July 2006

doc.: IEEE 802.11-06/1106r0

IEEE P802.11
Wireless LANs

	Peer Link Establishment

	Date:  2006-07-17

	Author(s):

	Name
	Company
	Address
	Phone
	Email

	Meiyuan Zhao
	Intel Corporation
	JF3-206, 2111 NE 25th Ave, Hillsboro OR 97124
	+1-503-712-4990
	meiyuan.zhao@intel.com

	Jesse Walker
	Intel Corporation
	JF3-206, 2111 NE 25th Ave, Hillsboro, OR USA 97124
	+1-503-712-1849
	Jesse.walker@intel.com

	W. Steven Conner
	Intel Corporation
	JF3-206, 2111 NE 25th Ave, Hillsboro, OR USA 97124
	+1-503-264-8036
	w.steven.conner@intel.com





Add following text after Clause 7.2.3.12
7.2.3.13 Peer Link Close Frame Format
The frame body of a management frame of subtype Peer Link Close contains the information shown in Table n1:

Table n1 – Peer Link Close frame body

	Order
	Information
	Notes

	1
	Reason code
	

	2
	One or more vendor specific information elements may appear in this frame
	

	Last
	Peer Link Close Identifier
	The Peer Link Close Identifier element is present only if dot11WLANMeshService is true.


7.2.3.14 Peer Link Open Frame Format
The frame body of a management frame of subtype Peer Link Open contains the information shown in Table n2:

Table n2 – Peer Link Open frame body 

	Order
	Information
	Notes

	1
	Capability
	

	2
	Listen Interval
	

	3
	SSID
	

	4
	Supported rates
	

	5
	Extended Supported Rates
	The Extended Supported Rates element is present whenever there are more than eight supported rates, and it is optional otherwise.

	6
	Power Capability
	The Power Capability element shall be present if dot11SpectrumManagementRequired is true

	7
	Supported Channels
	The Supported Channels element shall be present if dot11SpectrumManagementRequired is true

	8
	RSN
	The RSN information element is only present with dot11RSNAEnabled set to TRUE

	9
	Vendor Specific
	One or more vendor specific information elements may appear in this frame.

	11
	Mesh ID
	The Mesh ID element shall be present only when dot11WLANMeshService is true

	12
	WLAN Mesh Capability
	The WLAN Mesh Capability element shall be present only when dot11WLANMeshService is true

	13
	Active Profile Announcement
	The Active Profile Announcement element shall be present only when dot11WLANMeshService is true

	14 
	Peer Link Open Identifier
	The Peer Link Open Identifier element shall be present only when dot11WLANMeshService is true


7.2.3.15 Peer Link Confirm Frame Format

The frame body of a management frame of subtype Peer Link Confirm contains the information shown in Table n3:

Table n3 – Peer Link Confirm frame body
	Order
	Information
	Notes

	1
	Capability
	

	2
	Supported rates
	

	3
	Extended Supported Rates
	

	4
	Vender Specific
	

	5
	Mesh ID
	The Mesh ID information element shall be present within Peer Link Confirm frames only when dot11WLANMeshService is true.

	6
	WLAN Mesh Capability
	The WLAN Mesh Capability information element shall be present within Peer Link Confirm frames only when dot11WLANMeshService is true.

	7
	Active Profile Announcement
	The Active Profile Announcement information element shall be present within Peer Link Confirm frames only when dot11WLANMeshService is true.

	8
	Peer Link Confirm Identifier
	The Peer Link Confirm Identifier element shall be present within Peer Link Confirm frames only when dot11WLANMeshService is true.


Replace Clause 7.3.2.46 with the following:

7.3.2.46 Peer Link Open Identifier Element

The Peer Link Open Identifier element is transmitted by a MP to a neighbor in order to establish a peer link. It may be transmitted in Peer Link Open message.

	Octets: 1
	1
	8

	ID
	Length
	Local Link Identifier


Figure s32: Peer Link Open Identifier Element

The fields contained in the element are as shown in Table s10.

Table s10: Peer Link Open Identifier Element Fields

	Field
	Value/description

	ID
	TBD

	Length
	8

	Local Link Identifier
	Random value generated by local system in the effort to identify link instance with the peer


The Local Link Identifier field contains a random number generated by the source in order to create a unique identifier for this link instance with the peer MP.

Replace Clause 7.3.2.47 with the following:
7.3.2.47 Peer Link Confirm Identifier Element

The Peer Link Confirm Identifier element is transmitted by a MP to a neighbor in response to Peer Link Open request. It may be transmitted in Peer Link Confirm message. 

	Octets: 1
	1
	8
	8
	1

	ID
	Length
	Local Link Identifier
	Peer Link Identifier
	Status


Figure s33: Peer Link Confirm Identifier Element

The fields contained in the element are as shown in Table s11.

Table s11: Peer Link Confirm Identifier Element Fields

	Field
	Value/description

	ID
	TBD

	Length
	17

	Local Link Identifier
	Random value generated by local system in the effort to identify link instance with the peer

	Peer Link Identifier
	Random value received from the peer in the effort to identify the same link instance

	Status codes
	Status code


The Local Link Identifier field contains a random number generated by the local system in order to create a unique identifier for this link instance with the peer MP. 

The Peer Link Identifier field contains a random number received from the peer, via a Peer Link Open or a Peer Link Confirm message.  The pair <Local Link Identifier, Peer Link Identifier> together with both MPs’ identifier (e.g., their MAC addresses) uniquely identifies this link instance to be establish between these two MPs.

The status code has a value indicating wither the link establishment request was accepted or denied, according to the values and meanings contained in Table s12.

Table s12: Peer Link Confirm Status Codes

	Value
	Meaning

	0
	Request accepted

	1
	Request denied

	2-255
	Reserved


Add the following after Clause 7.3.2.59:
7.3.2.60 Peer Link Close Identifier Element
The Peer Link Close Identifier element is transmitted by a MP to a neighbor to close a link with a peer MP. It may be transmitted in Peer Link Close message. 

	Octets: 1
	1
	8
	8

	ID
	Length
	Local Link Identifier
	Peer Link Identifier


Figure s54: Peer Link Close Identifier Element

The fields contained in the element are as shown in Table s15.

Table s15: Peer Link Close Identifier Element Fields

	Field
	Value/description

	ID
	TBD

	Length
	16

	Local Link Identifier
	Random value generated by local system in the effort to identify link instance with the peer

	Peer Link Identifier
	Random value received from the peer in the effort to identify the same link instance


The Local Link Identifier field contains a random number generated by the local system for identifying this link instance with the peer MP. 

The Peer Link Identifier field contains a random number received from the peer, via a Peer Link Open or a Peer Link Confirm message.  The pair <Local Link Identifier, Peer Link Identifier> together with both MPs’ identifier (e.g., their MAC addresses) uniquely identifies this link instance to be closed between these two MPs.

Add the following text after Clause 10.3.29

10.3.30 PassivePeerLinkOpen
The following primitives describe how a mesh entity passively starts a peer link establishment process. 

10.3.30.1 MLME-PassivePeerLinkOpen.request
10.3.30.1.1 Function

This primitive requests that the mesh entity start link establishment procedure passively.

10.3.30.1.2 Semantics of the service primitive

The primitive parameters are as follows:

MLME-PassivePeerLinkOpen.request(

PeerTimeout,

ResendTimeout,

MaxReqs,

CapabilityInformation,

ListenInterval

)

	Name
	Type
	Valid range
	Description

	PeerTimeout
	Integer
	≥ 1
	Specifies a time limit (in TU) after which the link will be cancelled completely after the mesh entity set the link status as holding.

	ResendTimeout
	Integer
	≥ 1
	Specifies the time limit (in TU) the mesh entity will wait for response from the neighbor mesh entity before retrying to request to open a peer link instance.

	MaxReqs
	Integer
	≥ 1
	Specifies the maximum number of retries the mesh entity will issue to the neighbor mesh entity before declaring link establishment failure.

	CapabilityInformation
	As defined in frame format
	As defined in frame format
	Specifies the requested operational capabilities to the neighbor mesh entity.

	ListenInterval
	Integer
	≥ 0
	Specifies the number of beacon intervals that can pass before the mesh entity awakens and listens for the next beacon.


Additional parameters needed to perform PassivePeerLinkOpen procedure are not included in the primitive parameter list since the MLME already has that data (maintained as internal state).

10.3.30.1.2 When generated

This primitive is generated when the mesh entity wishes to establish a link with a neighbor mesh entity, but does not specify a particular neighbor.

10.3.30.1.3 Effect of receipt

This primitive initiates a peer link establishment procedure. The MLME subsequently issues an MLME-PassivePeerLinkOpen.confirm that reflects the results.

10.3.30.2 MLME-PassivePeerLinkOpen.confirm

10.3.30.2.1 Function
This primitive reports the results of a passive open attempt.

10.3.30.2.2 Semantics of the service primitive

The primitive parameters are as follows:

MLME-PassivePeerLinkOpen.confirm(

ResultCode,

Local Link ID

)

	Name
	Type
	Valid range
	Description

	ResultCode
	Enumeration
	SUCCESS,

INVALID_PARAMETERS,

TIMEOUT,

FAILED_OUT_OF_MEMORY
	Indicates the result of the MLME-PassivePeerLinkOpen.request.

	Local Link ID
	Integer
	1--264-1
	Specifies the random number generated by the local mesh entity in the effort of identifying the link instance about to be established with a neighbor mesh entity


10.3.30.2.2 When generated
This primitive is generated as a result of an MLME-PassivePeerLinkOpen.request.

10.3.30.2.2 Effect of receipt
The SME is notified of the results of the passive open procedure.
10.3.31 ActivePeerLinkOpen

The following primitives describe how a mesh entity actively starts a peer link establishment process with a specified peer MAC entity that is within a mesh entity. 

10.3.31.1 MLME-ActivePeerLinkOpen.request
10.3.31.1.1 Function

This primitive requests that the mesh entity start link establishment procedure actively with a specified peer MAC entity that is within a mesh entity.

10.3.31.1.2 Semantics of the service primitive

The primitive parameters are as follows:

MLME-ActivePeerLinkOpen.request(

PeerAddress,

PeerTimeout,

ResendTimeout,

MaxReqs,

CapabilityInformation,

ListenInterval

)

	Name
	Type
	Valid range
	Description

	PeerAddress
	MACAddress
	Any valid individual MAC address
	Specifies the address of the peer MAC entity with which to perform the link establishment process.

	PeerTimeout
	Integer
	≥ 1
	Specifies a time limit (in TU) after which the link will be cancelled completely after the mesh entity sets the link status as holding.

	ResendTimeout
	Integer
	≥ 1
	Specifies the time limit (in TU) the mesh entity will wait for response from the neighbor mesh entity before retrying to request to open a peer link instance.

	MaxReqs
	Integer
	≥ 1
	Specifies the maximum number of retries the mesh entity will issue to the neighbor mesh entity before declaring link establishment failure.

	CapabilityInformation
	As defined in frame format
	As defined in frame format
	Specifies the requested operational capabilities to the neighbor mesh entity.

	ListenInterval
	Integer
	≥ 0
	Specifies the number of beacon intervals that can pass before the mesh entity awakens and listens for the next beacon.


Additional parameters needed to perform active open procedure are not included in the primitive parameter list since the MLME already has that data (maintained as internal state).

10.3.31.1.2 When generated

This primitive is generated when the mesh entity wishes to establish a link with a neighbor mesh entity.

10.3.31.1.3 Effect of receipt

This primitive initiates a peer link establishment procedure. The MLME subsequently issues an MLME-ActivePeerLinkOpen.confirm that reflects the results.

10.3.31.2 MLME-ActivePeerLinkOpen.confirm

10.3.31.2.1 Function
This primitive reports the results of an active open attempt.

10.3.31.2.2 Semantics of the service primitive

The primitive parameters are as follows:

MLME-ActivePeerLinkOpen.confirm(

ResultCode,

Local Link ID

)

	Name
	Type
	Valid range
	Description

	ResultCode
	Enumeration
	SUCCESS,

DUPLICATED,

INVALID_PARAMETERS,

TIMEOUT,

FAILED_OUT_OF_MEMORY
	Indicates the result of the MLME-ActivePeerLinkOpen.request.

	Local Link ID
	Integer
	1--264-1
	Specifies the random number generated by the local mesh entity in the effort of identifying the link instance about to be established with a neighbor mesh entity


10.3.31.2.2 When generated
This primitive is generated as a result of an MLME-ActivePeerLinkOpen.request.

10.3.31.2.2 Effect of receipt
The SME is notified of the results of the active open procedure.
10.3.32 SignalPeerLinkStatus

The following primitives report the link status to the mesh entity as the result of peer link establishment, at the end of peer link establishment procedure.

10.3.32.1 MLME-SignalPeerLinkStatus.indication

10.3.32.1.1 Function

This primitive indicates that the mesh entity has finishes the link establishment process with a specified peer mesh entity and reports the status of the link. 

10.3.32.1.2 Semantics of the service primitive

The primitive parameters are as follows:

MLME-SignalPeerLinkStatus.indication(

PeerAddress,

Local Link ID,

Peer Link ID,

Status

)

	Name
	Type
	Valid range
	Description

	PeerAddress
	MACAddress
	Any valid individual MAC address
	Specifies the address of the peer MAC entity with which to perform the link establishment process.

	Local Link ID
	Integer
	1--264-1
	Specifies the random number generated by the local mesh entity to identify this link instance 

	Peer Link ID
	Integer
	1--264-1
	Specifies the random number generated by the peer mesh entity and received by the local mesh entity that in order to identify this link instance

	Status
	Enumeration
	SUCCESS,

FAILURE-CLOSE,

FAILURE-MAX-REQS
	Indicates the result of the peer link establishment procedure


10.3.32.1.2 When generated

This primitive is generated when the mesh entity finishes the link establishment procedure.

10.3.32.1.3 Effect of receipt

This primitive enables the mesh entity to handle the link status and to end a peer link establishment procedure. 
10.3.33 CancelPeerLink
This mechanism supports the process of canceling the link with a specified peer mesh entity.
10.3.33.1 MLME-CancelPeerLink.request

10.3.33.1.1 Function

This primitive requests that the link with a specified peer mesh entity be cancelled.

10.3.33.1.2 Semantics of the service primitive

The primitive parameters are as follows:
MLME-CancelPeerLink.request(

PeerAddress,

Local Link ID,

Peer Link ID

)

	Name
	Type
	Valid range
	Description

	PeerAddress
	MACAddress
	Any valid individual MAC address
	Specifies the address of the peer MAC entity with which to perform the link establishment process.

	Local Link ID
	Integer
	1--264-1
	Specifies the random number generated by the local mesh entity to identify this link instance 

	Peer Link ID
	Integer
	1--264-1
	Specifies the random number generated by the peer mesh entity and received by the local mesh entity that in order to identify this link instance


10.3.33.1.2 When generated
This primitive is generated by the SME to cancel a link instance with a specified peer mesh entity.

10.3.33.1.2 Effect of receipt
This primitive sets the mesh entity to initial conditions, clearing all internal variables to the default values. The MLME subsequently issues a MLME-CancelPeerLink.confirm to reflect the results.

10.3.33.1 MLME-CancelPeerLink.confirm
10.3.33.1.1 Function

This primitive reports the result of cancel link request.

10.3.33.1.2 Semantics of the service primitive

The primitive parameters are as follows:
MLME-CancelPeerLink.confirm(

PeerAddress,

Local Link ID,

Peer Link ID,

Result codes

)

	Name
	Type
	Valid range
	Description

	PeerAddress
	MACAddress
	Any valid individual MAC address
	Specifies the address of the peer MAC entity with which to perform the link establishment process.

	Local Link ID
	Integer
	1--264-1
	Specifies the random number generated by the local mesh entity to identify this link instance 

	Peer Link ID
	Integer
	1--264-1
	Specifies the random number generated by the peer mesh entity and received by the local mesh entity that in order to identify this link instance

	Result codes
	Enumeration
	SUCCESS

FAILURE-NOT-FOUND
	Indicate the result of cancel link request


Either or both of Local Link ID and Peer Link ID fields can be null if the SME doesn’t know the values yet.
10.3.33.1.2 When generated
This primitive is generated by the MLME as the result of an MLME-CancelPeerLink.request.

10.3.33.1.2 Effect of receipt
The SME is notified of the results of the cancel link procedure.

Delete  Clause 11A.3.2.1 
Replace the text in Clause 11A.3.2.2 with the following

11A.3.2.2 Peer Link Establishment 

The purpose of this procedure is to establish at least one, and in many cases several, mesh links with one or more peer MP.  A MP must be able to establish at least one mesh link with a peer MP, and may be able to establish many such links simultaneously. It is possible that there are more candidate peer MPs than the device is capable of maintaining peer links with simultaneously. In this case, the MP must select which MPs to establish peer links with based on some measure of signal quality, such as gathered during the discovery phase, or other information received from candidate neighbor MPs.

The procedure of establishing a peer link between MPs involves three commands and three messages. 

The three commands are provided by the MLME-PassivePeerLinkOpen( ).request, MLME-ActivePeerLinkOpen(peerId).request, and MLME-CancelPeerLink(peerId).request primitives. The design supposes that these commands are issued by IEEE 802.11 SME, to cause the link establishment protocol to execute. MLME-PassivePeerLinkOpen( ).request causes the local MP to start a link establishment protocol instance and listen to Peer Link Open by a peer MP. MLME-ActivePeerLinkOpen(peerId).request causes the local MP to initiate a link establishment protocol instance with the peer MP identified as peerId and actively send a Peer Link Open message to this peer MP. The MLME-CancelPeerLink(peerId).request command causes the local MP to end a link with the peer MP identified as peerId.

There are three messages: Peer Link Open, Peer Link Confirm, and Peer Link Close. The Peer Link Open message requests that a link be established between the Peer Link Open sender and the receiver. The Peer Link Confirm message responds to the Peer Link Open message. The Peer Link Close message tries to close the connection between two MPs. The protocol design is based on the rule:

· A link is established when both MPs have sent and received Peer Link Confirm messages

Both MPs have identifiers, referred to as myId and peerId.  During the process of establishing a link, both MPs generate a random number, Ra and Rb, to identify this link establishment protocol instance. Peer Link Open and Peer Link Confirm messages carry these random numbers to bind these messages with this protocol instance. Hence the tuple <myId, peerId, Ra, Rb> uniquely specifies this link instance.

The design assumes that the link status is processed by the IEEE 802.11 SME. Moving success/failure processing to the SME simplifies design. The design uses the MLME-SignalPeerLinkStatus(peerId, mystatus, peerstatus).indication primitive for the protocol instance to report status of SUCCESS or FAILURE to the higher layer decision entity. 

11A.3.2.2.1 Constants

This clause defines constants used throughout the design of the link state automaton. All constants are denoted by an upper case HELVETICA font.

The link state finite automaton uses the normal Boolean constants. The value of each is distinct but otherwise implementation dependent.

· TRUE. A constant interpreted to mean true.

· FALSE. A constant interpreted to mean not true.

The link state finite automaton uses protocol constants to govern the operation of the protocol.

· MAX-REQS. This constant sets the maximum number of Peer Link Open requests the local link state automaton may send to establish a link instance. The value of MAX-REQS is 11. This value was selected so that the protocol will have probability exceeding 0.99999 to complete successfully when the frame loss rate is 30%.

· MY-MAC-ADDR. This constant gives the MAC address of the device hosting the local link state automaton. Its format is defined by IEEE 802.1.

· RESEND-TIMEOUT. This constant gives the maximum time the local link state automaton will wait for response before sending out another Peer Link Open message. The value is 32 milliseconds.

· PEER-TIMEOUT. This constant gives the maximum time the local link state automaton will stay in the “holding” state before declaring the link close and releasing the link instance. Its value is 2768 milliseconds. This value is the maximum expected time for the protocol to deliver a Peer Link Confirm responding to an earlier Peer Link Open, given MAX-REQS and the default exponential backoff algorithm applied to the RESEND-TIMEOUT.

Editor’s Note: These values are arbitrary and may be replaced by other values in the final standard.
The link state automaton uses status constants to denote the ultimate disposition of an instance of link establishment. The values of each are distinct but otherwise implementation dependent.

· SUCCESS. This constant is used to report that the local link automaton successfully synchronized its state with its peer

· FAILURE-CLOSE. This constant indicates that this local link state automaton received a Peer Link Close message

· FAILURE-MAX-REQS. This constant reports that the local link state automaton transmitted the maximum number of Peer Link Open messages permitted by a protocol instance without receiving a Peer Link Confirm from the remote link state automaton instance.

· FAILURE-CANCELLED. This constant reports that the local link state automaton has been closed completely. This is the response to the MLME-CancelPeerLink.indication primitive.

The link state automaton uses exception constants to indicate exceptional conditions at the local automaton that will prevent link establishment. The values of each are distinct but otherwise implementation dependent.

· DUPLICATE. This constant is used to report that a link instance is already established with a designated peer.

· NOT-FOUND. This constant is used to report that a designated link instance doesn’t exit.
11A.3.2.2.2 States
This section defines the state variables and states used to define the link state automaton. All the state variable values are recorded in a resource block, called Mesh Resource Block (MRB). It is indexed by the link instance identifier, the tuple (myId, peerId, Ra, Rb). 

There are two commands on MRBs. AllocateMRB(myId, peerId, Ra, Rb) allocates resource to store variables. ReleaseMRB(myId, peerId, Ra, Rb) free the resource. How the MRB and commands on MRB are implemented is out of the scope of the specification.

The following are state variables stored in an MRB:

· myId—identifies the MAC address of the device hosting the local link state automaton

· peerId—identifies the MAC address of the device hosting the remote link state automaton

· Ra—provides local random number for this link instance

· Rb—provides remote random number for this link instance

· RetryCounter—indicates the number of Peer Link Open messages the local link state automaton has sent for this link establishment instance

· ConfirmSentFlag—Is FALSE before the local link state automaton sends a Peer Link Confirm for this instance of link establishment and becomes TRUE after.

· ConfirmReceivedFlag—Is FALSE before the local link state automaton receives a Peer Link Confirm for this instance of link establishment and becomes TRUE after.

· CancelFlag—Is FALSE before the local link state automaton receives an MLME-CancelPeerLink command from the local system and becomes TRUE after.
· CancelTimer—the timer for controlling the automaton to transit from holding state to the state where the link instance is closed completely.

· RetryTimer—the timer for controlling the Peer Link Open resending. 

· RetryTimeout—gives the current retry timeout value for this link establishment instance.

· myStatus—records the final disposition of this link establishment instance by local system.

· peerStatus—records the final disposition of this link establishment instance by the peer’s system.

The following table demonstrates all interesting states used by link state establishment automaton. They are described using the MRB variables, representing their state properties. The states not specified in the table are not reachable by the designed automaton.

	State
	Description

	0
	Ra = null, Rb = null, ConfirmSentFlag = FALSE, ConfirmReceivedFlag = FALSE, RetryCounter = 0, CancelFlag = FALSE;

	1
	Ra ≠ null, Rb = null, ConfirmSentFlag = FALSE, ConfirmReceivedFlag = FALSE, RetryCounter = 0, CancelFlag = FALSE;

	2
	Ra ≠ null, Rb ≠ null, ConfirmSentFlag = FALSE, ResponseReceived = FALSE, 0 < RetryCounter < MAX-REQS, CancelFlag = FALSE;

	3
	Ra ≠ null, Rb ≠ null, ConfirmSentFlag = TRUE, ConfirmReceivedFlagt = FALSE, 0 ≤ RetryCounter < MAX-REQS, CancelFlag = FALSE;

	4
	Ra ≠ null, Rb ≠ null, ConfirmSentFlag = TRUE, ConfirmReceivedFlag = TRUE, 0 < RetryCounter ≤ MAX-REQS, CancelFlag = FALSE;

	5
	Ra ≠ null, Rb ≠ null, CancelFlag = TRUE;


State 0 (IDLE) represents the initial state. There is no activity for link establishment in this state. It also serves as one of the termination state. Logically, all variables are set to be default initial value. In fact, the MRB does not exist for the automaton. This design allows the local system to save resource for link establishment. As triggered by local command (either MLME-PassivePeerLinkOpen.request or MLME-ActivePeerLinkOpen.request), the automaton will allocate resource and start state transition. Once the link is closed, the automaton goes back to this state as well.
State 1 (LISTEN) represents listening state that the local system is waiting for a Peer Link Open message. The transition to state 1 was caused by the MLME-PassivePeerLinkOpen.request primitive called by the SME. The MRB is allocated and initialized for use. The local link state automaton has generated local random number to name this link, MRB.Ra ≠ null. The full name cannot be known in this state, because no message has yet been received from the other peer.  Finally, the condition RetryCounter = 0 asserts that in this state the local system has not yet sent out a Peer Link Open yet. If the local system receives an MLME-CancelPeerLink.request primitive from the SME, MRB is released and transits back to state 0.
State 2 (OPEN_SENT) represents the state that the node has actively sent a Peer Link Open message to the peer, but hasn’t received a Peer Link Open or a Peer Link Confirm from the peer. Again, the full identifier of the link cannot be known in this state, because no message has yet been received from the other peer. The protocol design rule that a Peer Link Confirm is sent in response to every Peer Link Open message means that the MRB only needs to track that the local system has sent a response instead of receiving a request. The condition 0 < RetryCounter < MAX-REQS means that in this state the local system has sent at least one Peer Link Open on this link, but has not yet sent the maximum number of requests permitted by the protocol. 
State 3 (CONFIRM_SENT) represents the state that the node has received a Peer Link Open and has sent a Peer Link Confirm message to the peer. Thus, ConfirmSentFlag = TRUE. Moreover, the local link state automaton records the random number set by the peer, thus, Rb ≠ null. In this state the local system may have or have not sent a Peer Link Open message. If it has, then the automaton is dealing the simultaneous Peer Link Opens. Now the local link state automaton is waiting for an incoming Peer Link Confirm from the remote peer. Lastly, the condition 0 < RetryCounter < MAX-REQS means that in this state the local system has sent at least one Peer Link Open on this link, but has not yet sent the maximum number of requests permitted by the protocol.

State 4 (ESTABLISHED) represents the established state where both party exchange and confirm link instance identifier (Ra ≠ null, Rb ≠ null) via Peer Link Confirm messages. Both the local system and the peer system has sent and received Peer Link Confirm messages (ConfirmSentFlag = TRUE, ConfirmReceivedFlag = TRUE). This state is also a termination state of the automaton.

State 5 (HOLDING) represents a failure condition where the local system is trying to close the link. It’s also the holding state for links, which are the target of CancelPeerLink command. A timeout on CancelTimer will terminate a link instance completely and transit the automaton back to State 0. 

11A.3.2.2.3 Events
The automaton uses three kinds of events: local commands, events corresponding to protocol messages, and “internal” events.

The local commands are:

· MLME-CancelPeerLink(peerId).request. The MLME-CancelPeerLink(peerId).request event represents a local decision to end a link with the peer whose MAC address is peerId.

· MLME-PassivePeerLinkOpen().request. The MLME-PassivePeerLinkOpen,request event represents a local decision to start listen to connection request.

· MLME-ActivePeerLinkOpen(peerId).request. The MLME-ActivePeerLinkOpen(peerId).request event represents a local decision to for a link with the peer whose MAC address is peerId.

The events corresponding to protocol messages are:

· CloseReceived(peerId, myId, Rb, Ra). This event represents the reception of a Peer Link Close message from the peer to close link instance named by < peerId, myId, Rb, Ra>. The message was addressed to myId. Note that IEEE 802.11 Disassociate message does not identify the link instance being closed.

· OpenReceived(peerId, myId, peerRb). This event represents the reception of a Peer Link Open message from the peer named by peerId. This message was addressed by myId, and conveys the link instance identifier peerRb generated by the peer MP, which must be non-null.

· ConfirmReceived(peerId, myId, peerRb, myRa). This event represents the reception of a Peer Link Confirm message from the peer named by peerId. This message was addressed by myId, and conveys the link instance identifiers peerRb and myRa, both of which must be non-null.

The internal events are:

· Timeout(item). This event represents a timeout for the MRB instance identified locally by item.

11A.3.2.2.4 Actions
The following are the actions used to respond to events defined by the link state automaton

· backoff(timeout). The backoff(timeout) action returns a new Peer Link Open retransmit timeout based on the current value of the Peer Link Open retransmit timeout. The backoff algorithm may be implementation specific, but the default algorithm is randomized exponential backoff:

return timeout + (getRandom mod timeout).

· computeStatus. The computeStatus action returns the status (e.g., accept/deny) in response to a Peer Link Open.

· closeSend(peerId). The closeSend(peerId) action sends a Peer Link Close message to the peer named by peerId.

· getRandom. The getRandom action returns a random bit string.

· raiseException(indicatedException). The raiseException(indicatedException) action reports the indicatedException to the entity controlling the link state automaton.

· allocateMRB(myId, peerId, Ra, Rb). The allocateMRB(myId, peerId, Ra, Rb) action allocates storage for a MRB designated for this link instance specified by tuple <myId, peerId, Ra, Rb>, where myId and Ra must be non-null and peerId and Rb may be null. This action also initialized other variables in the MRB. RetryCounter is set to 0. RetryTimeout is set to RESEND-TIMEOUT. All variables representing flags are set to FALSE.
· releaseMRB(myId, peerId, Ra, Rb). The releaseMRB(myId, peerId, Ra, Rb) action release a MRB designated for this link instance specified by tuple <myId, peerId, Ra, Rb>, where myId and Ra must not be null.
· openSend(myId, peerId, myRa). The requestSent(myId, peerId, myRa) action sends a Peer Link Open message to the peer named by peerId from the local system, named by myId. The mesh resource block instance is named by the tuple <myId, peerId, myRa, peerRb>; peerRb may be null, i.e., not yet known.

· confirmSend(myId, peerId, myRa, peerRb, status). The responseSend(myId, peerId, myRa, peerRb, status)action sends a Peer Link Confirm message to the peer named named by peerId from the local system, named by myId. The mesh resource block instance is named by the tuple <myId, peerId, myRa, peerRb>, neither of which may be null. The status parameter reports whether the Peer Link Open succeeded or failed.

· signalLinkStatus(peerId, myStatus, peerStatus). The signalLinkStatus(peerId, myStatus, peerStatus) action reports on the final < myStatus, peerStatus> of the link establishment instance.

· timerClear(item). The timerClear(item) action clears the timer designated by item.

· timerSet(item, value). The timerSet(item, value) action sets the timeout of duration value for the timer designated by item.

11A.3.2.2.5 Finite State Automaton

The finite state automaton is defined in terms of the constants, states, events, and actions. Events cause transition of states. The following table gives the details. One MRB instance is used by the automaton. The table has en extra column to emphasize the message sent out as the result of actions. 

	Cur
	Event
	Actions
	Message Sent
	Next

	0
	MLME-CancelPeerLink(peerId).request
	raiseException(NOT-FOUND)
	-
	0

	
	MLME-PassivePeerLinkOpen.request
	Ra ← getRandom

allocateMRB(MY-MAC-ADDR, null, Ra, null)
	-
	1

	
	MLME-ActivePeerLinkOpen(peerId).request
	Ra ← getRandom()

allocateMRB(MY-MAC-ADDR, peerId, Ra, null)

openSend(MRB.myId, MRB.peerId, MRB.Ra, null)

MRB.OpenCounter ← MRB.OpenCounter + 1 timerSet(MRB.RetryTimer, RESEND-TIMEOUT)
	Peer Link Open
	2

	
	CloseReceived(peerId, myId, Rb, Ra)
	skip
	-
	0

	
	OpenReceived(peerId, myId, Rb)
	skip
	-
	0

	
	ConfirmReceived(peerId, myId, peerRb, myRa, status)
	skip
	-
	0

	
	Timeout(any)
	timerClear(any)
	-
	0

	1
	MLME-CancelPeerLink(peerId).request
	raiseException(NOT-FOUND)
	-
	1

	
	MLME-PassivePeerLinkOpen.request
	skip
	-
	1

	
	MLEM-ActivePeerLinkOpen(peerId).request
	MRB.peerId ← peerId
openSend(MRB.myId, peerId, MRB.Ra)

MRB.OpenCounter ← MRB.OpenCounter + 1
timerSet(MRB.RetryTimer, RESEND-TIMEOUT)
	Peer Link Open
	2

	
	CloseRecevied(peerId, myId, Rb, Ra)
	raiseException(NOT-FOUND)
	-
	1

	
	OpenReceived(peerId, myId,  Rb)
	MRB.Rb ← Rb

MRB.myStatus ← computeStatus
confirmSend(MRB.myId, MRB.peerId, MRB.Ra, MRB.Rb, MRB.myStatus)
MRB.ConfirmSentFlag ← TRUE
timerSet(MRB.RetryTimer, RESEND-TIMEOUT)
	Peer Link Confirm 
	3

	
	ConfirmReceived(peerId, myId,  r1,  r2, status)
	skip // I haven’t received a request yet. The peer must be sending response for previous link instance
	-
	1

	
	Timeout(any)
	timerClear(any)
	-
	1

	2
	MLME-CancelPeerLink(peerId).request
	closeSend(MRB.myId, MRB.peerId, Ra, Rb)

timerClear(MRB.RetryTimer)
MRB.CancelFlag ← TRUE
timerSet(MRB.CancelTimer, PEER-TIMEOUT)
MRB.myStatus ← FAILURE-CANCELLED
	Peer Link Close
	5

	
	MLME-PassivOpen.request
	skip
	-
	2

	
	MLME-ActivePeerLinkOpen(peerId).request
	if (peerId = MRB.peerId) (
    raiseException(DUPLICATE)

fi
	-
	2

	
	CloseReceived(peerId, myId, Rb, Ra)
	if (Ra = MRB.Ra and Rb = MRB.Rb and peerId = MRB.peerId) (
     signalLinkStatus(link.peerId, FAILURE-CLOSE, FAILURE-CLOSE)

     timerClear(MRB.RetryTimer)

     releaseMRB(MRB.myId, MRB.peerId)

else

     skip

fi
	-
	0

	
	OpenReceived(peerId, myId,  r)

	timerClear(MRB.RetryTimer)

MRB.Rb ← r
MRB.peerId ← peerId
MRB.myStatus ← computStatus
confirmSend(MRB.myId, MRB.peerId, MRB.Ra, MRB.Rb, MRB.myStatus)
MRB.ConfirmSentFlag ← TRUE
MRB.RetryTimeout ← RESENT-TIMEOUT
timerSet(MRB.RetryTimer, MRB.RetryTimeout)
	Peer Link Confirm
	3

	
	ConfirmReceived(peerId, myId,  Rb,  Ra, status)
	if (Ra = MRB.Ra) (
timerClear(MRB.RetryTimer)

MRB.Rb ← Rb
     MRB.peerId ← peerId
     MRB.peerStatus ← status

     MRB.ConfirmReceivedFlag ← TRUE
     MRB.myStatus ← computStatus
     confirmSend(MRB.myId, MRB.peerId, MRB.Ra,   MRB.Rb, MRB.myStatus)
     MRB.ConfirmSentFlag ← TRUE
     signalLinkStatus(peerId, MRB.myStatus, MRB.peerStatus)

else // wrong link instance

skip

fi
	Peer Link Confirm
	4

	
	Timeout(MRB.RetryTimer)
	if (MRB.RetryTimer < MAX-REQS) (
    timerClear(MRB.RetryTimer)

    openSend(MRB.myId, MRB.peerId, MRB.Ra)

    MRB.RetryCounter ← MRB.RetryCounter + 1

    MRB.RetryTimeout ← backoff(MRB.RetryTimeout)

    timerSet(MRB.RetryTimer)

else
    closeSend(MRB.myId, MRB.peerId, MRB.Ra, MRB.Rb)

    timerClear(MRB.RetryTimer)
    MRB.CancelFlag ← TRUE
timerSet(MRB.CancelTimer, PEER-TIMEOUT)
MRB.myStatus ← FAILURE-MAX-REQS
fi
	Peer Link Open 

or Peer Link Close
	2 or 5

	
	Timeout(MRB.CancelTimer)
	timerClear(MRB.CancelTimer)
	-
	2

	3
	MLME-CancelPeerLink(peerId).request
	closeSend(MRB.myId, MRB.peerId, MRB.Ra, MRB.Rb)

timerClear(MRB.RetryTimer)
MRB.CancelFlag ← TRUE
timerSet(MRB.CancelTimer, PEER-TIMEOUT)
MRB.myStatus ← FAILURE-CANCELLED
	Peer Link Close
	5

	
	MLME-PassivePeerLinkOpen.request
	skip
	-
	3

	
	MLME-ActivePeerLinkOpen(peerId).request
	if (peerId = MRB.peerId) (
raiseException(DUPLICATE)

else

    skip

fi
	-
	3

	
	CloseReceived(peerId, myId, Rb, Ra)
	if (Ra = MRB.Ra and Rb = MRB.Rb and peerId = MRB.peerId) (
     signalLinkStatus(link.peerId, FAILURE-CLOSE, FAILURE-CLOSE)

     timerClear(MRB.RetryTimer)

     releaseMRB(MRB.myId, MRB.peerId)

else

     skip

fi
	-
	0

	
	OpenReceived(peerId, myId, peerRb)

	if MRB.peerId = peerId and MRB.Rb = peerRb (
timerClear(MRB.RetryTimer)
     confirmSend(MRB.myId, MRB.peerId, MRB.Ra, MRB.Rb, MRB.myStatus)
    MRB.ConfirmSentFlag ← TRUE
   MRB.RetryTimeout ← RESENT-TIMEOUT
   timerSet(MRB.RetryTimer, MRB.RetryTimeout)
else 

skip // wrong link instance

fi
	Peer Link Confirm 
	3

	
	ConfirmReceived(peerId, myId,  peerRb, peerRa, status)
	if ( peerId = MRB.peerId and peerRb = MRB.Rb) (
timerClear(MRB.RetryTimer)

MRB.peerStatus ← status
MRB.ConfirmReceivedFlag ← TRUE
     confirmSend(MRB.myId, MRB.peerId, MRB.Ra, MRB.Rb, MRB.myStatus)
     signalLinkStatus(MRB.peerId, MRB.myStatus, MRB.peerStatus)

else // wrong link instance

skip 

fi
	Peer Link Confirm
	4

	
	Timeout(MRB.RetryTimer)
	if (MRB.RetryCounter < MAX-REQS) (
    timerClear(MRB.RetryTimer)

    confirmSend(MRB.myId, MRB.peerId, MRB.Ra)

    MRB.RetryCounter ← MRB.RetryCounter + 1

    MRB.RetryTimeout ← backoff(MRB.RetryTimeout)

    timerSet(MRB.RetryTimer)

else

    closeSend(MRB.myId, MRB.peerId, MRB.Ra, MRB.Rb)

    timerClear(MRB.RetryTimer)

    MRB.CancelFlag ← TRUE
    timerSet(MRB.CancelTimer, PEER-TIMEOUT)
    MRB.myStatus ← FAILURE-MAX-REQS 
fi
	Peer Link Open 

or

Peer Link Close
	3 or 5

	
	Timeout(MRB.CancelTimer)
	timerClear(MRB.CancelTimer)
	
	

	4
	MLME-CancelPeerLink(peerId).request
	closeSend(MRB.myId, MRB.peerId, MRB.Ra, MRB.Rb)

timerClear(MRB.RetryTimer)

MRB.CancelFlag ← TRUE
timerSet(MRB.CancelTimer, PEER-TIMEOUT)
MRB.myStatus ← FAILURE-CANCELLED
	Peer Link Close
	5

	
	MLME-PassivePeerLinkOpen.request
	skip
	-
	4

	
	MLME-ActiveAssoc(peerId).request
	raiseException(DUPLICATE)
	-
	4

	
	CloseReceived(peerId, myId, Rb, Ra)
	if (Ra = MRB.Ra and Rb = MRB.Rb and peerId = MRB.peerId) (
     signalLinkStatus(link.peerId, FAILURE-CLOSE, FAILURE-CLOSE)

     timerClear(MRB.RetryTimer)

     releaseMRB(MRB.myId, MRB.peerId)

else

     skip

fi
	-
	0

	
	OpenReceived(peerId, myId, peerRb)

	if peerId = MRB.peerId and peerRb = MRB.Rb (
MRB.myStatus ← computeStatus
confirmSend(MRB.myId, MRB.peerId, MRB.Ra, MRB.Rb, MRB.myStatus)
MRB.ConfirmSentFlag ← TRUE
else 

skip // wrong link instance

fi
	Peer Link Confirm
	4

	
	ConfirmReceived(peerId, myId,  Rb,  Ra, status)
	if peerId = MRB.peerId and Rb = MRB.Rb (
MRB.peerStatus ← status

confirmSend(MRB.myId, MRB.peerId, MRB.Ra, MRB.Rb, MRB.myStatus)
MRB.ConfirmSentFlag ← TRUE
else 

skip // wrong link instance

fi
	Peer Link Confirm
	4

	
	Timeout(any)
	timerClear(any)
	-
	4

	5
	MLME-CancelPeerLink(peerId).request
	signalLinkStatus(MRB.peerId, FAILURE-CANCELLED, null)

closeSend(MRB.myId, MRB.peerId, Ra, Rb)

releaseMRB(MRB.myId, peerId)
	Peer Link Close
	0

	
	MLME-PassivePeerLinkOpen.request
	skip
	-
	5

	
	MLME-ActivePeerLinkOpen(peerId, myId).request
	raiseException(DUPLICATE)
	-
	5

	
	CloseRecevied(peerId, myId)
	if (Ra = MRB.Ra and Rb = MRB.Rb and peerId = MRB.peerId) (
     signalLinkStatus(link.peerId, FAILURE-CLOSE, FAILURE-CLOSE)

     timerClear(MRB.RetryTimer)

     releaseMRB(MRB.myId, MRB.peerId)

else

     skip

fi
	-
	0

	
	OpenReceived(peerId, myId, peerRb)


	if peerId = MRB.peerId and peerRb = MRB.Rb (
closeSend(MRB.myId, MRB.peerId, MRB.Ra, MRB.Rb)
else 

skip // wrong link instance

fi
	Peer Link Close
	5

	
	ConfirmReceived(peerId, myId, peerRb, myRa, status)
	skip // don’t respond to responses, it’ll timeout eventually
	-
	5

	
	Timeout(MRB.RetryTimer)
	timerClear(MRB.RetryTimer)
	-
	0

	
	Timeout(MRB.CancelTimer)
	signalLinkStatus(MRB.peerId, MRB.myStatus, null)

timerClear(MRB.CancelTimer)

closeSend(MRB.myId, MRB.peerId, Ra, Rb)

releaseMRB(MRB.myId, MRB.peerId)
	Peer Link Close
	0


Several design decisions deserve further discussion about their features and tradeoffs. 

State 5 serves for two purposes. On the one hand, it is used to handle failure cases. At the same time, it also serves as a holding state to allow graceful disassociation. After receiving the CancelPeerLink command, the automaton is put into a holding state, to allow the local system to recover from messages already in flight when it receives the command. When processing the CancelPeerLink command, the automaton sends Peer Link Close message, sets the CancelFlag to be TRUE, and sets the CancelTimer.  Eventually, when CancelTimer expires, the automaton goes back to state 0 and signals the higher layer about the status. If RetryCounter reaches limit, MAX-REQS, the automaton goes to state 5 for graceful disassociation as well.

Pushing the success/failure processing up to a higher level dramatically simplifies the link state automaton. The state machine always executes to completion. If the local system or the peer returns some sort of FAILURE status in its Peer Link Confirm, then the local decision entity can issue an MLME-CancelPeerLink.request primitive. This is not as efficient as handling status directly in the link state automaton, but failure is an exception case, and it is not worth optimizing for exceptions.

For the status reporting mechanism, an implementation would compute

status ( computeStatus(link, payload)

where payload is the contents of the Peer Link Open message, instead of

status ( computeStatus

This is because the implementation will need to respond according to whether the Peer Link Open conforms to policy. This is easy to add to the state machine.

Finally, the design uses a default Peer Link Open backoff algorithm of

return timout + (getRandom mod timeout).

This statistically increases the length of time for each Peer Link Open retry by 50%. It is not clear whether backoff is required for this application (link establishment). The backoff was inserted into the design to recover from a “gold rush,” which could happen if several already-linked Mesh Point simultaneously detected a new node trying to enter the mesh. It is trivial to remove the backoff algorithm later if congestion at the receiver never becomes a problem.

Notice: This document has been prepared to assist IEEE 802.11. It is offered as a basis for discussion and is not binding on the contributing individual(s) or organization(s).  The material in this document is subject to change in form and content after further study. The contributor(s) reserve(s) the right to add, amend or withdraw material contained herein.





Release: The contributor grants a free, irrevocable license to the IEEE to incorporate material contained in this contribution, and any modifications thereof, in the creation of an IEEE Standards publication; to copyright in the IEEE’s name any IEEE Standards publication even though it may include portions of this contribution; and at the IEEE’s sole discretion to permit others to reproduce in whole or in part the resulting IEEE Standards publication.  The contributor also acknowledges and accepts that this contribution may be made public by IEEE 802.11.





Patent Policy and Procedures: The contributor is familiar with the IEEE 802 Patent Policy and Procedures <� HYPERLINK "http://%20ieee802.org/guides/bylaws/sb-bylaws.pdf" \t "_parent" �http:// ieee802.org/guides/bylaws/sb-bylaws.pdf�>, including the statement "IEEE standards may include the known use of patent(s), including patent applications, provided the IEEE receives assurance from the patent holder or applicant with respect to patents essential for compliance with both mandatory and optional portions of the standard."  Early disclosure to the Working Group of patent information that might be relevant to the standard is essential to reduce the possibility for delays in the development process and increase the likelihood that the draft publication will be approved for publication.  Please notify the Chair <� HYPERLINK "mailto:stuart.kerry@philips.com" \t "_parent" �stuart.kerry@philips.com�> as early as possible, in written or electronic form, if patented technology (or technology under patent application) might be incorporated into a draft standard being developed within the IEEE 802.11 Working Group. If you have questions, contact the IEEE Patent Committee Administrator at <� HYPERLINK "mailto:patcom@ieee.org" \t "_parent" �patcom@ieee.org�>.





Abstract


This submission contains normative text proposed for Clause 7.2.3, Clause 7.3.2, Clause 10, and Clause 11A.3.2.2 in P802.11s/D0.02.













































































Submission
page 1
M. Zhao, Intel Corporation, et.al.

