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1. Introduction
1.1 Motivation

It is well-known that a MIMO beamforming scheme can maximize both spatial diversity and array gains thus enabling increased system capacity/throughput.  However, providing accurate feedback information such as MIMO channel state information can be difficult and costly in terms of feedback bandwidth allocation and hardware computational complexity.  As an alternative solution to overcome these practical implementation issues, a MIMO precoding system with limited feedback is proposed in this draft where a limited set of a precoding matrices codebook is constructed and utilized to reduce feedback information and code selection computation.  The simulation results show that the proposed MIMO precoding method can provide competitive MIMO link performance while achieving both feedback information and computational complexity reduction compared to conventional Eigen beamforming.

1.2. Proposed Beamforming Approach

1.2.1 Precoding Overview

Figure 1 shows the overview of the precoding closed-loop system.


[image: image1]
FIGURE 1: Precoding Closed-loop System Overview

As shown, the feedback information provided to the transmitter is a codebook index not CSI nor a beamforming matrix itself.  The index selection process depends on a particular performance metric of interest.  Similarly, the codebook design itself is usually upto the implementer.  It is obvious that sending index requires a significantly less amount of feedback bits compared to other information format.  For a MIMO OFDM system, it is also possible to further reduce feedback information through a clustering (by grouping several adjacent subcarriers) approach.  The total number of feedback bits per cluster would be 
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 where L represents the codebook size. 

1.2.2 Subspace Precoding

The conventional MIMO-OFDM precoding scheme in the previous section is based on an independent precoding scheme between adjacent subcarriers/clusters. However, it is often the case that there must be some correlation among adjacent subcarriers due to channel coherence bandwidth.  This idea can be exploited for the precoding matrix selection process of the adjacent subcarrier/cluster.  In other words, the precoding matrix of subcarrier/cluster k+1 can be found from a subset of the codebook (or in the vicinity of the precoding matrix of subcarrier/cluster k).  This subset precoding concept (subspace tracking) will enable us the smaller search space within the original codebook space, consequently requiring a less number of bits to identify its selection index and a less number of precoding matrix search computation.  The total number of feedback bits per cluster can be further reduced to 
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 where W is the subspace size, W < L.  In addition, this subspace codebook can be pre-determined once a reference (original) codebook is given.  The subspace tracking table can be constructed in advance based on some matrix correlation metrics.  For this proposal, each row of the subspace index table will be generated from the first W sorted indices of the following metric
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where 
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 indicates the row index of the subspace tracking table. Note that only indices need to be stored in the table instead of full matrices themselves.  And the feedback information bits can be concisely formatted by the following vector structure.


[image: image6]
· CI bits specify precoding codebook selection.

· Nssi bits specify a subspace size.

· P bits specify the precoding index for the first cluster (based on the reference codebook).

· I_1 bits specify the subspace precoding index for the second cluster.

· I_2 bits specify the subspace precoding index for the third cluster.

· I_K bits specify the subspace precoding index for the K+1 th cluster.

1.2.3 Full Rate Precoding

In general, a precoding codebook is constructed on the premises that the number of spatial streams will be less than the minimum number of transmitter or receiver antennas thus prohibiting a high throughput precoding operation.  However, this disadvantage can be overcome by exploiting the null space of precoding matrices.   For example, for each precoding matrix from a codebook, 
[image: image7.wmf]L

l

P

l

£

£

1

,

 , a basis vector of its null space, 
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, can be found.  With this new basis vector, a full-rate precoding matrix can be obtained 
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.  Note that the size of the codebook remains the same such that this full rate method does not require any additional feedback information in comparison to the partial rate.  In addition, the subspace tracking method mentioned in the previous section can still be implemented for this full rate precoding method.

1.2.4 Implementation Advantage

The advantage of the proposed precoding method can be illustrated in terms of the number of feedback bits required and complex number multiplication to obtain a beamforming matrix .  In general, feedback information can be either channel matrices or beamforming matrices.  However, either way, the total number of feedback bits required would be approximately 
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 bits where 
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 is a cluster size and 
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 is the number of quantization bits.  However, the proposed precoding beamforming will only require 
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 bits.  This feedback reduction can be significant for the large antenna configuration.  The operation counts of complex number multiplications can provide a reasonable metric to diagnose implementation complexity.  The number of complex number multiplications for the proposed precoding method would be approximately 
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 per cluster.  However, note that this number can be changed depending on the precoding matrix selection algorithm.  The number for Eigen beamforming would be approximately 
[image: image15.wmf]3

12

N

 per cluster.  This indicates that with judicious selection of W or selection algorithm, the proposed precoding method can also provide an implementation advantage over Eigen beamforming.  In addition, there is no need of performing a beamforming calibration procedure for this proposed precoding method.
1.2.5 Simple Example

A simple illustration is provided to demonstrate the proposed subspace tracking precoding method. 


[image: image16]
FIGURE 2: Subspace Tracking Precoding Illustration

The parameter values are assumed as follows: the codebook size is 16 and the subspace size is 4, and the cluster size is 2.  If there are 52 used subcarriers per OFDM symbol, then there would be 26 clusters.  Figure 2 is provided to help  The first cluster precoding matrix would be found from the original codebook space such that it would require log2(16) = 4 bits, but the rest of the clusters would only require log2(4) = 2 bits for their precoding index.  Based on some precoding matrix selection metric (such as MSE, capacity, etc), let us assume that a precoding matrix, 
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, is chosen as the beamforming matrix for the first subcarrier cluster from the codebook.  Thus, the first feedback index will be 1111.  Instead of finding an adjacent precoding matrix from the codebook, it will be found from the subspace tracking table as shown in Figure 2.  Since the previous matrix selection is 
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, the precoding matrix would be found among matrices [
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] which are obtained from the 16th row of the subspace tracking table.  If  
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 was selected for the precoding matrix of the second subcarrier cluster, then the feedback index would be 00 which is the column index of the table.  The precoding matrix of the third cluster can be found from the third row of the subspace tracking table.  Then, if 
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 was selected, then the feedback index would be 11 for the third cluster.  This procedure will continue for the rest of the data subcarrier clusters.
The total number of feedback bits required is 4 + 25x2 = 54 bits.  If Eigen beamforming matrices were implemented for 2x2 MIMO configurations with 8 bits quantization, it would require 2x2x2x8x52 = 1664 bits.   

1.3. Simulation Results

Two sets of PER simulation curves based on TGn channel B and D models are presented in Figure 4.  The MIMO configurations are based on 2 transmitter antennas and 2 receiver antennas with one or two spatial data streams.  Perfect synchronization and CSI are assumed at the receiver in this simulation.  Other OFDM settings conform to the latest legacy PHY spec.  The precoding matrices codebook size (L) is 8. The subspace size (W) is set to 4.  Eigen beamforming is also presented as a performance comparison metric, and no quantization is applied for this beamforming matrix.  The total number of feedback bits required for the proposed precoding method is 105 (=3+51x2) bits, 53 (=3+25x2) bits, and 27 (=3+12x2) bits for the cluster size of 1, 2, and 4.  For a single spatial stream, the performance loss is less than 1 dB.  For two spatial streams, the loss is about 2 dB.  Overall, the subspace tracking scheme demonstrates a competitive performance against Eigen beamforming scheme.
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FIGURE 4: PER Performance comparison between the proposed precoding and Eigen beamforming

1.4 References:
· David J. Love, Robert W. Heath Jr., and Thomas Strohmer, 'Grassmannian Beamforming for Multiple-Input Multiple-Output Wireless Systems', IEEE Trans. Information Theory, Vol. 49, No. 10, October 2003, pp. 2735-2747.

· Bertrand M. Hochwald, Thomas L. Marzetta, Thomas J. Richardson, Wim Sweldens, and Rudiger Urbanke, 'Systematic Design of Unitary Space-Time Constellations', IEEE Trans.Infomation Theory, Vol. 46, No. 6, pp. 1962-1973, September 2000.

· 802.16E-2005 IEEE Standard for Local and metropolitan area networks Part 16:Air Interface for Fixed and Mobile Broadband Wireless Access Systems Amendment for Physical and Medium Access Control Layers for Combined Fixed and Mobile Operation in Licensed Bands  
1.5 Interpretation of a Motion to Adopt

A motion to adopt the changes defined in this submission means that the editing instructions and any changed or added material are actioned in the TGn Draft.  The above introduction is not part of the adopted material. 
2. Changes
Insert new subclause 20.3.5.2.4 
20.3.5.2.4 Compressed Precoding Matrix Feedback

In compressed precoding matrix feedback, the receiving STA computes a set of indices for feedback to the transmitter.  These precoding matrices indices are assembled into an action frame as described in 7.4.7.9.
A precoding matrices codebook represents a group of unitary matrices that will induce desirable beamforming effects similar to the unitary matrix V obtained from the channel matrix, 
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.  The major benefit of this precoding codebook approach is that the receiving STA needs to feedback only the indices of the codebook to the transmitting STA thus reducing significant amount of feedback information and making the overall system more bandwidth efficient and implementation efficient.  The transmitting STA can use these feedback indices to find corresponding spatial mapping matrices 
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 from a reference precoding matrices codebook available to both transmitting STA and receiving STA.

For a MIMO-OFDM system, due to the correlation among adjacent clusters, the precoding matrix of k+1 th subcarrier/cluster can be found from a subset of the codebook (or in the vicinity of the precoding matrix of k th subcarrier/cluster).  This subset precoding concept (called subspace tracking) enables to reduce further feedback bits and codebook search computation.  This codebook subset can be pre-determined in the form of an index table once a reference (original) codebook is given.  The subspace index table should be also available to both transmitting STA and receiving STA.

The explicit channel feedback format of transmit beamforming control fields in 7.4.7.9 should provide the transmitting STA the following parameters; the precoding codebook selection, the cluster size (grouping), and the subspace tracking size.  
The spatial mapping matrix of the first cluster or first subcarrier grouping will be directly determined by the precoding matrices codebook that is 
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  represents a precoding codebook mapping to the index 
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 .  And the spatial mapping matrices for the rest of clusters will be obtained by both the codebook and the subspace tracking index table 
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 returns a precoding codebook index from the subspace index table.  Note that 
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 represents the subspace tracking size and should be available from the feedback information described in 7.4.7.9.  
Figure A shows the overview of the feedback frame structure of the compressed precoding matrix feedback scheme.

[image: image35]
Figure A: Precoding Matrix Feedback Frame Overview

· Nc specifies the number of columns in the precoding matrix

· Nr specifies the number of rows in the precoding matrix

· Ng specifies a subcarrier cluster size.

· CI specifies a precoding codebook selection.

· Nssi specifies a subspace size.

· I(0) specifies the precoding index for the first cluster (based on the reference codebook).

· I(1) specifies the subspace precoding index for the second cluster.

· I(K) bits specify the subspace precoding index for the K+1 th cluster.
K will be determined by the number of data subcarriers and a grouping size, 
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.  The codebook construction and the subspace tracking table are described in the section 7.4.7.9.
Insert new subclause 7.4.7.9
7.4.7.9 Compressed Precoding Matrices Feedback Frame

The compressed precoding matrices feedback management action frame is of category High Throughput.  The format of its frame body is defined in Table A.
Table A – Compressed Precoding Matrices Feedback

	Order
	Information
	Name
	Size
	Value

	1
	Category
	HT
	1
	TBD

	2
	Action
	Compressed Precoding Matrices Feedback
	1
	10

	3
	CSI Matrices Control
	CSI Matrices Control
	2
	See text.

	4
	Quantized Precoding Matrices Feedback Information
	Quantized Precoding Matrices Feedback Information
	variable
	See text.


The CSI Matrices Control field is defined in Table B.

Table B – CSI Matrices Control Field for compressed Precoding Matrix feedback

	Field
	Length
	Values
	Meaning

	Nc (Number of columns in the precoding matrix)
	2 bits
	00
	1

	
	
	01
	2

	
	
	10
	3

	
	
	11
	4

	Nr (Number of rows in the precoding matrix)
	2 bits
	00
	1

	
	
	01
	2

	
	
	10
	3

	
	
	11
	4

	Grouping
	2 bits
	00
	Ng=1 (No Grouping)

	
	
	01
	Ng=2

	
	
	10
	Ng=4

	
	
	11
	reserved

	Codebook Information (CI)
	3 bits
	000
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	001
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, see text

	
	
	010
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, see text

	
	
	011-111
	reserved

	Subspace Size Information  (
[image: image41.wmf]SSI

N

)
	2 bits
	00
	2

	
	
	01
	4

	
	
	10
	8

	
	
	11
	16

	Reserved
	5 bits
	0
	Unused


The grouping Ng indicates the number of subsequent carriers for which a single feedback value is provided.  So, Ng indicates how many adjacent subcarriers are being beamformed by each selected precoding matrix.
The size of the Quantized Precoding Matrices Feedback Information field, depicted in Figure A, depends on the values in the CSI Matrices control field. The Quantized Precoding Matrices Feedback Information field contains the indices of a precoding matrices codebook and a subspace tracking table, which are indexed in order (lowest frequency index first) by group of data subcarriers index.

[image: image42]
Figure A: Quantized Precoding Matrices Feedback Information field
The first index, I(0), represents an index of a precoding codebook of the first subcarrier cluster, and it will be 
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 bits long where L is determined by the precoding codebook selection (CI) from Table C and Table D.  The rest of the indices represent the indices of the subspace tracking table, which will be 
[image: image44.wmf]SSI

N

2

log

 bits long for each index. K will be determined by the number of data subcarriers and a grouping size, 
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.  The field is padded to the next byte boundary.
The construction methods of various precoding matrix configurations are presented in Table D.  Each configuration of the codebook can be constructed based on the parameters from 
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 (or CI) and 
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.  The three unitary vectors 
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 categorized by the number of the transmitter antennas are the basis elements of precoding codebook constructions for various beamforming configurations as shown in Table D.
Table D. Codebook construction table
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	2 (L=8)
	3(L=32)
	4(L=64)

	1
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Codebook construction functions that use a vector 
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 of length 
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x1 as an input argument in Table D are described below.
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 represents the generation of a Nr x Nr matrix H 
where Nr=dim(v),  
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 represents taking last Nr-1 columns of H[v]  and creating Nr x Nr-1 matrix.
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 is Nr-1 x M matrix.
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 is obtained from Table E.

Table E. 2x1 unitary vector 
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 (binary)
	000
	001
	010
	011
	100
	101
	110
	111

	1
	1
	0.7940
	0.7940
	0.7941
	0.7941
	0.3289
	0.5112
	0.3289

	2
	0
	-0.5801+

j0.1818
	-0.0576+

j0.6051
	-0.2978-

j0.5298
	-0.6038+

j0.0689
	-0.6614+

j0.6740
	-0.4754-

j0.7160
	-0.8779-
j0.3481
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The generating parameters for 
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Table F Generating parameters for 
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	3 
	32
	[1 13 29]
	[1.2518-j0.6409, -0.4570-j0.4974, 0.1177+j0.2360]
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	[1 45 22 49] 
	[1.3954-j0.0738, 0.0206+j0.4326, -0.1658-j0.5445, 0.5487-j0.1599]


The subspace index table can be generated from the following metric


[image: image91.wmf]{

}

(

)

k

l

L

l

Q

Q

trace

N

abs

k

l

k

H

l

STS

¹

£

£

-

=

G

,

1

)

,

(

.  
For a given index 
[image: image92.wmf]l

, 
[image: image93.wmf])

,

(

k

l

G

 values are sorted by an ascending order, and then the first 
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.  This table construction procedure continues until L rows of the subspace tacking table are filled.  Note that a selected column index constitutes a subspace tracking feedback as shown in Figure A.
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Abstract


This document contains the proposed changes to the TGn Draft to address omissions from the document related to explicit beamforming.  The main motivation for this draft document is to propose a novel method to reduce beamforming feedback information bits and computational complexity of the existing beamforming methods while maintaining competitive performance. The majority of computational methods used is similar to one available in 802.16 (P802.16e-2005, 8.4.5.4.10.15), which would allow efficient use of the same method across both 802.11 and 802.16 air interfaces.
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