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1. Introduction
1.1 Motivation

It is well-known that a MIMO beamforming scheme can provide both spatial diversity and array gains thus enabling increased system capacity/throughputs.  However, providing accurate feedback information such as MIMO channel state information and/or beamforming matrices can be difficult and costly in terms of feedback bandwidth allocation and computational complexity.  As an alternative solution to overcome these practical implementation issues, a MIMO precoding system with limited feedback is proposed in this draft where a limited set of a precoding matrix codebook is constructed and utilized to reduce feedback information and selection computation.  The simulation results show that the proposed MIMO precoding method can provide competitive MIMO link performance while achieving reduction in both feedback information and computational complexity compared to conventional Eigen beamforming.

1.2. Proposed Beamforming Approach

1.2.1 Precoding Overview

Figure 1 shows the overview of a precoding closed-loop system.


[image: image1]
FIGURE 1: Precoding Closed-loop System Overview

A precoding method is finding a beamforming matrix among a group of unitary matrices called a codebook.  Thus, the feedback information provided to the transmitter is a codebook index not CSI nor a beamforming matrix itself.  So, a significantly less amount of feedback bits is required compared to other information format.  For a MIMO OFDM system, channel coherence bandwidth enables a subcarrier clustering (by grouping several adjacent subcarriers) implementation further reducing feedback information and overall computation.  The total number of feedback bits per cluster would be 
[image: image2.wmf]L

2

log

 where L represents the codebook size.  The precoding matrix selection process depends on implementation, but often cited metrics are a minimum mean square error, a minimum singular value, maximum capacity, etc.  
1.2.2 Subspace Precoding

A conventional MIMO-OFDM precoding scheme in the previous section is based on an independent precoding scheme between adjacent subcarriers/clusters. However, it is often the case that there must be some channel correlation among adjacent subcarriers due to channel coherence bandwidth.  This idea can be exploited for the precoding matrix selection process of the adjacent subcarrier/cluster.  In other words, the precoding matrix of subcarrier/cluster k+1 can be found from a subset of the codebook (or in the vicinity of the precoding matrix of subcarrier/cluster k).  This subset precoding selection concept (as called subspace tracking) will enable us a smaller search space within the original codebook space, thus requiring a less number of bits to identify its selection index and a less number of precoding matrix search computation.  With this subspace tracking method, the total number of feedback bits per cluster can be further reduced to 
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 where W is the subspace size and W < L.  In addition, these subspace elements can be pre-determined once a precoding matrix codebook is given.  A simple and effective subspace tracking table can be constructed based on the following metric,  
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where 
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 represents the row index of the subspace tracking table, 
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 is the 
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th precoding matrix in the codebook, and 
[image: image8.wmf]c

N

 is the number of spatial streams.  Each row of the subspace tracking table will be filled with the first W indices among L sorted indices in the ascending order.
Note that only sorted indices need to be stored in the table instead of full matrices themselves.  The feedback information bits can be concisely formatted by the following vector structure.  However, depending on implementation, the exact order or the number of control parameters can be modified.

[image: image9]
· CI specifies a precoding codebook selection.
· Nc specifies the size of spatial streams.
· Nr specifies the size of the transmitter antennas.

· Ng specifies the cluster size.
· W specifies a subspace size.

· J specifies the precoding matrix index for the first cluster (based on the reference codebook).

· I(1) specifies the column index of the selected precoding matrix in the subspace tracking table for the second cluster.
· I(K) specifies the column index of the selected precoding matrix in the subspace tracking table for the K+1 th cluster.

1.2.3 Full Rate Precoding

In general, precoding matrix construction is based on a partial rate precoding scheme where the number of spatial streams is less than the number of the transmitter antennas thus prohibiting a high throughput precoding operation.  However, this disadvantage can be overcome by exploiting the null space of precoding matrices.   For example, for each partial rate precoding matrix from a codebook, 
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 , basis vectors of its null space, 
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, can be found.  With these new basis vectors, a full-rate precoding matrix can be obtained 
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.  Note that the size of the codebook remains the same such that this full rate method does not require any additional feedback information in comparison to the partial rate.  In addition, the subspace tracking method mentioned in the previous section can still be applicable for this full rate precoding method.

1.2.4 Implementation Comparison
The implementation comparison between the proposed precoding method and the conventional beamforming method (such as Eigen beamforming) can be made in terms of the number of feedback bits required and complex number multiplications to obtain a beamforming matrix.  For the conventional beamforming method, feedback information can be either channel matrices or beamforming matrices.  However, either way, the total number of feedback bits required would be approximately 
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 bits where 
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 is a cluster size, 
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 is the number of quantization bits, 
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 is the number of data subcarriers, and 
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 is the number of pilot subcarriers.  However, the proposed precoding beamforming will only require approximately 
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 bits.  This feedback reduction can be significant for the large antenna configuration.  
The number for Eigen beamforming would be approximately 
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 per cluster for an N x N square matrix.  The number of complex number multiplications for the proposed subspace tracking precoding method would depend on the selection algorithm implementation at the receiver.  But, for example, the precoding matrix selection algorithm based on 
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 are N x N square matrices) will require approximately  
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 per cluster.  This indicates that with a judicious selection of W or a selection algorithm, the proposed precoding method can also provide an implementation advantage over Eigen beamforming.  In addition, there is no need of a RF calibration procedure for this proposed precoding method.
1.2.5 Simple Example

A simple illustration is provided to demonstrate the proposed subspace tracking precoding method. 


[image: image24]
FIGURE 2: Subspace Tracking Precoding Illustration

The parameter values are assumed as follows: the codebook size is 16, the subspace size is 4, and the cluster size is 2.  If there are 52 beamformed subcarriers per OFDM symbol, then there would be 26 clusters.  Figure 2 is provided to illustrate the overall procedure of the proposed precoding method.  The first cluster precoding matrix would be found from the original precoding matrix codebook.  Based on some precoding matrix selection metric (such as MSE, capacity, etc), let us assume that a precoding matrix, 
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, is chosen as a precoding matrix for the first subcarrier cluster.  Thus, the first feedback index, J, will be 1111.  Note that the first feedback index would be log2(16) = 4 bits while the rest of the clusters would only require log2(4) = 2 bits as feedback bits.  Instead of finding an adjacent precoding matrix from the codebook, it will be found from the subspace tracking table as shown in Figure 2.  Since the previous matrix selection is 
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, the precoding matrix would be found among [
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] which are from the 16th row of the subspace tracking table.  If  
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 was selected for the precoding matrix of the second subcarrier cluster, then the feedback index, I(1), would be 00 which is the column index of the table.  This in turns indicates that the precoding matrix of the third subcarrier cluster can be found from the third row of the subspace tracking table.  Again, if 
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 was selected based on a selection algorithm, then the feedback index, I(2), would be 11 for the third cluster.  This procedure will continue for the rest of the data subcarrier clusters.
If this example were implemented in 2x2 MIMO configurations, the total number of feedback bits required for the proposed precoding method is 4 + 25x2 = 54 bits.  However, for an Eigen beamforming method with 8 bits quantization, it would require 2x2x2x8x26 = 1664 bits.   For implementation complexity, the proposed precoding method will require 
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 complex multiplications per cluster if 
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 based selection algorithm is used.  On the other hand, the Eigen beamforming will require 
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 complex multiplications.  This shows that the proposed precoding method can provide more than 60% implementation complexity reduction compared to the Eigen beamforming method.
1.3. Simulation Results

Two sets of PER simulation curves based on TGn channel B and D models are presented in Figure 4.  The MIMO configurations are based on 2 transmitter antennas and 2 receiver antennas with one or two spatial data streams.  Perfect synchronization and CSI are assumed at the receiver in this simulation.  Other OFDM settings conform to the latest mixed mode PHY spec.  The precoding matrices codebook size (L) is 8. The subspace size (W) is set to 4.  Eigen beamforming is also presented as a performance comparison metric, and no quantization is applied for this beamforming matrix.  The total number of feedback bits required for the proposed precoding method is 105 (=3+51x2) bits, 53 (=3+25x2) bits, and 27 (=3+12x2) bits for the cluster size of 1, 2, and 4 respectively.  For a single spatial stream, the performance loss is less than 1 dB.  For two spatial streams, the loss is about 2 dB.  Overall, the subspace tracking scheme demonstrates a competitive performance against Eigen beamforming scheme.
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FIGURE 4: PER Performance comparison between the proposed precoding and Eigen beamforming
1.4 References:
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· 802.16E-2005 IEEE Standard for Local and metropolitan area networks Part 16:Air Interface for Fixed and Mobile Broadband Wireless Access Systems Amendment for Physical and Medium Access Control Layers for Combined Fixed and Mobile Operation in Licensed Bands  
1.5 Interpretation of a Motion to Adopt

A motion to adopt the changes defined in this submission means that the editing instructions and any changed or added material are actioned in the TGn Draft.  The above introduction is not part of the adopted material. 
2. Changes
Change header  subclause 7.6.7.8 to 7.4.7.8.1
Insert new subclause 7.4.7.8.2
7.4.7.8.2 Compressed Precoding Matrices Feedback Frame

The compressed precoding matrices feedback management action frame is of category High Throughput.  The format of its frame body is defined in Table A.
Table A – Compressed Precoding Matrices Feedback

	Order
	Information
	Name
	Size
	Value

	1
	Category
	HT
	1
	TBD

	2
	Action
	Compressed Precoding Matrices Feedback
	1
	10

	3
	CSI Matrices Control
	CSI Matrices Control
	1
	See text.

	4
	Quantized Precoding Matrices Feedback Information
	Quantized Precoding Matrices Feedback Information
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The CSI Matrices Control field is defined in Table B.

Table B – CSI Matrices Control Field for Compressed Precoding Matrices Feedback

	Field
	Length
	Values
	Meaning

	Nc (Number of columns in each precoding matrix)
	2 bits
	00
	1

	
	
	01
	2

	
	
	10
	3

	
	
	11
	4

	Nr (Number of rows in each precoding matrix)
	2 bits
	00
	1

	
	
	01
	2

	
	
	10
	3

	
	
	11
	4

	Grouping
	2 bits
	00
	Ng=1 (No Grouping)

	
	
	01
	Ng=2

	
	
	10
	Ng=4

	
	
	11
	reserved

	Subspace Tracking Size (
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	2 bits
	00
	2

	
	
	01
	4

	
	
	10
	8

	
	
	11
	16


The grouping Ng indicates the number of subsequent carriers for which a single feedback value is provided.  In other words, it indicates how many adjacent subcarriers are being beamformed by each selected precoding matrix.

The Quantized Precoding Matrices Feedback Information field contains the index of a precoding matrix codebook and the indices of a subspace tracking table, which are indexed in order (lowest frequency index first) by group of data subcarriers index as depicted in Figure A.  

[image: image40]
Figure A: Quantized Precoding Matrices Feedback Information field
For the first subcarrier cluster, the first index, J, is the index of a selected precoding matrix from the codebook search.  The exact selection methodology can depend on implementation, but it can be based on well-known performance metrics such as mean square errors, a system capacity, SNR, etc.  The first index is 
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 bits long where L is the codebook size.  The value of L is available from Table C for a given control field value of 
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.  The rest of the indices, I(1), …, I(K), represent the column indices of the subspace tracking table that is obtained from a similar selection methodology.  The subspace tracking table construction is addressed later in this section.  The row index of the subspace tracking table represents the precoding matrix index in the codebook, and its column size is based on the subspace tracking size, 
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.  The contents of the subspace tracking table are the indices of a precoding matrix codebook.  Each subspace tracking feedback index is determined by the codebook index of the previous precoding matrix and the subspace tracking table.  The index value of the previous precoding matrix points the row of the subspace tracking table to be examined.  The codebook index contents in that row specify precoding matrices to be searched.  When a desirable precoding matrix is found based on some selection criteria, instead of sending the actual codebook index of the selected precoding matrix, the table column index of the selected precoding matrix will be sent as the feedback index.  This procedure continues for the rest of subcarrier clusters.   Each index, I(k), will be 
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 bits long.  K can be determined by the number of beamformed subcarriers, 
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.  The size of the Quantized Precoding Matrices Feedback Information field is 
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 bits.  If it is not integer multiples of byte, then the field is padded to the next byte boundary.
The construction methods of various precoding matrix codebooks are presented in Table C.  Each configuration of the codebook can be constructed based on the parameters from 
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.  The three unitary vectors 
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 are the basis elements of precoding matrix codebook construction as shown in Table C.  
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 precoding matrix in the precoding matrix codebook.
Table C. Codebook Construction Table
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	2 (L=8)
	3 (L=32)
	4 (L=64)
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Codebook construction functions in Table C are described below. A vector 
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 of length 
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x1 is an input argument of those functions.
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Table D. 2x1 unitary vector 
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 (binary)
	000
	001
	010
	011
	100
	101
	110
	111

	1
	1
	0.7940
	0.7940
	0.7941
	0.7941
	0.3289
	0.5112
	0.3289

	2
	0
	-0.5801+

j0.1818
	-0.0576+

j0.6051
	-0.2978-

j0.5298
	0.6038+

j0.0689
	0.6614+

j0.6740
	0.4754-

j0.7160
	-0.8779-

j0.3481


However, 3x1 unitary vector, 
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where 
[image: image81.wmf]÷

÷

ø

ö

ç

ç

è

æ

÷

÷

ø

ö

ç

ç

è

æ

÷

ø

ö

ç

è

æ

=

L

l

u

j

L

l

u

j

diag

u

Q

r

N

l

p

p

2

exp

2

exp

)

(

1

K

 is a diagonal matrix;


[image: image82.wmf][

]

r

N

u

u

u

u

K

2

1

=

 is an integer vector;


[image: image83.wmf][

]

1

2

H

H

Ive

ww

Hv

Iotherwise

ww

=

ì

ï

=

í

-

ï

î

 is a Nr x Nr matrix H with Nr=dim(v),  
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Table E Generating parameters for 
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The subspace tracking table can be generated from the following metric
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) constitutes a subspace tracking feedback index such as I(1), I(2), …, I(K) as shown in Figure A.  
An example of subspace tracking table construction for 
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 is shown in Table F.
Table F. An Example of Subspace Tracking Table for 
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	00
	01
	10
	11

	1 (000)
	1
	4
	5
	2

	2 (001)
	2
	5
	1
	6

	3 (010)
	3
	1
	2
	6

	4 (011)
	4
	7
	1
	5

	5 (100)
	5
	2
	1
	8

	6 (101)
	6
	2
	3
	5

	7 (110)
	7
	4
	1
	8

	8 (111)
	8
	5
	4
	2


The row index of Table F represents the precoding matrix index in the precoding matrix codebook (L=8), and the column index represents the subspace tracking table index (
[image: image115.wmf]SSI

N

=4).  Note that this subspace tracking table can be stored in the STA memory.  Even though the table size being used for subspace tracking is L x Nssi, the maximum subspace tracking table of L x Min(16, L) has to be available both to the transmitting the STA and receiving STA.
Insert new subclause 20.3.5.2.4 
20.3.5.2.4 Compressed Precoding Matrix Feedback

In compressed precoding matrix feedback, the receiving STA computes a set of indices for feedback to the transmitter.  These precoding matrices indices are assembled into an action frame as described in 7.4.7.8.2.
A precoding matrix codebook represents a group of unitary matrices that will induce desirable beamforming effects similar to the unitary matrix V obtained from the channel matrix, 
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.  The major benefit of this precoding codebook approach is that the receiving STA needs to feedback only the indices of the codebook to the transmitting STA thus reducing a significant amount of feedback information and making the overall system more bandwidth efficient and possibly implementation efficient.  The transmitting STA can use these feedback indices to find corresponding spatial mapping matrices 
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 from a precoding matrix codebook available to both transmitting STA and receiving STA.

For a MIMO-OFDM system, due to channel coherence bandwidth across adjacent clusters or subcarriers, the precoding matrix of k+1 th subcarrier/cluster can be found from a subset of the codebook (or in the vicinity of the precoding matrix of k th subcarrier/cluster).  This subset precoding concept (called subspace tracking) enables to reduce further feedback bits and codebook search computation.  This codebook subset can be pre-determined in the form of an index table once a precoding matrix codebook is known.  This subspace tracking table should be also available to both transmitting STA and receiving STA.

The explicit channel feedback format of transmit beamforming control fields in 7.4.7.8.2 should provide the transmitting STA the following parameters; the size of spatial streams, the cluster size (grouping), and the subspace tracking size.  
The spatial mapping matrix of the first subcarrier cluster will be directly determined by the look-up procedure based on the precoding matrix codebook, that is 
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  represents a precoding codebook mapping to the index 
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 .  And the spatial mapping matrices for the rest of clusters will be obtained by both the codebook and the subspace tracking index table 
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where 
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 returns a precoding codebook index from the subspace index table.  Note that 
[image: image123.wmf]SSI

N

 represents the subspace tracking size and should be available from the feedback information described in 7.4.7.8.2.  
Figure A shows the overview of the feedback frame structure of the compressed precoding matrix feedback scheme.
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Figure A: Precoding Matrix Feedback Frame Overview

· Nc specifies the number of columns in the precoding matrix (=
[image: image125.wmf]STS
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)
· Nr specifies the number of rows in the precoding matrix

· Ng specifies a subcarrier cluster size.

· Nssi specifies a subspace size.

· J specifies the precoding feedback index for the first cluster (which is a selected row index of the precoding matrix codebook).

· I(1) specifies the subspace precoding feedback index for the second cluster (which is a selected column index of the subspace tracking table).

· I(K) bits specify the subspace precoding feedback index for the K+1 th cluster.
K will be determined by the number of beamformed subcarriers and a grouping size, 
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, 
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.  The codebook construction and the subspace tracking table construction are described in the section 7.4.7.8.2.
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