March 2006

doc.: IEEE 802.11-06/0359r0

IEEE P802.11
Wireless LANs

	Submission to address TGn draft omissions – Frame Exchange Sequences

	Date: 2006-03-01

	Author(s):

	Name
	Company
	Address
	Phone
	email

	Adrian Stephens
	Intel Corporation
	15 JJ Thompson Avenue
Cambridge CB3 0FD

United Kingdom
	
	adrian.p.stephens@intel.com

	
	
	
	
	

Introduction
Omissions Covered
This document addresses the following omissions identified in document 11-06-0263-00-000n-tgn-draft-omissions.xls: OM057
Interpretation of a Motion to Adopt

A motion to adopt the changes defined in this submission means that the editing instructions and any changed or added material are actioned in the TGn Draft. This introduction, are not part of the adopted material.

This material is prepared to support two motions in different groups: ‘Adopt material in “baseline” section’ of this document or ‘Adopt material in TGn section’ of this document.

Editing instructions formatted like this are intended to be copied into the TGn Draft (i.e. they are instructions to the 802.11 editor on how to merge the TGn amendment with the baseline documents).

Revision History

	Version
	Author
	Comment

	20060222r0
	Adrian Stephens, Intel
	For Bob and Srini to comment on

	20060223r0
	Adrian
	Removed first stab at old syntax and replaced with one from the graphics.

Added HT syntax.

	20060224r0
	Adrian
	Turned into Submission format

BASELINE
Replace subclause 9.12 with the following
9.12 Frame exchange sequences
The allowable frame exchange sequences are defined using an extension of the EBNF format as defined in ISO/IEC 14977 : 1996(E). The elements of this syntax that are used here are:

· [a] = a is optional

· {a} = a is repeated zero or more times

· n{a} = a is repeated n or more times – e.g. 3{a} requires 3 or more “a”.

· a|b = a or b

· () = grouping, so “a (b|c)” is equivalent to “a b | a c”

· (* this is a comment *)

· A rule is termined by a semicolon “;”

· Whitespace is not significant, but it used to highlight the nesting of grouped terms.

Two types of terminals are defined:
· Frames. A frame is shown in Bold, and identified by its type/subtype – e.g. Beacon, Data. Frames are shown in an initial capital letter.
· Attributes. An attribute is introduced by the the “+” character. The attribute specifies a condition that applies to the frame that preceeds it. Where there are multiple attributes applied, they are generally ordered in the same order of the fields in the frame they refer to. Attributes are shown in italic.

Non-terminals of this syntax are shown in a normal font, a sequence of words joined by hyphens – e.g. cf-frame-exchange-sequence.
The attributes are defined in table 68.

Table 68 – Attributes applicable to frame exchange sequence definition

	Attribute
	Description

	block-ack
	QoS Data frame has ack policy set to Block Ack

	broadcast
	Frame RA is the broadcast address

	CF
	Beacon contains a CFP element

	CF-Ack
	Data type CF-Ack subtype bit set or CF-End+CF-Ack frame

	CF-Poll
	Data type CF-Poll subtype bit set

	delayed
	BlockAck or BlockAckReq under a delayed policy

	DTIM
	Beacon is a DTIM

	frag
	Frame has its More Fragments field set to 1

	group
	Frame RA has i/g bit set to 1

	individual
	Frame RA has i/g bit set to 0

	last
	Frame has its More Fragments field set to 0

	no-ack
	QoS Data frame has ack policy set to No Ack

	normal-ack
	QoS Data frame has ack policy set to Normal Ack

	null
	Data type Null Data subtype bit set

	pifs
	Frame is transmitted using a PIFS

	QAP
	Frame is transmitted by a QAP

	QoS
	Data type QoS subtype bit set

	self
	Frame RA = TA

The allowable frame exchange sequence is defined by the rule frame-sequence. Except where modified by the pifs attribute, frames are separated by a SIFS.
(* This rule defines all the allowable frame exchange sequences *)

frame-sequence =

[CTS] (Management+broadcast | Data + group) |

[CTS | RTS CTS | PS-Poll] {frag Ack} last Ack |

PS-Poll Ack |

[Beacon + DTIM] {cf-sequence} [CF-End [+CF-Ack]] |

hcf-sequence;
(* A frag is a non-final part of a directed MSDU or MMPDU *)

frag = (Data|Management)+individual+frag;

(* This is the last (or only) part of a directed MSDU or MMPDU *)

last = (Data|Management)+individual+last;

(* A cf-sequence expresses all the sequences that may be generated

within a contention free period. The first frame in this sequence is

sent by the AP. *)

cf-sequence =

Beacon | Management+broadcast | Data+group [+QoS] |
(*Broadcast *)

Data+individual+CF-Poll [+CF-Ack]

(* CF poll without data *)
(Data+individual+CF-Ack [Data+null+CF-Ack] |

Data+null+CF-Ack)
|

Data+individual+null+CF-Poll [+CF-Ack]

(* CF poll with data *)

(Data + null |

Data+individual (Data+null+CF-Ack | Ack)) |

Management+individual Ack |

(* individual management *)
hcf-sequence;

(* All the sequences initiated by an HC *)
(* An hcf-sequence represents all the sequences that may be generated under HCCA.

The sequence may be initiated by an HC within a CFP, or it may be initiated by a QSTA

using EDCA channel access. *)

hcf-sequence =

[CTS]
1{(Data+group [+QoS] | Management+broadcast)+pifs} |

[CTS] 1{txop-sequence} |

[RTS CTS] non-cf-ack-piggybacked-qos-poll-sequence |
 (* HC only – polled TXOP delivery *)

cf-ack-piggybacked-qos-poll-sequence |

(* HC only – polled TXOP delivery *)

Data+self+null+CF-Poll+QoS;

(* HC only – self TXOP delivery or termination *)
(* A poll-sequence is the start of a polled TXOP, in which the HC delivers a polled

TXOP to a QSTA. The poll may or may not piggyback a CF-Ack according to whether

the previous frame received by the HC was a Data frame. *)

poll-sequence =

non-cf-ack-piggybacked-qos-poll-sequence |

cf-ack-piggybacked-qos-poll-sequence;

(* A cf-ack-piggybacked-qos-poll-sequence is the start of a polled TXOP that

also delivers a CF-Ack. There are two main variants, polls that deliver data,

and therefore need acknowledgement, and polls that do not. *)

cf-ack-piggybacked-qos-poll-sequence=

qos-poll-requiring-no-ack+CF-Ack (

[CTS+self] polled-txop-content |
polled-txop-termination) |

qos-poll-requiring-ack+CF-Ack (

Ack (
polled-txop-content |
polled-txop-termination) |

cf-ack-piggybacked-qos-data-sequence);

(* A non-cf-ack-piggybacked-qos-poll-sequence is the start of a polled TXOP that

does not deliver a CF-Ack. Except for this, it is identical to the CF-Ack version. *)
non-cf-ack-piggybacked-qos-poll-sequence=

qos-poll-requiring-no-ack (
[CTS+self] polled-txop-content |
polled-txop-termination) |

qos-poll-requiring-ack (

Ack (
polled-txop-content |
polled-txop-termination) |

cf-ack-piggybacked-qos-data-sequence);

(* This sequence is the delivery of a single frame that is the TXOP poll frame,

that does not require acknowledgement – either because the frame carries no

data, or because the frame carries data that does not require immediate acknowledgement. *)

qos-poll-requiring-no-ack =

Data+null+CF-Poll+QoS |

Data+individual+CF-Poll+QoS+(no-ack|block-ack);

(* A qos-poll-requiring-ack is the delivery of a single frame that is a TXOP poll

frame, but also carries data that requires immediate acknowledgement. *)

qos-poll-requiring-ack =

Data+individual+CF-Poll[+CF-Ack]+QoS+normal-ack;

(* Polled-txop-content is what may occur after the delivery of a polled TXOP.

A QSTA transmits the first frame in this sequence *)

polled-txop-content = 1{txop-sequence} [polled-txop-termination];

(* A polled-txop-termination may be used by a QSTA to terminate the polled

TXOP. The data frame is addressed to the HC, which regains control of

the medium and may re-use any unused polled TXOP duration. *)

polled-txop-termination = Data+individual+null+QoS+normal-ack Ack;

(* A TXOP (either polled or EDCA) may be filled with txop-sequences,
which are initiated by the TXOP holder. *)

txop-sequence =

(RTS CTS | CTS+self) Data+individual+QoS+(block-ack|no-ack) |

[RTS CTS] (

txop-part-requring-ack txop-part-providing-ack |

(Management|(Data+QAP))+individual Ack |

BlockAckReq BlockAck);

(* These frames require acknowledgement *)

txop-part-requring-ack =

Data+individual[+null]+QoS+normal-ack |

BlockAckReq+delayed |

BlockAck+delayed;

(* These frames provide acknowledgement to the txop-part-requiring-ack *)

txop-part-providing-ack=

Ack |

(* An HC responds with a new polled TXOP on expiry of current TXOP *)

cf-ack-piggybacked-poll-sequence |
(* An HC responds with CF-Ack and its own data on expiry of TXOP *)

cf-ack-piggybacked-data-sequence |

Data+CF-Ack;

(* An HC has received a frame requiring Ack with a duration value indicating the
end of the TXOP. The HC continues the CAP by transmitting its own data. *)

cf-ack-piggybacked-qos-data-sequence =

Data+individual+CF-Ack+QoS+(no-ack|block-ack) polled-txop-content |

Data+individual+CF-Ack+QoS+normal-ack (

Ack polled-txop-content |

Data+CF-Ack |

cf-ack-piggybacked-qos-poll-sequence);

TGn

Replace subclause 9.12 with the following
9.12 Frame exchange sequences

The allowable frame exchange sequences are defined using an extension of the EBNF format as defined in ISO/IEC 14977 : 1996(E). The elements of this syntax that are used here are:

· [a] = a is optional

· {a} = a is repeated zero or more times

· n{a} = a is repeated n or more times – e.g. 3{a} requires 3 or more “a”.

· a|b = a or b

· () = grouping, so “a (b|c)” is equivalent to “a b | a c”

· (* this is a comment *)

· <> = order of frames not relevant – e.g. <a b> is either “a b” or “b a”

· A rule is termined by a semicolon “;”

· Whitespace is not significant, but it used to highlight the nesting of grouped terms.

Two types of terminals are defined:

· Frames. A frame is shown in Bold, and identified by its type/subtype – e.g. Beacon, Data. Frames are shown in an initial capital letter.
· Attributes. An attribute is introduced by the the “+” character. The attribute specifies a condition that applies to the frame that preceeds it. Where there are multiple attributes applied, they are generally ordered in the same order of the fields in the frame they refer to. Attributes are shown in italic.

Non-terminals of this syntax are shown in a normal font, a sequence of words joined by hyphens – e.g. cf-frame-exchange-sequence.
The attributes are defined in table 68.

Table 68 – Attributes applicable to frame exchange sequence definition

	Attribute
	Description

	ampdu
	Frame is part of an A-MPDU aggregate

	ampdu-end
	Frame that preceeds is the last frame in an A-MPDU aggregate

	block-ack
	QoS Data frame has ack policy set to Block Ack

	broadcast
	Frame RA is the broadcast address

	CF
	Beacon contains a CFP element

	CF-Ack
	Data type CF-Ack subtype bit set or CF-End+CF-Ack frame

	CF-Poll
	Data type CF-Poll subtype bit set

	delayed
	BlockAck or BlockAckReq under a delayed policy

	delayed-no-ack
	BlockAck or BlockAckReq frame has No Ack ack policy

	DTIM
	Beacon is a DTIM

	frag
	Frame has its More Fragments field set to 1

	group
	Frame RA has i/g bit set to 1

	implicit-bar
	QoS Data frame in an aggregate with Normal Ack ack policy

	individual
	Frame RA has i/g bit set to 0

	last
	Frame has its More Fragments field set to 0

	l-sig
	L-SIG duration not equal to PPDU duration

	more-psmp
	A PSMP frame with the More PSMP field set to 1

	mtba
	Ack policy of QoS data frame is set to MTBA

	no-ack
	QoS Data frame has ack policy set to No Ack

	no-more-psmp
	A PSMP frame with the More PSMP field set to 0

	normal-ack
	QoS Data frame has ack policy set to Normal Ack

	null
	Data type Null Data subtype bit set

	pifs
	Frame is transmitted using a PIFS

	QAP
	Frame is transmitted by a QAP

	QoS
	Data type QoS subtype bit set

	RD
	Frame has an HTC with the RD flag set

	self
	Frame RA = TA

The allowable frame exchange sequence is defined by the rule frame-sequence. Except where modified by the pifs attribute, frames are separated by a SIFS.
(* This rule defines all the allowable frame exchange sequences *)

frame-sequence =

[CTS] (Management+broadcast | Data + group) |

[CTS | RTS CTS | PS-Poll] {frag Ack} last Ack |

PS-Poll Ack |

[Beacon + DTIM] {cf-sequence} [CF-End [+CF-Ack]] |

hcf-sequence;
(* A frag is a non-final part of a directed MSDU or MMPDU *)

frag = (Data|Management)+individual+frag;

(* This is the last (or only) part of a directed MSDU or MMPDU *)

last = (Data|Management)+individual+last;

(* A cf-sequence expresses all the sequences that may be generated

within a contention free period. The first frame in this sequence is

sent by the AP. *)

cf-sequence =

Beacon | Management+broadcast | Data+group [+QoS] |
(*Broadcast *)

Data+individual+CF-Poll [+CF-Ack]

(* CF poll without data *)
(Data+individual+CF-Ack [Data+null+CF-Ack] |

Data+null+CF-Ack)
|

Data+individual+null+CF-Poll [+CF-Ack]

(* CF poll with data *)

(Data + null |

Data+individual (Data+null+CF-Ack | Ack)) |

Management+individual Ack |

(* individual management *)
hcf-sequence;

(* All the sequences initiated by an HC *)

(* An hcf-sequence represents all the sequences that may be generated under HCCA.

The sequence may be initiated by an HC within a CFP, or it may be initiated by a QSTA

using EDCA channel access. *)

hcf-sequence =

[CTS]
1{(Data+group [+QoS] | Management+broadcast)+pifs} |

[CTS] 1{txop-sequence} |

[RTS CTS] non-cf-ack-piggybacked-qos-poll-sequence |
 (* HC only – polled TXOP delivery *)

cf-ack-piggybacked-qos-poll-sequence |

(* HC only – polled TXOP delivery *)

Data+self+null+CF-Poll+QoS;

(* HC only – self TXOP delivery or termination *)

(* A poll-sequence is the start of a polled TXOP, in which the HC delivers a polled

TXOP to a QSTA. The poll may or may not piggyback a CF-Ack according to whether

the previous frame received by the HC was a Data frame. *)

poll-sequence =

non-cf-ack-piggybacked-qos-poll-sequence |

cf-ack-piggybacked-qos-poll-sequence;

(* A cf-ack-piggybacked-qos-poll-sequence is the start of a polled TXOP that

also delivers a CF-Ack. There are two main variants, polls that deliver data,

and therefore need acknowledgement, and polls that do not. *)

cf-ack-piggybacked-qos-poll-sequence=

qos-poll-requiring-no-ack+CF-Ack (

[CTS+self] polled-txop-content |

polled-txop-termination) |

qos-poll-requiring-ack+CF-Ack (

Ack (

polled-txop-content |

polled-txop-termination) |

cf-ack-piggybacked-qos-data-sequence);

(* A non-cf-ack-piggybacked-qos-poll-sequence is the start of a polled TXOP that

does not deliver a CF-Ack. Except for this, it is identical to the CF-Ack version. *)

non-cf-ack-piggybacked-qos-poll-sequence=

qos-poll-requiring-no-ack (

[CTS+self] polled-txop-content |

polled-txop-termination) |

qos-poll-requiring-ack (

Ack (

polled-txop-content |

polled-txop-termination) |

cf-ack-piggybacked-qos-data-sequence);

(* This sequence is the delivery of a single frame that is the TXOP poll frame,

that does not require acknowledgement – either because the frame carries no

data, or because the frame carries data that does not require immediate acknowledgement. *)

qos-poll-requiring-no-ack =

Data+null+CF-Poll+QoS |

Data+individual+CF-Poll+QoS+(no-ack|block-ack);

(* A qos-poll-requiring-ack is the delivery of a single frame that is a TXOP poll

frame, but also carries data that requires immediate acknowledgement. *)

qos-poll-requiring-ack =

Data+individual+CF-Poll[+CF-Ack]+QoS+normal-ack;

(* Polled-txop-content is what may occur after the delivery of a polled TXOP.

A QSTA transmits the first frame in this sequence *)

polled-txop-content = 1{txop-sequence} [polled-txop-termination];

(* A polled-txop-termination may be used by a QSTA to terminate the polled

TXOP. The data frame is addressed to the HC, which regains control of

the medium and may re-use any unused polled TXOP duration. *)

polled-txop-termination = Data+individual+null+QoS+normal-ack Ack;

(* A TXOP (either polled or EDCA) may be filled with txop-sequences,

which are initiated by the TXOP holder. *)

txop-sequence =

(RTS CTS | CTS+self) Data+individual+QoS+(block-ack|no-ack) |

[RTS CTS] (

txop-part-requring-ack txop-part-providing-ack |

(Management|(Data+QAP))+individual Ack |

BlockAckReq BlockAck) |

ht-txop-sequence;
(* These frames require acknowledgement *)

txop-part-requring-ack =

Data+individual[+null]+QoS+normal-ack |

BlockAckReq+delayed |

BlockAck+delayed;

(* These frames provide acknowledgement to the txop-part-requiring-ack *)

txop-part-providing-ack=

Ack |

(* An HC responds with a new polled TXOP on expiry of current TXOP *)

cf-ack-piggybacked-poll-sequence |

(* An HC responds with CF-Ack and its own data on expiry of TXOP *)

cf-ack-piggybacked-data-sequence |

Data+CF-Ack;

(* An HC has received a frame requiring Ack with a duration value indicating the

end of the TXOP. The HC continues the CAP by transmitting its own data. *)

cf-ack-piggybacked-qos-data-sequence =

Data+individual+CF-Ack+QoS+(no-ack|block-ack) polled-txop-content |

Data+individual+CF-Ack+QoS+normal-ack (

Ack polled-txop-content |

Data+CF-Ack |

cf-ack-piggybacked-qos-poll-sequence);

(* The ht-txop-sequence describes the additional sequences that may be initiated

by an HT STA that is the holder of a TXOP *)

ht-txop-sequence =

l-sig-protected-sequence |

long-nav-protected-sequence |

nav-protected-sequence |

1{ initiator-sequence };

(* an l-sig-protected-sequence is a sequence protected using the L-SIG TXOP protection

feature *)

l-sig-protected-sequence = l-sig-protection-set 1{ initiator-sequence };

(* a long-nav-protected sequence is a sequnce protected using the LongNAV protection

feature, which consists of setting the NAV, performing one or more initiator-sequences
and then resetting the NAV if time permits. *)

long-nav-protected-sequence = nav-protected-sequence [nav-reset];

nav-protected-sequence = nav-set 1{ initiator-sequence };

(* This is the sequence of frames that establish protection using the L-SIG TXOP

protection method *)

l-sig-protection-set =

RTS+l-sig CTS+l-sig |

CTS+l-sig+self |

Data+individual+l-sig [+null][+QoS+normal-ack] Ack+l-sig |

Data+individual+l-sig [+null][+QoS+(normal-ack|block-ack)] |

Data+group+l-sig [+null][+QoS] |

BlockAckReq+l-sig (BlockAck|Ack)+l-sig |

BlockAck+l-sig Ack;

(* These are the series of frames that establish NAV protection for an HT sequence *)

nav-set =

RTS+ CTS |

CTS+self |

Data+individual[+null][+QoS+normal-ack] Ack |

Data+individual[+null][+QoS+(normal-ack|block-ack)] |

Data+group[+null][+QoS] |

BlockAckReq (BlockAck|Ack) |

BlockAck Ack;

nav-reset = CF-End;

(* This is an initiator sequence. The different forms arise from whether the
initiator transmits a frame that requires a BlockAck, and whether it delivers

a reverse direction grant. When a reverse direction grant is delivered, the

response is distinguished according to whether it demands a BA response

from the initiator or not. *)

initiator-sequence =

burst |

(* No BA expected, no RD granted *)
burst-BAR BA |

(* BAR delivered, BA expected. No RD *)
burst-RD

(* No BAR delivered, RD granted *)

(
burst |

burst-BAR initiator-sequence-BA) |

burst-RD-BAR Ack |

burst-RD-BAR

(
burst-BA |

burst-BA-BAR initiator-sequence-BA) |

ht-ack-sequence;

(* This is the same as the initiator-sequence, except the initiator is

constrained to generate a BA response because a previous reverse

direction response demanded contained a BAR *)

initiator-sequence-BA =

burst-BA |

burst-BA-BAR BA |

burst-BA-RD

(
burst |

burst-BAR initiator-sequence-BA) |

burst-BA-RD-BAR Ack |

burst-BA-RD-BAR

(
burst-BA |

burst-BA-BAR initiator-sequence-BA) ;

(* These are sequences that occur within an ht-txop-sequence that

have an ack response *)

ht-ack-response =

BlockAck+delayed Ack |

BlockAckReq+delayed Ack |

Data+individual[+null][+QoS+normal-ack] Ack;

(* A burst is a sequence of 1 or more packets, none of them requiring a response *)
burst = 1{PPDU-not-requiring-response};

(* A burst containing a BAR *)

burst-BAR = [burst] PPDU-BAR;

(* A burst containing a BA *)

burst-BA = PPDU-BA [burst];

(* A burst containing a BA and BAR, either in the same packet, or

in separate packets. *)

burst-BA-BAR =

PPDU-BA [burst] PPDU-BAR |

PPDU-BA-BAR;

(* A burst delivering an RD grant *)

burst-RD = [burst] PPDU-RD;

(* A burst containing a BAR and delivering an RD grant *)

burst-RD-BAR = burst PPDU-RD-BAR;

(* A burst contining a BAR and BA and delivering an RD grant *)

burst-BA-RD-BAR =

PPDU-BA burst PPDU-RD-BAR |

PPDU-BA-RD-BAR;

(* A PPDU not requiring a response is either a single frame not

requiring response, or an A-MPDU aggregate of such frames *)

PPDU-not-requiring-response =

frame-not-requiring-response |

1{frame-not-requiring-response+ampdu}+ampdu-end;
(* A frame not requiring response is one of the delayed BA policy
frames sent under “no ack” ack policy, or Data that doesn’t require

an immediate ack. *)

frame-not-requiring-response =

BlockAck+delayed-no-ack |

BlockAckReq+delayed-no-ack |

Data[+null]+QoS+(no-ack|block-ack);

(* A PPDU containing a BAR is either an unaggregated BAR, or

an A-MPDU aggregate containing Data requiring implicit BAR *).

PPDU-BAR=

BlockAckReq |

<

1{Data+QoS+implicit-bar+ampdu}

{Data+QoS+ampdu}
> + ampdu-end;

(* A PPDU containing both BA and BAR is an A-MPDU aggregate

that contains a BA, plus either a BlockAckReq frame, or 1 or more

Data frames with requiring implicit BAR. *)

PPDU-BA-BAR=

<

BlockAck+ampdu

(

BlockAckReq+ampdu |

1{Data+QoS+implicit-bar+ampdu} {Data+QoS+ampdu}

)

> + ampdu-end;
(*A PPDU containing BA is either a non-aggregate BlockAck, or an

A-MPDU aggregate containing a BlockAck, and also containing data

that does not require implicit BAR. *)

PPDU-BA=

BlockAck |

<

BlockAck+ampdu
1{Data+QoS+(no-ack|block-ack)+ampdu}

> + ampdu-end;

(* A PPDU delivering an RD grant, but not delivering a BAR is either
a Data frame, not requiring immediate acknowledgement, or a BlockAck or

BlockAckReq, not requiring immediate acknowledgement *).
PPDU-RD=

Data[+null]+QoS+(no-ack|block-ack)+RD |

(BlockAck|BlockAck)+delayed-no-ack+RD |

<

Data+QoS+RD+ampdu

{Data+QoS+RD+ampdu}

{Data+QoS+ampdu}

> + ampdu-end;
(* A PPDU containing a BAR and delivering an RD grant is either an

un-aggregated BlockAckReq frame, or an A-MPDU aggregate containing

at least one Data frame with RD and at least one with implicit-bar. These

do not have to be the same data frame (but can be). *)

PPDU-RD-BAR=

BlockAckReq+RD |

<

Data+QoS+implicit-bar+ampdu
Data+QoS+RD+ampdu
{Data+QoS[+implicit-bar][+RD]+ampdu} |

Data+QoS+RD+implicit-bar+ampdu
{Data+QoS[+implicit-bar][+RD]+ampdu}

> + ampdu-end;
(* A PPDU containing a BA, BAR and granting RD is an A-MPDU

aggregate that contains a BlockAck and at least one data frame containing

implicit BAR. The RD grant may be made on any of these frames, but

shall be made on at least one of them. *)

PPDU-BA-RD-BAR=

(* RD may be present in BlockAckReq, BlockAck or Data, but
 is present in at least one of these frames *)

<

BlockAck+RD+ampdu

(

BlockAckReq[+RD]+ampdu |

{Data+QoS[+implicit-bar][+RD]+ampdu}

> + ampdu-end |

<

BlockAck[+RD]+ampdu

BlockAckReq+RD+ampdu
> + ampdu-end |

<

BlockAck[+RD]+ampdu

(

Data+QoS[+implicit-bar]+RD+ampdu
{Data+QoS[+implicit-bar][+RD]+ampdu}

> + ampdu-end;

(* A PSMP sequence is a sequence of PSMP periods ending with a last-psmp *)

psmp-sequence = non-last-psmp last-psmp;

non-last-psmp = PSMP+more-psmp downlink-phase uplink-phase;

last-psmp = PSMP+no-more-psmp downlink-phase uplink-phase;

(* The downlink phase is a sequence of allocations to STA as defined in the

PSMP frame during which they may expect to receive. *)

downlink-phase = {psmp-allocated-time};
(* The uplink phase is a sequence of allocations to STA as defined in the PSMP

frame during which they are allowed to transmit *)

uplink-phase = {psmp-allocated-time};
(* During a time allocation, one or more packets may be transmitted of

contents defined by psmp-ppdu *)

psmp-allocated-time = 1{psmp-ppdu};
(* The packets that may be transmitted during PSMP are: isolated MTBA or

MTBAR frames, or an A-MPDU aggregate containing an optional MTBA

and one or more data frames sent under the MTBA ack policy. *)

psmp-ppdu =

MTBA |
MTBAR |

<

[MTBA+ampdu]
1{Data+individual+QoS+mtba+ampdu};

> + ampdu-end;
Comment on use of <>

This does not form part of any motion to adopt TGn text.
TGn D0.01-D0.02 has the notion that an A-MPDU contains certain types of MPDU in any order. This is quite hard to represent in EBNF. The author faced 3 alternatives:

· Represent the choice using EBNF recursion. EBNF production rules allow recursion, which is capable of generating more complex sequences than can be represented in a regular expression.

· Describe the choices using an informal note (using the ? text ?) syntax. When all else fails, describe the rules in English. This gives great power (“every other third alternate mpdu, provided that it is beautiful, should have more parity than the preceeding 2-7 mpdus”), but opens door to all the problems associated with an informal specification.

· Define a new syntax for unordered. This is the route the author has chosen. The benefits are that it avoids the complexity or the imprecision of the previous two options. However, it does introduce a new type of syntax, which creates demands on the reader.
Notice: This document has been prepared to assist IEEE 802.11. It is offered as a basis for discussion and is not binding on the contributing individual(s) or organization(s). The material in this document is subject to change in form and content after further study. The contributor(s) reserve(s) the right to add, amend or withdraw material contained herein.

Release: The contributor grants a free, irrevocable license to the IEEE to incorporate material contained in this contribution, and any modifications thereof, in the creation of an IEEE Standards publication; to copyright in the IEEE’s name any IEEE Standards publication even though it may include portions of this contribution; and at the IEEE’s sole discretion to permit others to reproduce in whole or in part the resulting IEEE Standards publication. The contributor also acknowledges and accepts that this contribution may be made public by IEEE 802.11.

Patent Policy and Procedures: The contributor is familiar with the IEEE 802 Patent Policy and Procedures <� HYPERLINK "http://%20ieee802.org/guides/bylaws/sb-bylaws.pdf" \t "_parent" �http:// ieee802.org/guides/bylaws/sb-bylaws.pdf�>, including the statement "IEEE standards may include the known use of patent(s), including patent applications, provided the IEEE receives assurance from the patent holder or applicant with respect to patents essential for compliance with both mandatory and optional portions of the standard." Early disclosure to the Working Group of patent information that might be relevant to the standard is essential to reduce the possibility for delays in the development process and increase the likelihood that the draft publication will be approved for publication. Please notify the Chair <� HYPERLINK "mailto:stuart.kerry@philips.com" \t "_parent" �stuart.kerry@philips.com�> as early as possible, in written or electronic form, if patented technology (or technology under patent application) might be incorporated into a draft standard being developed within the IEEE 802.11 Working Group. If you have questions, contact the IEEE Patent Committee Administrator at <� HYPERLINK "mailto:patcom@ieee.org" \t "_parent" �patcom@ieee.org�>.

Abstract

This document contains proposed changes to the TGn Draft to address omissions mainly in clause 9.12 – Frame exchange sequences.

There are two main sections. The first is intended to be used as a replacement of the existing section in 802.11 REV-ma D5.1, and may be brought forward for discussion in TGm. The second is intended to be used to modify the TGn draft, again by a complete replacement of the section, but this time including the HT frame sequences.

Submission
page 1
Adrian Stephens, Intel Corporation

