R1 key from PMK-R0.

Derive-Key-Name-PMK-R0() – This procedure derives the PMK-R0 key name.

Derive-Key-Name-PMK-R1() – This procedure derives the PMK-R1 key name.

Invalidate-PMK-R1-SA() – This procedure invalidates PMK-R1-SAs for the current instance of the key hierarchy at all the R1KHs.

8A.6.2 R1KH Authenticator FT Initial Association State Machine

The R1KH state machine includes functions for FT Initial Association and FT mechanism.  The R1KH performing FT Initial Association and the R1KH perfoming FT mechanisms interact differently with the R0KH.
The FT Initial Association R1KH state machine defined in Fig X2 consists of:

1) A set of states that handle FT Initial Association, PMK-R1 key reception, PTK handshake and session establishment, cleanup and teardown.
2) This state machine interacts with the R0KH state machine to generate a fresh FT key hierarchy.
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Fig X2: R1KH Authenticator FT Initial Association State Machine
8A.6.2.1 R1KH Authenticator FT Initial Association State Machine states

DISCONNECT: This state is entered when the current session is deemed expired or on errors.
FT-INIT-AUTH: This state is entered when an FT Initial Association event is received.
FT-INIT-GET-R1_SA: This state is entered when R1KH determines that a fresh key hierarchy is required, or when R1KH issues a timeout failing to get a reponse from R0KH.
FT-INIT-R1_SA: This state is entered on receiving the PMK-R1-SA from the R0KH.
FT-PTK-INIT-DONE: This state is entered on successful validation of the fourth EAPOL-Key message.  This establishes the keys into the MAC and generates the trigger to open the 802.1X port.
FT-PTK-CALC-NEGOTIATING: This state is entered when a second EAPOL-Key message is received.
FT-PTK-CALC-NEGOTIATING3: This state is entered on successful validation of the second EAPOL-Key message, and sends the third EAPOL-Key message.
FT-PTK-START: This state is entered when the PMK-R1-SA is present.  This state is the beginning of the 4-Way Handshake to derive a fresh PTK session key.
R1-START: This is the start of the R1KH state machine.
8A.6.2.2 R1KH Authenticator FT Initial Association State Machine variables

Init – This variable is set to TRUE to initialize R1KH the state machine
EAPOLKeyReceived – This variable is set to TRUE when an EAPOL-Key message is received.

R0-TimeoutEvt – This is set to TRUE when the timeout for R0KH authentication expires.

TimeoutEvt – This is set to TRUE when a timeout expires.
TKIP-Countermeasures – This variable is set to TRUE when TKIP countermeasues are invoked.
8A.6.2.3 R1KH Authenticator FT Initial Association State Machine procedures

Calc-FT-PTK() – This procedure calculates the PTK session key.
Configure R0KH-ID() – This procedure establishes the R0KH-ID for the particular R1KH-ID.
Verify-PMK-R1-SA() – This procedure validates the components of the PMK-R1-SA, including PMK-R1 lifetimes.
8A.6.3 R1KH Authenticator FT Mechanisms State Machine

The R1KH Authenticator FT Mechanisms state machine, defined in Fig X3 consists of:

1) A set of states that handle FT mechanisms (including reservations) for over-the-air and over-the-DS communications. 
2) This state machine interacts with the R0KH Authenticator state machine to get the PMK-R1 Security Association (PMK-R1-SA).
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Fig X3: R1KH Authenticator FT Mechanisms State Machine
8A.6.3.1 R1KH Authenticator FT Mechanisms State Machine states

FT-AUTH: This state is entered when an indication of FT mechanism is received.
FT-GET-PMK-R1-SA: This state is entered when R1KH sends an event to the R0KH to get the PMK-R1-SA.
FT-HANDSHAKE-DONE: This state is entered when the reassociation response is sent.  This state generates the trigger to open the 802.1X port.
FT-HANDSHAKE-NEGOTIATING: This state is entered after the FT Authenitcate response is sent to the STA.  This state calculates the PTK session key and delivers the key to the MAC.
FT-HANDSHAKE-NEGOTIATING2: This state is entered when a reassociation indication is received from the STA.
FT-HANDSHAKE-NEGOTIATING3: This state is entered when reassociation indication parameters are validated.  This state sends the reassociation response.
FT-HANDSHAKE-START: This state is entered when the correct PMK-R1-SA is available.  An FT Authenitcate response is sent in this state.
FT-PMK-R1-SA: This state is entered when R1KH receives the R0KH-ID and requires a lookup of PMK-R1-SA, or when R1KH issues a timeout failing to get a reponse from R0KH.
FT-PMK-R1-SA-RECD: This state is entered on receiving the PMK-R1-SA from the R0KH.
FT-RV-HANDSHAKE-NEGOTIATING2: This state is entered when an FT reservation indication is received.
FT-RV-HANDSHAKE-NEGOTIATING3: This state is entered when an FT reservation indication parameters are validated.  This state sends the FT reservation response.
R1-START: This is the start of the R1KH state machine.
8A.6.3.2 R1KH Authenticator FT Mechanisms State Machine variables

MIC-Verfied – Set to TRUE when the message authentication code integrity check passes.
Parameters-Verified – Set to TRUE when the message parameters are valid.
PMKR1-SA – Set to TRUE when a valid PMK-R1-SA is present at the R1KH.
8A.6.4 R0KH Supplicant State Machine

There is one R0KH state machine within the Supplicant, which incorporates the FT Initial Association and the FT mechanisms functions.
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Fig X4: R0KH Supplicant State Machine

8A.6.4.1 R0KH Supplicant State Machine states

CALC-PMK-R0: This state is entered after the XXKey is computed either from the EAP authenticaton or from the PSK.
CALC-PMK-R1: For FT Initial Association, this state is entered as an UCT.  For FT mechanisms, this state is entered through the event from the FT R1KH state machine.
FT-R0-AUTH-CLEANUP: This state is entered when error conditions are detected.
FT-R0-AUTH: This state is entered through the event from the R1KH FT Initial Association state machine.  The R1KH FT Initial Association state machine sends this event when it determines that a new PMKR0 is needed.
INIT-802-1X-XXKEY: This state is entered after the EAP authentication is completed for deriving a fresh key hierarchy.
INIT-PSK-XXKEY: This state is used for PSK for deriving the key hierarchy.
8A.6.4.2 R0KH Supplicant State Machine variables

Error – This variable is set to TRUE when an error is generated at any stage in the state machine.

PMK-R0-SA – This variable is set to TRUE when the PMK-R0 SA is deemed valid, including the PMK-R0 lifetime being valid.

8A.6.4.3 R0KH Supplicant State Machine procedures

Authorize-PMK-R1-SM() – This procedure authorizes the R1KH.

Derive-Key-PMK-R0() – This procedure derives the PMK-R0 key from the XXKey.

Derive-Key-PMK-R1() – This procedure derives the PMK-R1 key from PMK-R0.

Derive-Key-Name-PMK-R0() – This procedure derives the PMK-R0 key name.

Derive-Key-Name-PMK-R1() – This procedure derives the PMK-R1 key name.

8A.6.5 R1KH Supplicant Initial Association State Machine

The R1KH state machine includes functions for FT Initial Association and FT mechanism.  The FT Initial Association R1KH state machine defined in Fig X5 consists of:

1) A set of states that handle FT Initial Association, PTK handshake and session establishment, cleanup and teardown.

2) This state machine interacts with the R0KH state machine to generate a fresh key hierarchy.
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Fig X5: R1KH Supplicant FT Initial Association State Machine

8A.6.5.1 R1KH Supplicant Initial Association State Machine states

DISCONNECT: This state is entered when the current session is deemed expired.
FT-INIT-AUTH: This state is entered when an FT Initial Association event is initiated.
FT-INIT-GET-R1_SA: This state is entered when R1KH determines that a fresh key hierarchy is required, or when R1KH issues a timeout failing to get a reponse from R0KH.
FT-INIT-R1_SA: This state is entered on receiving the PMK-R1-SA from the R0KH.
FT-FULL-AUTH: This state is entered when R1KH sends an event to the R0KH to get the PMK-R1-SA.  R0KH shall derive a fresh key hierarchy.
FT-FULL-AUTH-WAIT: This state is entered waiting for the PMK-R1-SA from the R0KH.
FT-PTK-INIT-DONE: This state is entered after sending the fourth EAPOL-Key message.  This state establishes the PTK keys into the MAC and generates the trigger to open the 802.1X port.
FT-PTK-CALC-NEGOTIATING: This state is entered when a valid, third EAPOL-Key message is received.  This state sends the fourth EAPOL-Key message.
FT-PTK-START: This state is entered when the PMK-R1-SA is present and when the first EAPOL-Key 4-Way Handshake message is received, in order to derive a new PTK session key.  This state sends the second EAPOL-Key 4-Way Handshake message.
FT-TKIP-COUNTERMEASURES: This state is entered on reception of the Michael MIC failure indication.  This indication can occur in any state.  The TKIP countermeasure EAPOL-Key report is generated in this state.
R1-START: This is the start of the R1KH state machine.
8A.6.5.2 R1KH Supplicant Initial Association State Machine variables

EAPOLKeyReceived – This variable is set to TRUE when an EAPOL-Key message is received.

MIC-Verified – This is set to TRUE when the message authentication integrity check is valid.
TimeoutEvt – This is set to TRUE when a timeout expires.

8A.6.5.3 R1KH Supplicant Initial Association State Machine procedures

Calc-FT-PTK() – This procedure calculates the PTK session key.
Configure R0KH-ID() – This procedure establishes the R0KH-ID for deriving the current instance of key hierarchy.
Verify-PMK-R1-SA() – This procedure validates the components of the PMK-R1-SA.

8A.6.6 R1KH Supplicant FT Mechanisms State Machine

The R1KH Supplicant FT Mechanisms state machine, defined in Fig X6 consists of:

1) A set of states that handle FT mechanisms (including reservations) for over-the-air and over-the-DS communications. 
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Fig X6: R1KH Supplicant FT State Machine

8A.6.6.1 R1KH Supplicant FT Mechanisms State Machine states

FT-AIR-REQUEST: This state is entered when it is determined that over-the-air FT mechanism will be executed.  This state sends the FT Authenitcation Request message over-the-air.
FT-INIT: This state is entered when an FT mechanism is initiated.
FT-DONE: This state is entered when a reassociation response message is received. This state generates the trigger to open the 802.1X port.
FT-DS-REQUEST: This state is entered when it is determined that over-the-DS FT mechanism will be executed.  This state sends the FT Authenitcation Request message over-the-DS.
FT-NO-RV-CONFIRM: This state is entered when performing FT without FT reservation mechanism.  This state is entered for both over-the-air and over-the-DS.  This state sends the reasociation request message.
FT-PTK-CALC: This state is entered when the over-the-air FT Authentication response is received if an over-the-air FT Authentication Request was sent, or, when over-the-DS FT Authentication Action response is received if an over-the-DS FT Authentication Action Request was sent.  This state calculates the PTK session keys and installs them in the MAC.
FT-RESERVE: This state is entered when the over the air FT Authenication Acknowledge is received if an over-the-air FT Authenication Confirm was sent, or, when over-the-DS FT Authentication Action Acknowledge is received if an over-the-DS FT Authentication Action Confirm was sent.
FT-RESERVE-2: The reassociation request message is sent in this state.
FT-RV-AIR-CONFIRM: This state is entered for over-the-air FT reservation mechanism.  This state sends the FT Authentication Confirm message containing the FT reservation request.
FT-RV-DS-CONFIRM: This state is entered for over-the-DS FT reservation mechanism.  This state sends the FT Authentication Confirm message containing the FT reservation request.
FT-RV-VERIFY-AUTH: This state is entered when the advertised FT parameters are verified including PMK key lifetimes and reassociation deadline.
FT-START: This state is entered when all FT parameters are validated and FT needs to be initiated.
8A.6.6.2 R1KH Supplicant FT Mechanisms State Machine variables

Over-the-Air – Set to TRUE when the FT mechanism will be executed over the air.

Over-the-DS – Set to TRUE when the FT mechanism will be executed over the DS.

Parameters-Valid – Set to TRUE when the message parameters are valid.
PMKR1-Lifetime-Valid – Set to TRUE when the PMK-R1 lifetime is valid.

PTK-Lifetime-Valid – Set to TRUE when the PTK lifetime is valid.

Reservation – Set to TRUE when the FT reservation mechanism will be executed.
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