January 2006

doc.: IEEE 802.11-y5/1258r0

IEEE P802.11
Wireless LANs

	Normative Text for PeerKey Handshake Proposal

	Date: 2006-01-05

	Author(s):

	Name
	Company
	Address
	Phone
	email

	Suman Sharma
	Intel Corp
	2111 NE 25th Ave, Hillsboro OR 97124
	503-264-6015
	Suman.sharma@intel.com

	Jesse Walker
	Intel Corp
	2111 NE 25th Ave, Hillsboro OR 97124
	503-712-1849
	Jesse.Walker@intel.com

	Jon Edney
	Nokia
	Cambridge, UK
	+441353648567
	EXT-jon.1.edney@nokia.com

	Paul Panish
	Meetinghouse
	Portsmouth, NH 03801
	603-610-8657
	paulp@mtghouse.com

	Jouni Malinen
	Devicescape
	1000 Marina Blvd Suite 400, Brisbane CA 94005
	650-829-2630
	jkm@devicescape.com

	Mike Saal
	Meetinghouse
	Portsmouth, NH 03801
	603-610-8644
	msaal@mtghouse.com

	Bart Westgeest
	Meetinghouse
	Portsmouth, NH 03801
	603-610-8667
	bartw@mtghouse.com

	Shlomo Ovadia
	Intel Corp
	2200 Mission College Blvd.,
Santa Clara, CA 95054
	+1 408 7651844
	shlomo.ovadia@intel.com

	Kevin Karcz
	Meetinghouse
	Portsmouth, NH 03801
	603-766-7508
	KevinK@mtghouse.com

3. Definitions
Delete Clause 3.100, 3.101, and 3.102.
Update the following text for Clause 3.97 as shwon below:
3.97 robust security network association (RSNA) key management: Key management that includes the 4-Way Handshake, the Group Key Handshake, STAKey Handshake, and PeerKey Handshake.
Insert the following definitions in alphabetical order into Clause 3, renumbering as necessary:

3.122 Station to station link (STSL): Direct link established between two STAs while associated to a common AP. This term refers to a generic mechanism which may be implemented to allow direct STA to STA communication while remaining in Infrastructure Mode. The only example of this procedure currently specified is DLS. Establishment of an STSL will be expected to be include an initialization step similar to that specified by DLS, however it is not intended that the procedure be limited to DLS should other needs be established in the future. Any mechanism developed for this purpose must specify teardown procedures which may be used by the STSL to terminate the link under the conditions discussed in this text.
3.124 PeerKey handshake: Comprised of the SMK handshake and the 4-Way STK handshake. Key management protocol used to create new SMKSA and STKSA to secure the STSL.
3.125 SMK handshake: A pairwise key management protocol defined by this standard. It creates new STSL master key (SMK) by two parties.
3.126 4-Way STK handshake: A pairwise key management protocol defined by this amendment. It confirms mutual possession of a STSL master key (SMK) by two parties and distributes a STSL transient key (STK).

3.127 STSL master key (SMK): A random value generated by AP during SMK handshake, used for deriving STSL transient key (STK).
3.128 STSL master key security association (SMKSA): The context resulting from a successful SMK handshake.
3.129 STSL transient key (STK): A value that is derived from the STSL master key (SMK), initiator mac address (MAC_I), peer mac address (MAC_P), initiator nonce (INonce), and peer nonce (PNonce) using the pseudo-random function (PRF) and that is split up into as many as five keys, i.e., temporal encryption key, two temporal message integrity code (MIC) keys, EAPOL-Key encryption key (SKEK), EAPOL-Key confirmation key (SKCK).
3.130 STSL transient key security association (STKSA): The context resulting from a successful 4-Way STK exchange.
4. Abbreviations and acronyms

Insert the following new abbreviations and acronyms in alphabetical order:

STSL

Station to station link in infrastructure BSS
SMK

STSL master key

SMKSA

SMK security association

STK

STSL transient key

STKSA

STK security association

SKEK

STSL key encryption key

SKCK

STSL key confirmation key

MUI

Message unique identifier

5. General description

5.4.3.2 Deauthentication

Change the text in fourth paragraph in Clause 5.4.3.2 as follows:

In an RSNA, deauthentication also destroys any related PTKSA, group temporal key security association (GTKSA), STAKey security associations (STAKeySAs), STSL master key security association (SMKSA), and STSL transient key security association (STKSA) that exist in the STA and closes the associated IEEE 802.1X Controlled Port. If pairwise master key (PMK) caching is not enabled, deauthentication also destroys the pairwise master key security association (PMKSA) from which the deleted PTKSA was derived.
7. Frame formats
7.3.2.25.3 RSN capabilities
Change the Figure 79 in Clause 7.3.25.3 as follows:

[image: image1.emf]Pre-Auth

No

Pairwise

PTKSA Replay

Counter

GTKSA Replay

Counter

PeerKey

Enabled

Reserved

B0 B1 B2 B3 B4 B5 B6 B8 B10

Reserved

B9

B15

Figure 79: RSN Capabilities field format
Change the text in paragraph before Table 31 and Table 31 in Clause 7.3.25.3 as follows:

— Bits 2–3: PTKSA Replay Counter. A STA sets the PTKSA Replay Counter subfield of the RSN Capabilities field to the value contained in dot11RSNAConfigNumberofPTKSAReplay-Counters. The least significant bit (LSB) of dot11RSNAConfigNumberofPTKSAReplayCounters is put in bit 2. See 8.3.2.6 and 8.3.3.4.3. The meaning of the value in thePTKSA/GTKSA/STAKeySA/STKSA Replay Counter subfield is defined in Table 31. The number of replay counters per STAKeySASTKSA is the same as the number of replay counters per PTKSA or GTKSA.
Table 31—PTKSA/GTKSA/STAKeySA/STKSA replay counters usage
	Replay counter

value
	Meaning

	0
	1 replay counter per PTKSA/GTKSA/STAKeySA/STKSA

	1
	1 replay counter per PTKSA/GTKSA/STAKeySA/STKSA

	2
	1 replay counter per PTKSA/GTKSA/STAKeySA/STKSA

	3
	1 replay counter per PTKSA/GTKSA/STAKeySA/STKSA

Insert this text in place of last bullet (starting with Bit 6-15.) in Clause 7.3.25.3 as follows:

— Bits 9: PeerKey Enabled. An AP STA sets the PeerKey Enabled subfield of the RSN Capabilities field to 1 to signal it supports PeerKey Handshake (see 8.5.9). This field is used by AP STA to describe its ability to support PeerKey Handshake.
— Bits 6–8 & 10–15: Reserved. The remaining subfields of the RSN Capabilities field are reserved and shall be set to 0 on transmission and ignored on reception.

8. Security
Add following text at the end of Clause 8.1.3:
8.1.3A RSNA PeerKey Support

The PeerKey protocol is provided to allow for establishment of STA to STA connectivity within a BSS while providing mutual authentication, session identification, and data confidentiality. A PeerKey association, comprised of an SMKSA and an STKSA, shall only be allowed within the context of an existing RSNA by both peers with a common AP. It is the intent of the PeerKey protocol to allow only protected communication between STAs. Both Initiator and Peer STA shall ensure that dot11RSNAEnabled is true in order to proceed with the SMK and STK Handshakes and allow establishment of their respective security associations.

An STSL session (such as DLS) may chose to allow unprotected communication between STAs, however such communications are outside the scope of the PeerKey specification and are not supported by the PeerKey protocol.
8.3.2.4 TKIP countermeasures procedures

Add following text as second last paragraph before section 8.3.2.4.1 in section 8.3.2.4:
Same TKIP countermeasures are applicable for secure DLS data frame exchange as well.
8.3.2.6 TKIP replay protection procedures

Change the text of sub-number b), e) and g) text below as follows:

b) Each transmitter shall maintain a single TSC (48 bit counter) for each PTKSA, GTKSA, and STAKeySA STKSA.

e) A receiver shall maintain a separate set of TKIP TSC replay counters for each PTKSA, GTKSA, and STAKeySA STKSA.

g) For each PTKSA, GTKSA, and STAKeySA STKSA, the receiver shall maintain a separate replay counter for each frame priority and shall use the TSC recovered from a received frame to detect replayed frames, subject to the limitations on the number of supported replay counters indicated in the RSN Capabilities field, as described in 7.3.2.25. A replayed frame occurs when the TSC extracted from a received frame is less than or equal to the current replay counter value for the frame’s priority. A transmitter shall not reorder frames with different priorities without ensuring that the receiver supports the required number of replay counters. The transmitter shall not reorder frames within a replay counter, but may reorder frames across replay counters. One possible reason for reordering frames is the IEEE 802.11 MSDU priority. IEEE 802.11 does not define a method to signal frame priority.
8.3.3.4.3 PN and replay detection

Change the text of sub-number b), d) and e) text below as follows:

b) Each transmitter shall maintain a single PN (48-bit counter) for each PTKSA, GTKSA, and STAKeySA STKSA.

d) A receiver shall maintain a separate set of PN replay counters for each PTKSA, GTKSA, and STAKeySA STKSA. The receiver initializes these replay counters to 0 when it resets the temporal key for a peer. The replay counter is set to the PN value of accepted CCMP MPDUs.

e) For each PTKSA, GTKSA, and STAKeySASTKSA, the recipient shall maintain a separate replay counter for each IEEE 802.11 MSDU priority and shall use the PN recovered from a received frame to detect replayed frames, subject to the limitation of the number of supported replay counters indicated in the RSN Capabilities field (see 7.3.2.25). A replayed frame occurs when the PN extracted from a received frame is less that or equal to the current replay counter value for the frame’s MSDU priority.

A transmitter shall not use IEEE 802.11 MSDU priorities without ensuring that the receiver supports the required number of replay counters. The transmitter shall not reorder frames within a replay counter, but may reorder frames across replay counters. One possible reason for reordering frames is the IEEE 802.11 MSDU priority.
8.4.1.1 Security association definitions
Insert the following sub item as last sub item before the start of Claus 8.4.1.1.1:
— STAKeySA: A result of a successful STAKey Handshake.

— SMKSA: A result of a successful initial SMKHandshake.

— STKSA: A result of a successful 4-way STK Handshake following the initial SMK Handshake or subsequent rekeying.
Delete STAKeySA Clause 8.4.1.1.4.

Insert the following sub items at the end of Clause 8.4.1.1.3:

8.4.1.1.4 SMKSA

An SMKSA is the result of a successful SMK Handshake by the initiator STA (described in 8.5.9). It is derived from parameters provided by the STAs and AP. This security association is bidirectional between the initiator and the peer STA. In other words, both parties use the information in the security association for both sending and receiving. An SMKSA is created as a result of a successful SMK Handshake (see section 8.5.9).The SMKSA is used to create the STKSA. SMKSAs are cached for up to their lifetimes. The SMKSA consists of the following elements:

· SMKID, as defined in 8.5.9. The SMKID identifies the security association.

· BSSID

· Initiator MAC address

· Peer MAC address
· SMK.

· Lifetime, as defined in 8.5.9.

· Pairwise cipher suite selector list, as proposed by initiator STA
· Pairwise cipher suite selector, as selected by peer STA
8.4.1.1.5 STKSA
The STKSA is a result of successful completion of the 4-Way STK Handshake. This security association is bidirectional between the initiator and the peer STAs. The STKSA is used to create session keys to protect this STSL. STKSAs are cached for the life of the SMKSA or when the STSL ends, whichever comes first. There shall be only one STKSA with the same initiator STA and peer MAC addresses at any one time. STKSA is created as a result of PeerKey Handshake (see section 8.5.9). The STKSA consists of the following elements:

· STK

· Pairwise cipher suite selector

· Initiator MAC address

· Peer MAC address
8.4.10 RSNA security association termination

Change the text in following Clause 8.4.10 as follows:
When a non-AP STA SME receives a successful MLME association or reassociation confirm primitive or receives or invokes an MLME disassociation or deauthentication primitive, it will delete some security associations. Similarly, when an AP SME receives an MLME association or reassociation indication primitive, or receives or invokes an MLME disassociation or deauthentication primitive it will delete some security associations. In the case of an ESS, the non-AP STA’s SME shall delete the PTKSA, and the GTKSA, SMKSA, and any STKSA and the AP’s SME shall delete the PTKSA and invoke an STSL Teardown for any of its STKSAs. In the case of an IBSS, the STA’s SME shall delete the PTKSA and the receive GTKSA. Once the security associations have been deleted, the SME then invokes MLMEDELETEKEYS request primitive to delete all temporal keys associated with the deleted security associations. The IEEE 802.1X Controlled Port returns to being blocked. As a result, all data frames are unauthorized before invocation of an MLME-DELETEKEYS.request primitive.

If a STA loses key state synchronization, it can apply the following rules to recover:

a) Any protected frame(s) received shall be discarded, and MLME-PROTECTEDFRAMEDROPPED. indication primitive is invoked.

b) If the STA is RSNA-enabled and has joined an IBSS, the SME shall execute the authentication procedure as described in 11.3.1.

c) If the STA is RSNA-enabled and has joined an ESS, the SME shall execute the deauthentication procedures as described in 11.3.3. However, if the STA has initiated the RSN security association, but has not yet invoked the MLME-SETPROTECTION.request primitive, then no additional action is required.

NOTES

· There is a race condition between when MLME-SETPROTECTION.request primitive is invoked on the Supplicant and when it is invoked on the Authenticator. During this time, an encrypted MPDU may be received that cannot be decrypted; and the MPDU will be discarded without a deauthentication occurring.

· Because the IEEE 802.11 null data MPDU does not derive from an MA-UNITDATA.request, it is not protected.

If the selected AKMP fails between a STA and an AP that are associated, then both the STA and the AP shall

invoke the MAC deauthentication procedure described in 11.3.3.
If the SMK handshake fails between a pair of associated STA and AP, then the STAs and the AP shall invoke an STSL Teardown.
8.5.1 Key hierarchy
Insert the following sub items at the end of Clause 8.5.1.3:

8.5.1.4 PeerKey key hierarchy

The station to station key hierarchy utilizes PRF-384 or PRF-512 to derive session-specific keys from a SMK, as

depicted in Figure 106a. The SMK shall be 256 bits. The pairwise key hierarchy takes a SMK and generates a

STK. The STK is partitioned into SKCK and SKEK, and temporal keys used by the MAC to protect unicast communication between the initiator and peer respective STAs. STKs are used between a single initiator STA and a single peer STA.

[image: image2.emf]Station Master Key (SMK)

Station to Station Transient Key (STK)

(X bits)

EAPOL-Key Key

Confirmation Key

L(STK, 0, 128)

SKCK

EAPOL-Key Key

Encryption Key

L(STK, 128, 128)

SKEK

Temporal Key

TKIP: L(STK, 256, 256)

CCMP: L(STK, 256, 128)

(TK)

PRF-X(SMK, “Peer key expansion”,

Min(MAC_I,MAC_P) || Max(MAC_I,MAC_P)

Min(INonce,PNonce) || Max(INonce,PNonce))

Figure 106a: PeerKey hierarchy
Here, the following assumptions apply:

a) INonce is a random or pseudo-random value contributed by the initiator STA.

b) PNonce is a random or pseudo-random value contributed by the peer STA.

c) The STK shall be derived from the SMK by

STK ← PRF-X(SMK, “Peer key expansion”, Min(MAC_I,MAC_P) || Max(MAC_I,MAC_P) ||
Min(INonce,PNonce) || Max(INonce,PNonce))

TKIP uses X = 512 and CCMP uses X = 384. The Min and Max operations for IEEE 802 addresses are with the address converted to a positive integer treating the first transmitted octet as the most significant octet of the integer. The Min and Max operations for nonces are with the nonces treated as positive integers converted as specified in 7.1.1.

d) The SKCK shall be computed as the first 128 bits (bits 0–127) of the STK:

SKCK ← L(STK, 0, 128)

The SKCK is used to provide data origin authenticity in the STK 4-Way Handshake.

e) The SKEK shall be computed as bits 128–255 of the STK:

SKEK ← L(STK, 128, 128)

The SKEK is used by the EAPOL-Key frames to provide confidentiality in the STK 4-Way Handshake.

f) The temporal key (TK) shall be computed as bits 256–383 (for CCMP) or bits 256–511 (for TKIP) of the STK:

TK ← L(STK, 256, 128) or

TK ← L(STK, 256, 256)

The EAPOL-Key state machines (see 8.5.6 and 8.5.7) use the MLME-SETKEYS.request primitive to configure the temporal key into the STA. The STA uses the temporal key with the pairwise cipher suite; interpretation of this value is cipher-suite-specific.

A SMK identifier is defined as

SMKID = HMAC-SHA1-128(SMK, "SMK Name" || PNonce || MAC_P || INonce || MAC_I)

Here, HMAC-SHA1-128 is the first 128 bits of the HMAC-SHA1 of its argument list.
8.5.2 EAPOL-Key frames
Change the text in following Clause 8.5.2 as follows:

IEEE 802.11 uses EAPOL-Key frames to exchange information between STAs’ Supplicants and Authenticators.

These exchanges result in cryptographic keys and synchronization of security association state. EAPOL-Key frames are used to implement three different exchanges:

· 4-Way Handshake, to confirm that the PMK between associated STAs is the same and live and to

· transfer the GTK to the STA.

· Group Key Handshake, to update the GTK at the STA.

· STAKey Handshake, to deliver the STAKey to the initiating and peer STAs.

· PeerKey initial SMK handshake to deliver SMK and final 4-way STK Handshake to deliver the STK, to the initiating and peer STAs.

Replace Figure 108 with following Figure:

[image: image3.emf]B0 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12 B13 B15

B14

Key

Descriptor

Version

Key

Type

SMK

Message

Reserved Install

Key

Ack

Key

MIC

Secure Error Request

Encrypted

Key Data

Reserved

Figure 108—Key Information bit layout
Change the text in following Clause 8.5.2 sub-number b)->2)->i) as follows:

i) The value 0 (Group/STAKey/SMK) indicates the message is not part of a PTK derivation.
Change the text in following Clause 8.5.2 sub-number b)->8) as follows:
8) Error (bit 10) is set by a Supplicant to report that a MIC failure occurred in a TKIP MSDU or SMK handshake failure. In case of MIC failure Supplicant shall set this bit only when the Request (bit 11) is set. In case SMK Message bit is set, this shall be set to indicate the key data field contains an Error KDE.
Change the text in following Clause 8.5.2 sub-number b)->9) as follows:

9) Request (bit 11) is set by a Supplicant to request that the Authenticator initiate either a 4-Way Handshake or Group Key Handshake, is set by a Supplicant in a Michael MIC Failure Report and is set by STSL peer STA to request initiator STA rekeying of STK. The Supplicant shall not set this bit in on-going 4-Way Handshakes, i.e., the Key Ack bit (bit 7) shall not be set in any message with the Request bit set. The Authenticator shall never set this bit.

In a Michael MIC Failure Report, setting the bit is not a request to initiate a new handshake. However the recipient may initiate a new handshake on receiving such a message. If the EAPOL-Key frame with Request bit set has a key type of Pairwise, the Authenticator shall initiate a 4-Way Handshake.
If the EAPOL-Key frame with Request bit set has a key type of Group/STAKey, the Authenticator shall change the GTK, initiate a 4-Way Handshake with the Supplicant, and then execute the Group Key Handshake to all Supplicants.

If the EAPOL-Key frame with Request bit set has SMK Message bit set, initiator STA shall take appropriate action to create new STK (based on section 8.5.9).
Change the text in following Clause 8.5.2 sub-number b)->10) as follows:
10) Encrypted Key Data (bit 12) is set if the Key Data field is encrypted and is clear if the Key Data field is not encrypted. This subfield shall be set, and the Key Data field shall be encrypted, if any key material (e.g., GTK or STAKey SMK) is included in the frame.

Add the following text after Clause 8.5.2 sub-number b)->10 as follows:
11) SMK Message (bit 13) specifies whether this EAPOL-Key frame is part of a SMKHandshake. The STAs where SMK handshake is not implemented, shall set this to 0, and shall ignore the value of this bit in receive side.

Change the text in following Clause 8.5.2 sub-number b)->12), renumbering the existing Clause 8.5.2 sub-number b)->11 and subsequent Clauses as appropriate:

12) Reserved (bits 1314-15). The sender shall set them to 0, and the receiver shall ignore the value of these bits.

Update table 35 in Clause 8.5.2 sub-number j) as follows:

Table 35—KDE
	OUI
	Data type
	Meaning

	00-0F-AC
	0
	Reserved

	00-0F-AC
	1
	GTK KDE

	00-0F-AC
	2
	STAKey KDEReserved

	00-0F-AC
	3
	MAC address KDE

	00-0F-AC
	4
	PMKID KDE

	00-0F-AC
	5
	SMK KDE

	00-0F-AC
	6
	Nonce KDE

	00-0F-AC
	7
	Lifetime KDE

	00-0F-AC
	8
	Error KDE

	00-0F-AC
	9-255
	Reserved

	Vendor OUI
	Any
	Vendor specific

	Other
	Any
	Reserved

Update the text in Clause 8.5.2 sub-number j) as follows:

j) Key Data. This field is a variable-length field that is used to include any additional data required for the key exchange that is not included in the fields of the EAPOL-Key frame. The additional data may be zero or more information element(s) (such as the RSN information element) and zero or more key data cryptographic encapsulation(s) (KDEs) (such as GTK(s), STAKey(s), or PMKID(s)). Information elements sent in the Key Data field include the Element ID and Length subfields. KDEs shall be encapsulated using the format in Figure 109.

The Type field shall be set to 0xdd. The Length field specifies the number of octets in the OUI, Data Type, and Data fields. The order of the OUI field shall follow the ordering convention for MAC addresses from 7.1.1.

Table 35 lists the KDE selectors defined by this standard.

STAs shall ignore any information elements and KDEs they do not understand.

If the Encrypted Key Data subfield (of the Key Information field) is set, the entire Key Data field shall be encrypted. If the Key Data field uses the NIST AES key wrap, then the Key Data field shall be padded before encrypting if the key data length is less than 16 octets or if it is not a multiple of 8. The padding consists of appending a single octet 0xdd followed by zero or more 0x00 octets. When processing a received EAPOL-Key message, the receiver shall ignore this trailing padding. Key Data fields that are encrypted, but do not contain the GroupKey or STAKey KDE or SMK KDE, shall be accepted.

If the GroupKey or STAKey KDE SMK KDE is included in the Key Data field, but the Key Data field is not encrypted, the EAPOL-Key frames shall be ignored.

The format of the GTK KDE is shown in Figure 110.
If the value of the Tx field is 1, then the IEEE 802.1X component shall configure the temporal key derived from this KDE into its IEEE 802.11 STA for both transmission and reception.

If the value of the Tx field is 0, then the IEEE 802.1X component shall configure the temporal key derived from this KDE into its IEEE 802.11 STA for reception only.

The format of the STAKey and peer MAC address KDE is shown in Figure 111.
Delete Figure 111: STAKey KDE format.
Add the following text and figures at end of Clause 8.5.2 sub-number j) (just after Figure 113):
The format of the SMK KDE is shown in Figure 113a.

[image: image4.emf]32 octets

SMK

32 octets

Key Nonce

Figure 113a—SMK KDE format
The format of the Nonce KDE is shown in Figure 113b.

[image: image5.emf]32 octets

Key Nonce

Figure 113b—Nonce KDE format

The format of the Lifetime KDE is shown in Figure 113c. Key Lifetime is in seconds and uses big endian byte order.

[image: image6.emf]4 octets

Key Lifetime

(in second)

Figure 113c—Lifetime KDE format

The format of the Error KDE is shown in Figure 113d. Both MUI and Error Type fields are in big endian byte order. Table 35a shows different values of MUI and table 35b shows different values of SMK error types.

[image: image7.emf]2 octets

Error

Type

2 octets

MUI

Figure 113d—Error KDE format
Table 35a—MUI Values

	Handshake Type
	MUI Value

	4-Way PTK Handshake
	00-01

	4-Way STK Handshake
	00-02

	GTK Handshake
	00-03

	SMK Handshake
	00-04

Table 35b—SMK Error Types

	Error Name
	Error Type
	Error Detail

	ERR_STA_NR
	1
	STA is not reachable from AP: details in 8.5.9.5.1

	ERR_STA_NRSN
	2
	STA to AP secure network not present: detail in 8.5.9.5.2

	ERR_CPHR_NS
	3
	Ciphersuites not supported: detail in 8.5.9.5.3

	ERR_NO_STSL
	4
	No STSL session present: detail in 8.5.9.5.4

Update the following text at end of Clause 8.5.2 sub-number j), just after Figure 113d (113d is new figure added before):

· 4-Way Handshake Message 4 is an EAPOL-Key frame with the Key Type subfield set to 1. The Key Data field can be empty.

· Group Key Handshake Message 1 is an EAPOL-Key frame with the Key Type subfield set to 0. The Key Data field shall contain a GTK KDE and shall be encrypted.

· Group Key Handshake Message 2 is an EAPOL-Key frame with the Key Type subfield set to 0. The Key Data field can be empty.

· STAKey Handshake Message 1 is an EAPOL-Key frame with the Key Type subfield set to 0. The Key Data field shall contain a STAKey KDE and shall be encrypted. A STAKey is used to protect unicast traffic sent directly between two STAs that are associated with the same AP. The STAKey shall be cryptographically separated from the GTK.

· STAKey Handshake Message 2 is an EAPOL-Key frame with the Key Type subfield set to 0. The Key Data field shall contain a MAC address KDE.

· PeerKey Handshake uses EAPOL-Key frames and details are provided in section 8.5.9.
8.5.2.1 STAKey Handshake for STA-to-STA link security
Delete Clause 8.5.2.1 and Figure 114: STAKey message exchange:
8.5.2.2 EAPOL-Key frame notation

Change section 8.5.2.2 as follows:
The following notation is used throughout the remainder of 8.5 to represent EAPOL-Key frames:

EAPOL-Key(S, M, A, I, K, SM, KeyRSC, ANonce/SNonce, MIC, DataKDs RSNID, GTK[N])
S

means the initial key exchange is complete. This is the Secure bit of the Key Information field.

M

means the MIC is available in message. This should be set in all messages except Message 1 of a

4-Way Handshake. This is the Key MIC bit of the Key Information field.

A

means a response is required to this message. This is used when the receiver should respond to this

message. This is the Key Ack bit of the Key Information field.

I

is the Install bit: Install/Not install for the pairwise key. This is the Install bit of the Key

Information field.

K

is the key type: P (Pairwise), G (Group/STAKey/SMK). This is the Key Type bit of the Key

Information field.

SM

is the SMK Message bit: indicates that this message is part of SMK handshake.
KeyRSC
is the key RSC. This is the Key RSC field.

ANonce/SNonce is the Authenticator/Supplicant nonce. This is the Key Nonce field.

MIC

is the integrity check, which is generated using the KCK or SKCK. This is the Key MIC field.
RSNIE

is the RSN information element. This is in the Key Data field.

GTK

is the encapsulated GTK. This is in the Key Data field.

N
is the key identifier, which specifies which index should be used for this GTK. Index 0 shall not be used for GTKs, except in mixed environments, as described in 8.5.1.
DataKDs
is a sequence of zero or more Information Elements and KDEs, contained in the Key Data field,

which may contain:

RSNIE

the RSN information element, described in 7.3.2.25.

GTK[N]
GTK, with key identifier field set to N. The key identifier specifies which index should

be used for this GTK. Index 0 shall not be used for GTKs, except in mixed environments,

as described in 8.5.1.
PMKID

PMKID of type PMKID KDE, key identifier used during 4-Way PTK handshake for

PMK key identification and during 4-Way STK handshake for SMK key identification..
Lifetime

key lifetime KDE used for sending expiry timeout value for SMK used during PeerKey

Handshake for STA-to-STA SMK key identification
Initiator MAC
is Initiator MAC KDE used during PeerKey Handshake

Peer MAC
is Peer MAC KDE used during PeerKey Handshake

Initiator Nonce
is Initiator Nonce KDE used during PeerKey Handshake. This is used when we need to

send multiple nonces
Peer Nonce
is Peer Nonce KDE used during PeerKey Handshake. This is used when we need to send

multiple nonces
SMK KDE
is the encapsulated SMK during SMK Handshake
Error KDE
is error KDE used when error bit E is set during PeerKey Handshake
8.5.3 4-Way Handshake

Change section 8.5.3 as follows:

Message 1. Authenticator → Supplicant: EAPOL-Key(0,0,1,0,P,0,0,ANonce,0, 0,0,DataKD_M1)

Where DataKD_M1 = 0 or PMKID for PTK generation, or PMKID KDE (for sending SMKID) for STK
generation
Message 2. Supplicant → Authenticator: EAPOL-Key(0,1,0,0,P, 0,0,SNonce,MIC, DataKD_M2 RSNIE,0)

Where DataKD_M2 = RSNIE for creating PTK generation or peer RSNIE, Lifetime KDE, SMKID KDE (
for sending SMKID) for STK generation
Message 3. Authenticator → Supplicant: EAPOL-Key(1,1,1,1,P, 0,KeyRSC,ANonce,MIC, RSNIE,GTK[N], DataKD_M3)

Where DataKD_M3 = RSNIE,GTK[N] for creating PTK generation or initiator RSNIE, Lifetime KDE for STK generation
Message 4. Supplicant → Authenticator: EAPOL-Key(1,1,0,0,P, 0,0,0,MIC, 0,0, DataKD_M4)

Where DataKD_M4 = 0

Here, the following assumptions apply:

· EAPOL-Key(⋅) denotes an EAPOL-Key frame conveying the specified argument list, using the

· notation introduced in 8.5.2.2.

· ANonce is a nonce the Authenticator contributes for PTK generation or the Initiator STA contributes for STK generation. ANonce has the same value in Message 1 and Message 3.

· SNonce is a nonce from the Supplicant for PTK generation or from the Peer STA for STK generation.

· P means the pairwise bit is set.

· The MIC is computed over the body of the EAPOL-Key frame (with the Key MIC field first zeroed before the computation) using the KCK defined in 8.5.1.2 for PTK generation or SKCK defined in 8.5.1.4.

· RSNIE represents the appropriate RSN information elements.

· GTK[N] represents the encapsulated GTK with its key identifier.

· SMKID represents the SMKID key identifier used during STK generation.

· Lifetime represents the expiry timeout used for exchanging SMK expiry value.

NOTE—While the MIC calculation is the same in each direction, the Key Ack bit is different in each direction. It is set in EAPOL-Key frames from the Authenticator and clear in EAPOL-Key frames from the Supplicant. 4-Way Handshake requests from the Supplicant have the Request bit set. The Authenticator and Supplicant must check these bits to stop reflection attacks. Message 1 contents must not update state, in particular the keys in use, until the data are validated with Message 3.
8.5.3.1 4-Way Handshake Message 1

Change section 8.5.3.1 as follows:

Message 1 uses the following values for each of the EAPOL-Key frame fields:

Descriptor Type = N – see 8.5.2

Key Information:

Key Descriptor Version = 1 (RC4 encryption with HMAC-MD5) or 2 (NIST AES key wrap with HMAC-SHA1-128)

Key Type = 1 (Pairwise)

SMK Message = 0

Install = 0

Key Ack = 1

Key MIC = 0

Secure = 0

Error = 0

Request = 0

Encrypted Key Data = 0

Reserved = 0 – unused by this protocol version

Key Length = Cipher-suite-specific; see Table 20f
Key Replay Counter = n – to allow Authenticator or initiator STA to match the right Message 2 from Supplicant or peer STA
Key Nonce = ANonce

EAPOL-Key IV = 0

Key RSC = 0

Key MIC = 0
Key Data Length = 22 length of Key Data field in octets.
Key Data = PMKID for the PMK being used during this exchangePTK generation or SMKID for SMK being used during STK generation.

Processing for PTK Generation as follows:

The Authenticator sends Message 1 to the Supplicant at the end of a successful IEEE 802.1X authentication, after PSK authentication is negotiated, when a cached PMKSA is used, or after a STA requests a new key. On reception of Message 1, the Supplicant determines whether the Key Replay Counter field value has been used before with the current PMKSA. If the Key Replay Counter field value is less than or equal to the current local value, the Supplicant discards the message. Otherwise, the Supplicant

a) Generates a new nonce SNonce.

b) Derives PTK.

c) Constructs Message 2.

Processing for STK Generation as follows:

The Initiator STA (STA I) sends Message 1 to the Peer STA (STA P) at the end of a successful SMK Handshake, when SMKSA is created. On reception of Message 1, the STA P determines whether the Key Replay Counter field value has been used before with the current SMKSA. If the Key Replay Counter field value is less than or equal to the current local value, the STA P discards the message. Otherwise, the STA P

a) Peer STA generates 256 bit random number which is sent as Peer Nonce as part Key Nonce field. This Nonce is different from peer Nonce generated as part SMK Handshake Message 3.

b) Derives STK.

c) Constructs Message 2.
8.5.3.2 4-Way Handshake Message 2
Change section 8.5.3.2 as follows:

Message 2 uses the following values for each of the EAPOL-Key frame fields:

Descriptor Type = N – see 8.5.2

Key Information:

Key Descriptor Version = 1 (RC4 encryption with HMAC-MD5) or 2 (NIST AES key wrap with HMAC-SHA1-128) – same as Message 1

Key Type = 1 (Pairwise) – same as Message 1

SMK Message = 0 – same as Message 1
Install = 0

Key Ack = 0

Key MIC = 1

Secure = 0 – same as Message 1

Error = 0 – same as Message 1

Request = 0 – same as Message 1

Encrypted Key Data = 0

Reserved = 0 – unused by this protocol version

Key Length = 0
Key Replay Counter = n – to let the Authenticator or Initiator STA know to which Message 1 this corresponds

Key Nonce = SNonce

EAPOL-Key IV = 0

Key RSC = 0
Key MIC = MIC(KCK, EAPOL) or MIC(SKCK, EAPOL) – MIC computed over the body of this EAPOL-Key frame with the Key MIC field first initialized to 0
Key Data Length = length in octets of included RSN information element length of Key Data field in octets
Key Data = RSN IE – the sending STA’s RSN IE for PTK generation or Peer RSN IE, Lifetime of SMK and SMKID for STK generation
The Supplicant sends Message 2 to the Authenticator.
Processing for PTK Generation as follows:
The Supplicant sends Message 2 to the Authenticator. On reception of Message 2, the Authenticator checks that the key replay counter corresponds to the outstanding Message 1. If not, it silently discards the message. Otherwise, the Authenticator

a) Derives PTK.

b) Verifies the Message 2 MIC.

a. If the calculated MIC does not match the MIC that the Supplicant included in the EAPOL-Key

c) frame, the Authenticator silently discards Message 2.

a. If the MIC is valid, the Authenticator checks that the RSN information element bit-wise matches that from the (Re)Association Request message.

i. If these are not exactly the same, the Authenticator uses MLME-DEAUTHENTICATE. request primitive to terminate the association.

ii. If they do match bit-wise, the Authenticator constructs Message 3.

Processing for STK Generation as follows:

The STA P sends Message 2 to the STA I. On reception of Message 2, the STA I checks that the key replay counter corresponds to Message 1. If not, it silently discards the message. Otherwise, the STA I

a) Derives STK.

b) Verifies the Message 2 MIC using SKCK key.

a. If the calculated MIC does not match the MIC that the STA_P included in the EAPOL-Key frame, the STA_I silently discards Message 2.

c) If the MIC is valid, the STA I checks that the RSN information element bit-wise matches that from the SMK Handshake Message 5. If these are not exactly the same, STA I silently discards the message and restarts 4-Way Handshake after deleting existing 4-Way handshake states.

d) If they do match bit-wise, the STA I checks SMKID with the value of SMKID in SMKSA. If these are not exactly the same, STA I silently discards the message and restarts 4-Way Handshake after deleting existing 4-Way handshake states.

If they do match, the STA I constructs Message 3. It also compares the Key Lifetime value from KDE with value in its SMKSA. If value in SMKSA is less, it discards the value received in Message 2, otherwise it updates the value in SMKSA with value in Message 2.
8.5.3.3 4-Way Handshake Message 3
Change section 8.5.3.3 as follows:

Message 3 uses the following values for each of the EAPOL-Key frame fields:

Descriptor Type = N – see 8.5.2

Key Information:

Key Descriptor Version = 1 (RC4 encryption with HMAC-MD5) or 2 (NIST AES key wrap with HMAC-SHA1-128) – same as Message 1

Key Type = 1 (Pairwise) – same as Message 1

SMK Message = 0 – same as Message 1
Install = 0/1 – for PTK generation, 0 only if the AP does not support key mapping keys, or if the STA has the No Pairwise bit (in the RSN Capabilities field) set and only the group key will be used. For STK generation, this bit is set to 1.
Key Ack = 1

Key MIC = 1

Secure = 1 (keys installed)

Error = 0 – same as Message 1

Request = 0 – same as Message 1

Encrypted Key Data = 1 for PTK generation, 0 for STK generation
Reserved = 0 – unused by this protocol version

Key Length = Cipher-suite-specific; see Table 20f

Key Replay Counter = n+1

Key Nonce = ANonce – same as Message 1

EAPOL-Key IV = 0 (Version 2) or random (Version 1)

Key RSC = for PTK generation, starting sequence number that the Authenticator’s STA will use in MPDUs protected by GTK. For STK generation, this is set to 0.
Key MIC = MIC(KCK, EAPOL) or MIC(SKCK, EAPOL)– MIC computed over the body of this EAPOL-Key frame with the Key MIC field first initialized to 0

Key Data Length = length of included RSN information elements and GTK Key Data field in octets
Key Data = for PTK generation the AP’s Beacon/Probe Response frame’s RSN information element, and, optionally, a second RSN information element that is the Authenticator’s pairwise cipher suite assignment, and, if a group cipher has been negotiated, the encapsulated GTK and the GTK’s key identifier (see 8.5.2). For STK generation Initiator RSN IE, Lifetime of SMK is used.
The Authenticator sends Message 3 to the Supplicant.

Processing for PTK Generation as follows:
The Authenticator sends Message 3 to the Supplicant. On reception of Message 3, the Supplicant silently discards the message if the Key Replay Counter field value has already been used or if the ANonce value in Message 3 differs from the ANonce value in Message 1. The Supplicant also

a) Verifies the RSN information element.

a. If it is not identical to that the STA received in the Beacon or Probe Response frame, the STA shall disassociate. If a second RSN information element is provided in the message, the Supplicant shall use the pairwise cipher suite specified in the second RSN information element or deauthenticate.

b. If the RSN information element is correct, the Supplicant proceeds to Step b.

b) Verifies the Message 3 MIC.

a. If the calculated MIC does not match the MIC that the Authenticator included in the EAPOLKey frame, the Supplicant silently discards Message 3.

b. Otherwise the Supplicant

i. Updates the last-seen value of the Key Replay Counter field.

ii. Constructs Message 4.

iii. Sends Message 4 to the Authenticator.

iv. Uses the MLME-SETKEYS.request primitive to configure the IEEE 802.11 MAC to send and receive Class 3 unicast MPDUs protected by the PTK. The GTK is also configured by MLME-SETKEYS primitive.

Processing for STK Generation as follows:
The STA I sends Message 3 to the STA P. On reception of Message 3, the STA_P silently discards the message if the Key Replay Counter field value has already been used or if the INonce value in Message 3 differs form the INonce value in Message 1. Otherwise, the STA P
a) Verifies the Message 3 MIC using SKCK key in SMKSA.

a. If the calculated MIC does not match the MIC that the STA_P included in the EAPOL-Key frame, the STA_I silently discards Message 3.

b) If the MIC is valid, the STA P checks that the RSN information element bit-wise matches that from the 5-Way Handshake Message 2. If these are not exactly the same, STA P silently discards the message and deletes existing 4-Way handshake states.

If they do match, the STA P constructs Message 4. It also compares the Key Lifetime value from KDE with value in its SMKSA. If value in SMKSA is less, it discards the value received in Message 3, otherwise it updates the value in SMKSA with value in Message 3.
8.5.3.4 4-Way Handshake Message 4
Change section 8.5.3.4 as follows:

Message 4 uses the following values for each of the EAPOL-Key frame fields:

Descriptor Type = N – see 8.5.2

Key Information:

Key Descriptor Version = 1 (RC4 encryption with HMAC-MD5) or 2 (NIST AES key wrap with HMAC-SHA1-128) – same as Message 1

Key Type = 1 (Pairwise) – same as Message 1

SMK Message = 0 – same as Message 1
Install = 0

Key Ack = 0 – this is the last message

Key MIC = 1

Secure = 1

Error = 0

Request = 0

Encrypted Key Data = 0

Reserved = 0 – unused by this protocol version

Key Length = 0

Key Replay Counter = n+1

Key Nonce = 0

EAPOL-Key IV = 0

Key RSC = 0

Key MIC = MIC(KCK, EAPOL) or MIC(SKCK, EAPOL) – MIC computed over the body of this EAPOL-Key frame with the

Key MIC field first initialized to 0

Key Data Length = 0length of Key Data field in octets
Key Data = none required
The Supplicant sends Message 4 to the Authenticator. Note that when the 4-Way Handshake is first used,

Message 4 is sent in the clear.

Processing for PTK Generation as follows:
The Supplicant sends Message 4 to the Authenticator. Note that when the 4-Way Handshake is first used,

Message 4 is sent in the clear. On reception of Message 4, the Authenticator verifies that the Key Replay Counter field value is one that it used on this 4-Way Handshake; if it is not, it silently discards the message. Otherwise, the Authenticator

a) Checks the MIC.

a. If the calculated MIC does not match the MIC that the Supplicant included in the EAPOL-Key frame, the Authenticator silently discards Message 4.

b. If the MIC is valid, the Authenticator uses the MLME-SETKEYS.request primitive to configure the PTK into the IEEE 802.11 MAC.

b) Updates the Key Replay Counter field, so that it will use a fresh value if a rekey becomes necessary.
Processing for STK Generation as follows:
The STA P sends Message 4 to the STA I. On reception of Message 4, the STA I verifies that the Key Replay Counter field value is one that it used on this 4-Way Handshake; if it is not, it silently discards the message. Otherwise, the STA I

a) Checks the MIC.
a. If the calculated MIC does not match the MIC that the STA P included in the EAPOL-Key frame, the STA I silently discards Message 4.
b. If the MIC is valid, the STA I configures the STK into the IEEE 802.11 MAC.
b) Updates the Key Replay Counter field, so that it will use a fresh value if a rekey becomes necessary.
8.5.3.5 4-Way Handshake implementation considerations
Change section 8.5.3.5 as follows:

When 4-Way handshake is used as part of STK handshake, Initiator STA acts as Authenticator and Peer STA acts as Supplicant.

If the Authenticator does not receive a reply to its messages, it shall attempt dott11RSNAConfigPairwiseUpdateCount transmits of the message, plus a final timeout. The retransmit timeout value shall be 100 ms for the first timeout, half the listen interval for the second timeout, and the listen interval for subsequent timeouts. If there is no listen interval, then 100 ms shall be used for all timeout values. If it still has not received a response after these retries, then for PTK generation the Authenticator should deauthenticate the STA or for STK generation the STAs should delete SMKSA and their initiate an STSL teardown.
For PTK generation, Iif the STA does not receive Message 1 within the expected time interval (prior to IEEE 802.1X timeout), it should disassociate, deauthenticate, and try another AP/STA.

For STK generation, if the Peer STA does not receive Message 1 or Message 3 within the expected time interval (prior to dot11RSNAConfigSATimeout as specified in section 8.5.9), it shall delete SMKSA and invoke an STSL Teardown.

The Authenticator should ignore EAPOL-Key frames it is not expecting in reply to messages it has sent or EAPOL-Key frames with the Ack bit set. This stops an attacker from sending the first message to the Supplicant who responds to the Authenticator.

An implementation should save the KCK and KEK beyond the 4-Way Handshake, as they are needed by the Group Key Handshake, STK Rekeying and to recover from TKIP MIC failures.

The Supplicant uses the MLME-SETKEYS.request primitive to configure the temporal key from 8.5.1 into its STA after sending Message 4 to the Authenticator.

NOTES

a) If the RSN information element check for Message 2 or Message 3 fails, IEEE 802.1X should log an error and deauthenticate the peer.
b) The Supplicant should check that if the RSN information element specified a pairwise cipher suite, then the 4-Way handshake did specify to configure the temporal key portion of the PTK into the IEEE 802.11 STA.
8.5.3.6 Sample 4-Way Handshake (informative)
UpdateFigure 115 as follows:

[image: image8.emf]802.11 Station

802.1X Supplicant

802.11 Access Point

802.1X Authenticator

SNonce = Random ANonce = Random

EAPOL-Key(0,0,1,0,P,0,0,ANonce, 0,0)

Calculate PTK using ANonce and SNonce

Calculate PTK using ANonce and SNonce

EAPOL-Key(0,1,0,0,P,0,0,SNonce,MIC,RSNIE)

Set Temporal Encryption and MIC Keys

Set Temporal Encryption and MIC Keys

Set GTK for KeyID

EAPOL-Key(1,1,1,1,P,0,Key RSC, Anonce, MIC, RSNIE, GTK[KeyID])

EAPOL-Key(1,1,0,0,P,0,0,0,MIC, 0)

Figure 115—Sample 4-Way Handshake

8.5.4 Group Key Handshake

Change section 8.5.4 as follows:

Message 1: Authenticator -> Supplicant: EAPOL-Key(1,1,1,0,G, 0,KeyRSC,0,MIC,0,GTK[N])

Message 2: Supplicant -> Authenticator: EAPOL-Key(1,1,0,0,G, 0,0,0,MIC,0,0)
8.5.4.1 Group Key Handshake Message 1
Update following line and insert next line after that in section 8.5.4.1 as follows:

Key Type = 0 (Group/STAKey/SMK)

SMK Message = 0
8.5.4.2 Group Key Handshake Message 2

Update following line and insert next line after that in section 8.5.4.2 as follows:

Key Type = 0 (Group/STAKey/SMK)
SMK Message = 0
8.5.4.4 Sample Group Key Handshake (informative)

UpdateFigure 43ad as follows:

[image: image9.emf]802.11 Station

802.1X Supplicant

802.11 Access Point

802.1X Authenticator

Gnonce=Get Next

Key Counter

EAPOL-Key(1,1,1,0,G,0,Key RSC,0, MIC,GTK[KeyID])

Decrypt GTK

Set in Key ID

Set GTK in Key ID

EAPOL-Key(1,1,0,0,G,0,0,0,MIC,0)

Figure 116—Sample Group Key Handshake

8.5.5 STAKey Handshake
Delete Clause 8.5.5.
8.5.6 RSNA Supplicant key management state machine

Update text in Clause 8.5.6 as follows:

The Supplicant shall reinitialize the Supplicant state machine whenever its system initializes. A Supplicant enters the AUTHENTICATION state on an event from the MAC that requests another STA to be authenticated. A Supplicant enters the STAKEYSTART state on receiving an EAPOL-Key frame from the Authenticator. If the MIC or any of the EAPOL-Key frames fails, the Supplicant silently discards the frame. At this point Supplicant also enters PeerKeyInit state for enabling PeerKey Handshake.
Figure 117 depicts the Supplicant state machine.:
Update Figure 117 in Clause 8.5.6 as follows:

[image: image10.emf]keycount = 0

Init = FALSE

DeauthenticationRequest = FALSE

MSK = 0

802.1X::portEnable = FALSE

MLME-DeleteKeys.Request(PTK)

MLME-DeleteKeys.Request(GTK[0...N])

802.1X::portValid = FALSE

INITIALIZE

AuthenticationRequest = FALSE

Snonce = Counter++

PTK = GTK[0..N] = 0

802.1X::portValid = FALSE

802.1X::portControl = Auto

802.1X::portEnable = TRUE

AUTHENTICATION

DeautheticationRequest || Init

AuthenticationRequest

AuthenticationFailed = FALSE

StaDisconnect ()

DISCONNECTED

UCT

AuthenticationFailed

dot11RSNAConfigSALifetime timeout

PeerKeyInit

Figure 117—RSNA Supplicant key management state machine
8.5.6.1 Supplicant state machine states

Updated Clause 8.5.6.1 as follows:

— STAKEYSTART: A STA’s Supplicant enters this state when it receives an EAPOL-Key frame. All the information to process the EAPOL-Key frame is in the message and is described in the StaProcessEAPOL-Key procedure.

8.5.6.2 Supplicant state machine variables
Add following text at the end of Clause 8.5.6.2 as follows:

· PeerKeyInit – This variable is used to initialize the PeerKey state machine.

· TimeoutEvt – This variable is set to TRUE if the EAPOL-Key frame sent out fails to obtain a response from the other Supplicant. The variable may be set by management action or set by the operation of a timeout while in the different states.

· TimeoutCtr – This variable maintains the count of EAPOL-Key receive timeouts. It is incremented each time a timeout occurs on EAPOL-Key receive event and is initialized to 0. Annex D contains details of the timeout values. The Key Replay Counter field value for the EAPOL-Key frame shall be incremented on each transmission of the EAPOL-Key frame.

· MICVerified – This variable is set to TRUE if the MIC on the received EAPOL-Key frame is verified and is correct. Any EAPOL-Key frames with an invalid MIC will be dropped and ignored.

· SMKMesgNo – This variable indicates SMK Handshake EAPOL-Key frame types. Details for each message type (1-5) is provided in 8.5.9.

· STKMesgNo – This variable indicates STK 4-Way Handshake EAPOL-Key frame types. Details for each message type (1-4) are provided in 8.5.3.

· STA_P – This variable indicates MAC address of Peer STA participating in PeerKey Handshake.

· STA_I – This variable indicates MAC address of Initiator STA participating in PeerKey Handshake.

· STKKey – STK Key generated as a result of STK 4-Way Handshake.

8.5.6 RSNA Supplicant key management state machine

8.5.6.3 Supplicant state machine procedures
Updated Clause 8.5.6.3 as follows:

else if KeyData = STAKey then // STAKey

if State = MICOK then

if (SK ← Decrypt SK) succeeds then

if MLME-SETKEYS.request(0, 1, RSC, SK) fails then

invoke MLMEDEAUTHENTICATE.request

endif

else

State ← FAILED

endif

else

State ← FAILED

endif

endif
Add following text and Figure 113a at the end of Clause 8.5.6.3 as follows:

8.5.6.4 Supplicant PeerKey state machine procedures

[image: image11.emf]STKINIT

TimeoutCtr=0

SMKNEGOTIATING1

Send EAPOL(SMKMesgNo = 1)

TimeoutCtr++

MLME-PeerKeySTART

.request(STA_P, RSNIE)

SMKNEGOTIATING2

Send EAPOL(SMKMesgNo = 3)

EAPOLKeyReceived &&

SMKMesgNo == 2 &&

MICVerified

SMKNEGOTIATING3

Install SMKSA

TimeoutCtr=0

EAPOLKeyReceived &&

SMKMesgNo == 5 &&

MICVerified

EAPOLKeyReceived &&

SMKMesgNo == 4 &&

MICVerified

SMKNEGOTIATING4

Install SMKSA

STKSTART

Send EAPOL(STKMesgNo = 1)

TimeoutCtr++

STKCALCNEGOTIATING

STKKey= Calc STK(INonce, PNonce)

TimeoutCtr = 0

UCT

EAPOLKeyReceived &&

STKMesgNo == 2 &&

MICVerified

STKCALCNEGOTIATING1

STKKey= Calc STK(INonce,

PNonce)

EAPOLKeyReceived &&

STKMesgNo == 1

STAKCALNEGOTIATING2

Send EAPOL(STKMesgNo = 3)

TimeoutCtr++

UCT

STKINITDONE

If (Initiator STA)

MLME-SETKEYS.request(STKKey, length, 0, STA_P, 0, Initiator, RSNIE)

MLME-SETPROTECTION.request(STA_P, Rx_Tx, STK)

Else

MLME-SETKEYS.request(STKKey, length, 0, STA_I, 0, Peer, RSNIE)

MLME-SETPROTECTION.request(STA_I, Rx_Tx, STK)

EAPOLKeyReceived &&

STKMesgNo == 4 &&

MICVerified

STKCALNEGOTIATING3

Send EAPOL(STKMesgNo = 2)

UCT

EAPOLKeyReceived &&

STKMesgNo == 3 &&

MICVerified

STKCALNEGOTIATING4

Send EAPOL(STKMesgNo = 4)

UCT

PeerKeyInit

TimeoutCtr>N

to StkInit

TimeoutEvt

TimeoutCtr>N

to StkInit

TimeoutEvt

TimeoutCtr>N

to StkInit

TimeoutEvt

Figure 117a—PeerKey Handshake Supplicant key management state machine
The following list summarizes the states the supplicant state machine uses to support the PeerKey Handshake:

· STKINIT: This state idle state and is entered when the IEEE 802.1X Supplicant completes successful Authentication. This state can be repeated multiple times once for each direct link.

· SMKNEGOTIATING1: This state is entered when MLME-STKSTART.Request message is received for SMK Handshake by Initiator STA.

· SMKNEGOTIATING2: This state is entered when first EAPOL-Key frame for SMK Handshake by Peer STA.

· SMKNEGOTIATING3: This state is entered when fifth EAPOL-Key frame for SMK Handshake by Initiator STA.

· SMKNEGOTIATING4: This state is entered when fourth EAPOL-Key frame for SMK Handshake by Peer STA.

· STKSTART: Once SMKSA is created, Initiator STA is entered this state. This is the start of STK 4-Way Handshake state.

· STKCALCNEGOTING: This state is entered when second EAPOL-Key frame for STK 4-Way Handshake is received by Initiator STA and Mic is verified.

· STKCALCNEGOTING1: This state is entered when first EAPOL-Key frame for STK 4-Way Handshake is received by Peer and Mic is verified.

· STKCALCNEGOTING2: This state is entered when using the information in second EAPOL-Key frame Initiator STA generates STKKey.

· STKCALCNEGOTING3: This state is entered when using the information in first EAPOL-Key frame Peer STA generates STKKey.

· STKCALCNEGOTING4: This state is entered when third EAPOL-Key frame for STK 4-Way Handshake is received by Peer and Mic is verified.
· STKINITDONE: This state is entered when fourth EAPOL-Key frame for STK 4-Way Handshake is received by Initiator STA or fourth EAPOL-Key frame is sent by Peer STA.

8.5.6.3 Supplicant state machine procedures

Change section 8.5.6.3 as follows:

If A=1 && State != Failed then

Send EAPOL-Key(0,1,0,0,K, 0,0,TSNonce,0,0,MIC(TPTK),RSNIE,0)

endif
8.5.7 RSNA Authenticator key management state machine

Updated text in 6th paragraph in Clause 8.5.7 as follows:

Both the PTK state machine and the PTK group key state machine use received EAPOL-Key frames as an event to change states. The PTK state machine only uses EAPOL-Key frames with the Key Type field set to Pairwise, and the PTK group key state machine only uses EAPOL-Key frames with the Key Type field set to Group/STAKey.

8.5.7.1.2 Authenticator state machine: Group Key Handshake (per STA)

Updated text in Clause 8.5.7.1.2 as follows:

— REKEYESTABLISHED: This state is entered when an EAPOL-Key frame is received from the Supplicant with the Key Type subfield set to Group/STAKey.

Change Figure 118 in Clause 8.5.7 as follows:

[image: image12.emf]Send EAPOL (0, 0, 1, 0, P

,

0, ANonce, 0, 0)

TimeoutCtr++

PTKSTART

Send EAPOL (1, 1, 1, Pair, P, RSC, ANonce, MIC (PTK), RSNIE, GTK [GN])

TimeoutCtr++

PTKINITNEGOTIATING

TimeoutEvt

EAPOLKeyReceived&&

!Request&&K== Pairwise

Anonce = Counter++

ReAuthenticationRequest = FALSE

AUTHENTICATION2

PMK=

L(AAA Key, 0,

256)

INITPMK

! PSK&&

802.1X::keyRun

if Pair

==

TRUE

MLME-SetKeys.Request (0, Tx/Rx, PTK)

MLME-SetProtection.Request (TA, Tx, Rx)

.

if IBSS== TRUE then

keycount++

if keycount==2then

802.1X::PortValid = TRUE

else

802.1X::PortValid = TRUE

endif

802.1X::keyDone = TRUE

PTKINITDONE

EAPOLKeyReceived

&&!Request

&&K== Pairwise

&& MICVerified

TimeoutEvt

PMK=PSK

INITPSK

PSK&&

802.1X::keyRun

TimeoutCtr>N

GNoStations++

PTK = 0

802.1X::portControl = Auto

802.1X::portEnable = TRUE

AuthenticationRequest = FALSE

AUTHENTICATION

AuthenticationRequest

UCT

ReAuthenticationRequest

! 802.1X::keyAvailable

802.1X::keyAvailable

TimeoutCtr>N

PTK= Calc PTK(ANonce,SNonce)

PTKCALCNEGOTIATING

MICVerified

EAPOLKeyReceived &&

!Request&&K== Pairwise

802.1X::keyAvailable

to DISCONNECT

to DISCONNECT

to KEYERROR

TimeoutCtr=0

PTKCALCNEGOTIATING2

TimeoutEvt

UCT

0,

0,

Figure 118—Authenticator state machines, part 1
Change Figure 120 in Clause 8.5.7 as follows:

[image: image13.emf]GUpdateStationKeys=FALSE

Send EAPOL(1,1,1,!Pair,G RSC,GNonce,MIC(PTK),GTK[GN])

GTimeoutCtr++

REKEYNEGOTIATING

GKeyDoneStations

–-

MLME-SetProtection.Request(TA,Tx_Rx)

REKEYESTABLISHED

EAPOLKeyReceived&&!Request

&&K==Group&& MICVerified

TimeoutEvt

GUpdateStationKeys

GKeyDoneStations—

Disconnect = TRUE

KEYERROR

GTimeoutCtr

>N

GTimeoutCtr = 0

IDLE

Init

UCT

UCT

GUpdateStationKeys=FALSE

0,

,

Figure 120—Authenticator state machines, part 3
8.5.7.2 Authenticator state machine variables

Updated text in Clause 8.5.7.2 as follows:

2—EAPOL-Key frames with a key type of Group/STAKey and an invalid key index should be ignored.
Add the following text at end of Clause 8.5.8:
8.5.9 PeerKey Handshake

The PeerKey handshake occurs after any other STSL setup procedures and is used to create an STKSA providing data confidentiality between the two STAs. The AP must establish an RSNA with each STA prior to PeerKey setup. The initiator STA starts the PeerKey handshake, providing the key to use for securing the connection.

STA to STA link security PeerKey handshake is used to establish security for data frames passed directly between two STAs associated with the same AP. The AP must establish an RSNA with each STA prior to the PeerKey Handshake. After the STAs establish the STA to STA link (STSL), the initiator STA starts PeerKey handshake, providing the key to use for securing the connection. This PeerKey handshake is used to create a STKSA between the two STAs.

The PeerKey EAPOL-Key exchange provides a mechanism for obtaining the keys to be used for direct

STA-to-STA communication. Initiator STA shall start a timer when it sends first EAPOL-Key message and peer STA shall do the same on receiving of first EAPOL-Key message. On expiration of this timer, STAs shall delete its PeerKey handshake states and discard any message arrived for that session (after expiry).
A STA should use PeerKey handshake prior to transferring any direct STA-to-STA data frames. The STKSA should be deleted when the STA to STA connection is terminated.

Here, the following assumptions apply:

· EAPOL-Key(⋅) denotes an EAPOL-Key frame conveying the specified argument list, using the notation introduced in 8.5.2.2

· STA I is the initiator STA

· STA P is the peer STA

· AP is the access point with whom both I and P are associated

· MAC I is the STA I’s MAC address

· MAC P is the STA P’s MAC address

· INonce is the nonce generated by STA I

· PNonce is the nonce generated by STA P

Complete handshake has two key parts,

a) SMK Handshake: This handshake is initiated by initiator STA and as a result of this handshake SMKSA gets installed in both the STAs. This message exchange goes through the AP and is protected using PTK.
b) 4-Way STK Handshake: Using the installed SMKSA initiator STA initiates 4-way handshake (as per 8.5.3.4) and as a result of this STKSA gets installed in both the STAs. STKSA is used for securing data exchange between initiator STA and peer STA.

8.5.9.1 SMK Handshake

Initiator STA initiate the SMK Handshake by sending first message to the AP to establish a SMKSA between itself and another STA associated with the same AP. Unlike the 4-Way Handshake and Group Key Handshake, the SMK Handshake is initiated by the initiator STA.

Message 1: Initiator STA (AP

EAPOL-Key(1,1,0,0,0,1,0, INonce, MIC, RSNIE_I, MAC_P KDE)

Message 2: AP (Peer STA

EAPOL-Key(1,1,1,0,0,1,0, INonce, MIC, RSNIE_I, MAC_I KDE)

Message 3: Peer STA (AP

EAPOL-Key(1,1,0,0,0,1,0, PNonce, MIC, RSNIE_P, MAC_I KDE, INonce KDE)

Message 4: AP (Peer STA

EAPOL-Key(1,1,0,1,0,1,0, PNonce, MIC, MAC_I KDE, INonce KDE, SMK KDE, Lifetime KDE)

Message 5: AP (Initiator STA

EAPOL-Key(1,1,0,0,0,1,0, INonce, MIC, RSNIE_P, MAC_P KDE, PNonce KDE, SMK KDE, Lifetime KDE)
8.5.9.1.1 SMK Handshake Message 1

Initiator STA shall create RSNIE (see 7.3.2.25) by filling the element id (fixed hex 30), length, version,(1), and pairwise cipher suite list field. Since group cipher suit field is before pairwise cipher suite list field (so STA needs to fill it), STA shall fill this field with any value and on the other side STA processing this field shall ignore it. Initiator STA also generates 256 bit random number which is sent in Key Nonce field.
The Message 1 message uses the following values for each of the EAPOL-Key frame fields:

Descriptor Type = N – see 8.5.2

Key Information:

Key Descriptor Version = 1 (RC4 encryption with HMAC-MD5) or 2 (NIST AES key wrap with HMAC-SHA1-128)

Key Type = 0 (Group/SMK)

SMK Message = 1 (SMK)

Install = 0

Key Ack = 0

Key MIC = 1

Secure = 1

Error = 0

Request = 1
Encrypted Key Data = 0

Reserved = 0

Key Length = 0

Key Replay Counter = request EAPOL replay counter of initiating STA

Key Nonce = INonce
EAPOL-Key IV = 0

Key RSC = 0

Key MIC = MIC(initiating STA’s KCK, EAPOL)

Key Data Length = Length of Key Data field in octets

Key Data =Initiator RSNIE, peer MAC address KDE
The STA I sends Message 1 to the AP.

On reception of Message 1, the AP checks that the key replay counter corresponds to Message 1. If not, it silently discards the message. Otherwise, the AP
a) Verifies the Message 1 MIC using STA I PTKSA
a. If the calculated MIC does not match the MIC that the STA included in the EAPOL-Key frame, the AP silently discards Message 1.

b) If MIC is correct AP checks,

a. If STA P is reachable. If it’s not reachable, AP shall send error EAPOL_Key message to STA I as per 8.5.9.5.1. After sending the message AP silently discards Message 1.
b. If AP have secure connection with STA P. If its not, AP shall send error EAPOL_Key message to STA I as per 8.5.9.5.2. After sending the message AP silently discards Message 1.
c) If all check succeeds, AP creates Message 2 using STA P PTKSA. AP copies the content of message 1 to create message 2.
8.5.9.1.2 SMK Handshake Message 2

The Message 2 message uses the following values for each of the EAPOL-Key frame fields:

Descriptor Type = N – see 8.5.2

Key Information:

Key Descriptor Version = 1 (RC4 encryption with HMAC-MD5) or 2 (NIST AES key wrap with HMAC-SHA1-128)

Key Type = 0 (Group/SMK)

SMK Message = 1 (SMK)

Install = 0

Key Ack = 1
Key MIC = 1

Secure = 1

Error = 0

Request = 0

Encrypted Key Data = 0

Reserved = 0

Key Length = 0

Key Replay Counter = request EAPOL replay counter of AP and peer STA
Key Nonce = INonce
EAPOL-Key IV = 0

Key RSC = 0

Key MIC = MIC(peer STA’s KCK, EAPOL)

Key Data Length = Length of Key Data field in octets

Key Data =Initiator RSNIE, initiator MAC address KDE

The AP sends Message 2 to the STA P.

On reception of Message 2, the STA P checks that the key replay counter corresponds to Message 2. If not, it silently discards the message. Otherwise, the STA P
a) Verifies the Message 2 MIC using STA P PTKSA

a. If the calculated MIC does not match the MIC that the STA included in the EAPOL-Key frame, the AP silently discards Message 2.
b) If MIC is correct AP checks,

a. If STA P supports at least one ciphersutes proposed by STA I. If it doesn’t support any of ciphersuites, STA P shall send error EAPOL_Key message to STA I (through AP) as per 8.5.9.5.3. After sending the message STA P silently discards Message 2.

b. If STA P already has created STSL with STA I. If its not, STA P shall send error EAPOL_Key message to STA I (through AP) as per 8.5.9.5.4. After sending the message STA P silently discards Message 2.
c) If all checks succeed,
a. STA P creates state of PeerKey handshake and stores initiator Nonce and RSNIE received in Message 2.
b. STA P selects one of the ciphersuite from the ciphersuite list and creates peer RSNIE, which is sent with Message 3.

c. STA P also generates 256 bit random number which is sent as peer Nonce KDE, which is sent with Message 3.
d) Using all the information, STA P creates Message 3.
8.5.9.1.3 SMK Handshake Message 3

The Message 3 message uses the following values for each of the EAPOL-Key frame fields:

Descriptor Type = N – see 8.5.2

Key Information:

Key Descriptor Version = 1 (RC4 encryption with HMAC-MD5) or 2 (NIST AES key wrap with HMAC-SHA1-128)

Key Type = 0 (Group/SMK)

SMK Message = 1 (SMK)

Install = 0

Key Ack = 0
Key MIC = 1

Secure = 1

Error = 0

Request = 0

Encrypted Key Data = 0

Reserved = 0

Key Length = 0

Key Replay Counter = request EAPOL replay counter of peer STA
Key Nonce = PNonce
EAPOL-Key IV = 0

Key RSC = 0

Key MIC = MIC(initiating STA’s KCK, EAPOL)

Key Data Length = Length of Key Data field in octets

Key Data =Peer RSNIE, initiator MAC address KDE, initiator Nonce KDE
The STA P sends Message 3 to the AP. On reception of Message 3, the AP checks that the key replay counter corresponds to Message 3. If not, it silently discards the message. Otherwise, the AP

a) Verifies the Message 1 MIC using STA I PTKSA

a. If the calculated MIC does not match the MIC that the STA included in the EAPOL-Key frame, the AP silently discards Message 1.

b) If MIC is correct AP checks,

a. If STA I is reachable. If it’s not reachable, AP shall send error EAPOL_Key message to STA P as per 8.5.9.5.1. After sending the message AP silently discards Message 3.

b. If AP have secure connection with STA I. If its not, AP shall send error EAPOL_Key message to STA P as per 8.5.9.5.2. After sending the message AP silently discards Message 3.
c) If all checks succeed,

a. AP generates 256 bit random number which is used as the STSL Master Key (SMK), which is sent with Message 4 and Message 5 as SMK KDE.
b. Depending on the strength of random number generator AP sets lifetime of SMK, which is sent with Message 4 and Message 5 as Lifetime KDE.

d) Using all the information, AP creates Message 4 and Message 5.

8.5.9.1.4 SMK Handshake Message 4

The Message 4 message uses the following values for each of the EAPOL-Key frame fields:

Descriptor Type = N – see 8.5.2

Key Information:

Key Descriptor Version = 1 (RC4 encryption with HMAC-MD5) or 2 (NIST AES key wrap with HMAC-SHA1-128)

Key Type = 0 (Group/SMK)

SMK Message = 1 (SMK)

Install = 1
Key Ack = 0

Key MIC = 1

Secure = 1

Error = 0

Request = 0

Encrypted Key Data = 1
Reserved = 0

Key Length = Cipher-suite-specific; see Table 20f
Key Replay Counter = request EAPOL replay counter of AP

Key Nonce = PNonce
EAPOL-Key IV = 0

Key RSC = 0

Key MIC = MIC(initiating STA’s KCK, EAPOL)

Key Data Length = Length of Key Data field in octets

Key Data = Encrypted initiator MAC address KDE, INonce KDE, SMK KDE (contains SMK and PNonce), Lifetime KDE
The AP sends Message 4 to the STA P. On reception of Message 4, the STA P checks that the key replay counter corresponds to Message 4. If not, it silently discards the message. Otherwise, the STA P
a) Verifies the Message 4 MIC using STA P PTKSA

a. If the calculated MIC does not match the MIC that the STA included in the EAPOL-Key frame, the AP silently discards Message 4.

b) If MIC is correct AP checks,

a. STA P identifies the PeerKey session using peer Nonce sent as part of Key Nonce field of Message 4. If STA P has existing PeerKey state for this session i.e. STA P received message 2 before and this message is follow up to that. If it not, STAP P shall silently discard Message 4.
c) If all checks succeed,

a. STA P decrypts Key data field of message and extracts MAC_I, INonce, PNonce, SMK and Lifetime from Message 4. STA P verifies extracted INonce against the INonce originally received as part of Message 2.
b. STA P calculates SMKID as per 8.5.1.4.

c. STA P checks the value of Lifetime with the Maximum value it can support. If Lifetime suggested by AP is too long, STA P chooses the lower value which it can support.

d) Using all the information, STA P creates SMKSA for this PeerKey session.
8.5.9.1.5 SMK Handshake Message 5

The Message 5 message uses the following values for each of the EAPOL-Key frame fields:

Descriptor Type = N – see 8.5.2

Key Information:

Key Descriptor Version = 1 (RC4 encryption with HMAC-MD5) or 2 (NIST AES key wrap with HMAC-SHA1-128)

Key Type = 0 (Group/SMK)

SMK Message = 1 (SMK)

Install = 0

Key Ack = 0

Key MIC = 1

Secure = 1

Error = 0

Request = 0

Encrypted Key Data = 1

Reserved = 0

Key Length = Cipher-suite-specific; see Table 20f

Key Replay Counter = request EAPOL replay counter of AP

Key Nonce = INonce

EAPOL-Key IV = 0

Key RSC = 0

Key MIC = MIC(initiating STA’s KCK, EAPOL)

Key Data Length = Length of Key Data field in octets

Key Data = Encrypted peer RSNIE, peer MAC address KDE, peer Nonce KDE, SMK KDE(contains SMK and INonce), Lifetime KDE

The AP sends Message 5 to the STA I. On reception of Message 5, the STA I checks that the key replay counter corresponds to Message 5. If not, it silently discards the message. Otherwise, the STA I
a) Verifies the Message 4 MIC using STA P PTKSA

a. If the calculated MIC does not match the MIC that the STA included in the EAPOL-Key frame, the AP silently discards Message 5.

b) If MIC is correct AP checks,

a. STA I identifies the PeerKey session using initiator Nonce sent as part of Key Nonce field of Message 5. If STA I has existing PeerKey state for this session i.e. STA I initiate this message exchange using Message 1 before and this message is follow up to that. If it not, STAP I shall silently discard Message 5.

c) If all checks succeed,

a. STA I decrypts Key data field of message and extracts peer RSNIE, MAC_P, INonce, PNonce, SMK and Lifetime from Message 5.
b. Verify that peer RSNIE includes a valid cipher (i.e., one that was included in initiator RSNIE); if not, discard message and send Error KDE ERR_CPHR_NS.
c. STA I calculates SMKID as per 8.5.1.4.

d. STA I checks the value of Lifetime with the Maximum value it can support. If Lifetime suggested by AP is too long, STA I choose the lower value which it can support.

d) Using all the information, STA I creates SMKSA for this PeerKey session.
8.5.9.3 PeerKey Setup/Handshake Error Conditions

If the peer STA does not receive a valid SMK Message 2 or 4-Way STK Message 1 after sending EAPOL request message to initiate PeerKey rekey within a 200 millisecond timeout, the peer STA shall invoke an STSL Teardown.
If the initiating STA does not receive SMK Message 5 from the AP, it shall attempt dot11RSNAConfigSMKUpdateCount transmits of SMK handshake Message 1, plus a final timeout. If it still has not received a response after these retries, the initiating STA shall send an STSL teardown message to the AP. The retransmit timeout value shall be 200 milliseconds for the first timeout, the listen interval for the second timeout, and twice the listen interval for subsequent timeouts. If there is no listen interval then 200 milliseconds shall be used for all timeout values.

There is no specific recovery mechanism on the part of the AP if SMK message 3 is dropped. This will result in a timeout on STA I after non-receipt of SMK Message 5 as indicated above.

If SMK Message 4 is not received by STA P, the failure will be detected during the 4-Way STK Handshake. In this case STA P will discard EAPOL Key Messages without the proper key. This failure is covered in section 8.5.3.5 and will result in teardown of the STSL.
Upon receipt of SMK Message 5, the initiating STA will transmit Message 1 of the 4-Way STK Handshake to the Peer STA. If the initiating STA does does not receive Message 2 of the 4-Way STK Handshake from the Peer STA, it shall attempt dot11RSNAConfigSMKUpdateCount transmits of 4-Way STK Handshake Message 1, plus a final timeout. If it still has not received a response after these retries, the initiating STA shall send an STSL teardown message to the AP. The retransmit timeout value shall be 100 milliseconds for the first timeout, half the listen interval for the second timeout, and the listen interval for subsequent timeouts. If there is no listen interval then 100 milliseconds shall be used for all timeout values.

Note: There is no specific recovery mechanism on the part of the Peer STA if SMK Message 3 is lost. This will result in a timeout on the initiating STA as indicated in clause 1 above, and a subsequent re-initiation of the SMK Handshake. The Peer STA shall allow re-initiation of the SMK handshake at any point prior to receipt of SMK Message 4.

8.5.9.4 STKSA Rekeying

Rekeying is always initiated by STA I (initiator STA). If STA P (peer STA) wants to initiate rekeying, it will send an EAPOL request message to STA I to start the rekeying. STA P shall wait a minimum of one half the IEEE 802.1X timeout after the STSL setup before initiating a PeerKey rekey. To perform rekeying, there are two cases facing STA I and STA P:

If SMK timer has not expired, STAs will initiate 4-way handshake to create new STK. 4-way handshake is always initiated by STA I. In this case, STA P should not delete any existing STKSA prior to verifying Message 3 of the 4-Way Handshake with STA I for this session.

If the SMK has expired, STA I will start from scratch and start the SMK handshake followed by 4-way handshake to create new keys.

Format of EAPOL-Key request message in case 1 from STA P to STA I as follows,
Request Message: Peer STA (Initiator STA

EAPOL-Key(1,1,0,0,1,0,0,0, MIC, PMKID KDE)

The request message uses the following values for each of the EAPOL-Key frame fields:

Descriptor Type = N – see 8.5.2

Key Information:

Key Descriptor Version = 1 (RC4 encryption with HMAC-MD5) or 2 (NIST AES key wrap with HMAC-SHA1-128)

Key Type = 1 (PTK)

SMK Message = 0

Install = 0

Key Ack = 0

Key MIC = 1

Secure = 1

Error = 0

Request = 1

Encrypted Key Data = 0

Reserved = 0

Key Length = 0

Key Replay Counter = request replay counter of peer STA

Key Nonce = 0

EAPOL-Key IV = 0

Key RSC = 0

Key MIC = MIC computed over the body of this EAPOL-Key frame

Key Data Length = Length of Key Data field in octets

Key Data = SMKID in SMKID KDE
8.5.9.5 Error Reporting

Error reporting messages are used to report errors whenever STAs or AP detect error during SMK Handshake.
Format of EAPOL-Key request message in for reporting Error Message as follows,

Error Message:

EAPOL-Key(1,1,0,0,0,1,0, 0, MIC, Error KDE, MAC Address KDE)

The request message uses the following values for each of the EAPOL-Key frame fields:

Descriptor Type = N – see 8.5.2

Key Information:

Key Descriptor Version = 1 (RC4 encryption with HMAC-MD5) or 2 (NIST AES key wrap with HMAC-SHA1-128)

Key Type = 0 (Group/SMK)
SMK Message = 1 (SMK)
Install = 0

Key Ack = 0

Key MIC = 1

Secure = 1

Error = 1
Request = 1 when message is going from STA(AP or 0 when message is going from AP(STA
Encrypted Key Data = 0

Reserved = 0

Key Length = 0

Key Replay Counter = request EAPOL replay counter
Key Nonce = 0

EAPOL-Key IV = 0

Key RSC = 0

Key MIC = MIC computed over the body of this EAPOL-Key frame

Key Data Length = Length of Key Data field in octets

Key Data = Error KDE (different types defined in Table 35b), MAC Address KDE
8.5.9.5.1 Error ERR_STA_NR
This Error Message is sent whenever AP finds that STA where it needs to send the message is not reachable. In response of this error, AP creates Error KDE with error type ERR_STA_NR and sends the message back to the other STA involved in the handshake. MAC address KDE contains the MAC address of unreachable STA. AP should log this error.
After receiving this Error Message STA shall tear down STSL with other STA and clear all the PeerKey states.

8.5.9.5.2 Error ERR_STA_NRSN
This Error Message is sent whenever AP finds that STA where it needs to send the message doesn’t have secure RSNA connection. In response of this error, AP creates Error KDE with error type ERR_STA_NRSN and sends the message back to STA from where it received last message. MAC address KDE contains the MAC address of STA, with which AP doesn’t have secure RSNA connection. AP should log this error.
After receiving this Error Message STA shall tear down STSL with other STA and clear all the PeerKey states.

8.5.9.5.3 Error ERR_CPHR_NS
This Error Message is sent whenever STA finds that it doesn’t support any of the ciphersuites proposed by other STA. In response of this error, STA creates Error KDE with error type ERR_CPHR_NS and sends the message back to other STA. MAC address KDE contains the MAC address of other STA. This message goes through AP and on receiving this message AP should log this error.
After receiving this Error Message STA shall tear down STSL with other STA and clear all the PeerKey states.

8.5.9.5.4 Error ERR_NO_STSL
This Error Message is sent whenever STA finds that it doesn’t have an existing STSL with other STA. In response of this error, STA creates Error KDE with error type ERR_NO_STSL and sends the message back to other STA. MAC address KDE contains the MAC address of other STA. This message goes through AP and on receiving this message AP should log this error.
After receiving this Error Message STA shall tear down STSL with other STA and clear all the PeerKey states.
End of text for Clause 8.5.9
8.6 Mapping EAPOL keys to IEEE 802.11 keys
8.6.1 Mapping PTK to TKIP keys

Updated text in last two paragraphs in Clause 8.6.1 as follows:
A STA shall use bits 128–191 of the temporal key as the Michael key for MSDUs from the Authenticator’s STA to the Supplicant’s STA or from the initiating STA to the peer STA for STAKeys.

A STA shall use bits 192–255 of the temporal key as the Michael key for MSDUs from the Supplicant’s STA to the Authenticator’s STA or from the peer STA to the initiating STA for STAKeys.

8.6.2 Mapping GTK to TKIP keys

Updated text in last two paragraphs in Clause 8.6.2 as follows:

A STA shall use bits 128–191 of the temporal key as the Michael key for MSDUs from the Authenticator’s STA to the Supplicant’s STA or from the initiating STA to the peer STA for STAKeys.

A STA shall use bits 192-255 of the temporal key as the Michael key for MSDUs from the Supplicant’s STA to the Authenticator’s STA or from the peer STA to the initiating STA for STAKeys.

10.3.17.1.2 Semantics of the service primitive

Change section 10.3.17.1.2 as follows

	Key Type
	Integer
	Group, Pairwise, STAKey, PeerKey
	Defines whether this key is a group key, pairwise key, or STAKey PeerKey.

	Address
	MACAddress
	Any valid individual MAC address
	This parameter is valid only when the Key Type value is Pairwise, or when the Key Type value is Group and the STA is in IBSS, or when the Key Type value is STAKey PeerKey.

10.3.18.1.2 Semantics of the service primitive

Change section 10.3.18.1.2 as follows

	Key Type
	Integer
	Group, Pairwise, STAKey PeerKey
	Defines whether this key is a group key, pairwise key, or STAKey PeerKey.

	Address
	MACAddress
	Any valid individual MAC address
	This parameter is valid only when the Key Type value is Pairwise, or when the Key Type value is Group and the STA is in IBSS, or when the Key Type value is STAKey PeerKey.

10.3.18.1.4 Effect of receipt

Change section 10.3.18.1.4 as follows
Receipt of this primitive causes the MAC to delete the temporal keys identified by the Keylist Address,

including Group, Pairwise, and STAKey PeerKey, and to cease using them.
10.3.19.1.2 Semantics of the service primitive

Change section 10.3.19.1.2 as follows

	Key Type
	Integer
	Group, Pairwise, STAKey PeerKey
	The key type that the receive frame used.

10.3.22.1.2 Semantics of the service primitive

Change section 10.3.19.1.2 as follows

	Address
	MACAddress

	Any valid individual

MAC address
	This parameter is valid only when the Key Type value is Pairwise or STAKey or when the Key Type value is Group and is from an IBSS STA or PeerKey.

	Key Type
	Integer
	Group, Pairwise, STAKey PeerKey
	Defines whether this key is a group key, pairwise key, or STAkey PeerKey.

Deelete Clause 10.3.21 and replace it with following text as follows:
10.3.21 MLME-PeerKeySTART
10.3.21.1 MLME- PeerKeySTART.request

10.3.21.1.1 Function
This primitive is generated by the SME when the SME want to start PeerKey Handshake with a peer.
10.3.21.1.2 Semantics of the service primitive

This primitive has two parameters, the MAC addresses of the two STAs.

The primitive parameters are as follows:

MLME-PeerKeySTART.request (

PeerSTAAddress,
RSN
)

	Name
	Type
	Valid range
	Description

	Peer STA MAC

Address
	MACAddress

	Any valid individual

MAC address
	Specifies the address of the peer MAC entity

with which to perform the PeerKey Handshake process.

	RSN
	RSN information

element
	As defined in

frame format
	A description of the cipher suites supported by Initiator STA.

10.3.21.1.3 When generated

This primitive is generated by the SME for a STA to initiate PeerKey Handshake with a specified peer MAC entity in order to create secure link between the two STAs.

10.3.21.1.4 Effect of receipt

This primitive initiates SMK Handshake as part of PeerKey Handshake by sending EAPOL-Key message.
10.3.12.4 MLME-DLSTeardown.request (as per 802.11e)

Replace STAKEY_MISMATCH with PEERKEY_MISMATCH in 3rd row, 3rd column.
10.3.12.6 MLME-DLSTeardown.indication (as per 802.11e)

Replace STAKEY_MISMATCH with PEERKEY_MISMATCH in 3rd row, 3rd column.

11.7.3.1 Teardown procedure at the QSTA

Update text in Table 26.11 (802.11e-2005) as follows

Table 26.11—Encoding of ReasonCode to Reason Code field value for DLS Teardown

	ReasonCode
	Reason Code
	Applicable at

	QSTA_LEAVING
	36
	QSTA

	END_DLS
	37
	non-AP QSTA

	UNKNOWN_DLS
	38
	non-AP QSTA

	TIMEOUT
	39
	non-AP QSTA

	STAKEY PEERKEY_MISMATCH
	45
	AP

11.7.3.2 Teardown procedure at the QAP

Update text in Clause 11.7.3.2 (802.11e-2005) as follows
Upon receipt of the DLS teardown frame from a QSTA, the QAP shall send DLS teardown frame to the destination QSTA.

Upon receipt of MLME-DLSTeardown.request from the SME, the QAP shall inform the tearing down of the direct link by sending the DLS teardown frame to the two QSTAs using the direct link. The only applicable value of the ReasonCode is STAKEY_MISMATCH and its encoding to Reason Code field value is defined in Table 26.11. For PeerKey, the only applicable values of the ReasonCode are STAKEY_MISMATCH and QSTA_ LEAVING. Their encoding to Reason Code field value is defined in Table 26.11.

11.7.5 Secure DLS Operation

Change section 11.7.5 as follows
STAKey EAPOL-Key frames, defined in 8.5.2. are used to establish the keys needed to enable secure DLS operation. PeerKey Handshake, defined in 8.5.9 is used to establish the keys needed to enable secure DLS. The PeerKey STAKey message exchange, described in 8.5.2.1, shall be commenced after the DLS establishment and completed prior to initiation of the DLS data frame exchange.
The STKSA remains valid even if the QSTA disassociates from the originating QAP, but the STKSA shall be deleted before a QSTA attempts another association or reassociation. If a QAP transmits a Deauthenticate or Disassociate message to a QSTA, the QAP shall also initiate teardowns for any existing DLS. The DLS STK Keys shall be deleted when the DLS teardown messages is sent or received.
If the QAP does not receive STAKey Message 2 from a STA, it shall attempt dot11RSNAConfigPairwiseUpdateCount transmits of STAKey Message 1, plus a final timeout. If it still has not received a response after these retries, then the initiating QAP shall send a DLS teardown message to the applicable STA. The retransmit timeout value shall be 100 milliseconds for the first timeout, half the listen interval for the second timeout, and the listen interval for subsequent timeouts. If there is no listen interval, then 100 milliseconds shall be used for all timeout values.
The initiating STA, shall wait for the QAP to complete both timeouts before it may re-transmit the STAKey Request Mesage. The initiating STA may send a DLS teardown message to the QAP at any time. The DLS STAKeys shall be deleted when the DLS teardown message is sent or received.
Annex A
Update the following text in the table in A.4.4.1:

	Item
	Protocol capability
	References
	Status
	Support

	PC34.1.8.1
	RSNA STAKey PeerKey Handshake
	8.5.2.1 8.5.9
	PC34.1.8:O
	Yes ❏No ❏

Annex D
Add the following text in Annex D in Dot11RSNAConfigEntry as follows:
dot11RSNAConfigNumberOfGTKSAReplayCounters INTEGER, }
dot11RSNAConfigSTKKeysSupported Unsigned32,

dot11RSNAConfigSTKCipher OCTET STRING,
dot11RSNAConfigSTKRekeyTime Unsigned32,

dot11RSNAConfigSMKUpdateCount Unsigned32,

dot11RSNAConfigSTKCipherSize Unsigned32,

dot11RSNAConfigSMKLifetime Unsigned32,
dot11RSNAConfigSMKReauthThreshold Unsigned32,
dot11RSNAConfigNumberOfSTKSAReplayCounters INTEGER,

dot11RSNAPairwiseSTKSelected OCTET STRING,

dot11RSNASMKHandshakeFailures Unsigned32 }
Insert at the end of -- dot11RSNAConfig TABLE after { dot11RSNAConfigEntry 29 }
dot11RSNAConfigSTKKeysSupported OBJECT-TYPE

SYNTAX Unsigned32

MAX-ACCESS read-only

STATUS current

DESCRIPTION

"This object indicates how many STK keys the entity supports

for RSNA."

::= { dot11RSNAConfigEntry 30 }
dot11RSNAConfigSTKRekeyTime OBJECT-TYPE

SYNTAX Unsigned32 (1..4294967295)

UNITS "seconds"

MAX-ACCESS read-write

STATUS current

DESCRIPTION

"The time in seconds after which an RSNA STK shall be refreshed.

The timer shall start at the moment the STK was set using the MLMESETKEYS. request primitive."

DEFVAL { 86400 } -- once per day

::= { dot11RSNAConfigEntry 31 }

dot11RSNAConfigSMKUpdateCount OBJECT-TYPE

SYNTAX Unsigned32 (1..4294967295)

MAX-ACCESS read-write

STATUS current

DESCRIPTION

"The number of times Message 1 in the RSNA SMK Handshake will be retried per SMK Handshake attempt."

DEFVAL { 3 } --

::= { dot11RSNAConfigEntry 32 }
dot11RSNAConfigSTKCipherSize OBJECT-TYPE

SYNTAX Unsigned32 (0..4294967295)

MAX-ACCESS read-only

STATUS current

DESCRIPTION

"This object indicates the length in bits of the STK cipher key."

::= { dot11RSNAConfigEntry 33 }
dot11RSNAConfigSMKLifetime OBJECT-TYPE

SYNTAX Unsigned32 (1..4294967295)

UNITS "seconds"

MAX-ACCESSread-write

STATUS current

DESCRIPTION

"The maximum lifetime of an SMK in the SMK cache."

DEFVAL { 43200 } --

::= { dot11RSNAConfigEntry 34 }
dot11RSNAConfigNumberOfSTKSAReplayCounters OBJECT-TYPE

SYNTAX INTEGER

MAX-ACCESS read-only

STATUS current

DESCRIPTION

"Specifies the number of STKSA replay counters per association:

0 –> 1 replay counter,

1 –> 2 replay counters,

2 –> 4 replay counters,

3 –> 16 replay counters"

::= { dot11RSNAConfigEntry 35 }
dot11RSNAPairwiseSTKSelected OBJECT-TYPE

SYNTAX OCTET STRING (SIZE(4))

MAX-ACCESS read-only

STATUS current

DESCRIPTION

"The selector of the last STK cipher negotiated."

::= { dot11RSNAConfigEntry 36 }
dot11RSNASMKHandshakeFailures OBJECT-TYPE

SYNTAX Unsigned32 (1..4294967295)

MAX-ACCESS read-write

STATUS current

DESCRIPTION

"Counts the number of SMK Handshake failures."

::= { dot11RSNAConfigEntry 37 }
Insert at the end of dot11RSNBase OBJECT-GROUP, as follows:
dot11RSNAStats4WayHandshakeFailures, }
dot11RSNAConfigSTKKeysSupported,

dot11RSNAConfigSTKCipher,
dot11RSNAConfigSTKRekeyTime,

dot11RSNAConfigSTKUpdateCount,

dot11RSNAConfigSTKCipherSize,

dot11RSNAConfigNumberOfSTKSAReplayCounters,

dot11RSNAPairwiseSTKSelected,

dot11RSNASMKHandshakeFailures }
Insert text after ::= { dot11Groups 28 } as follows:
dot11RSNSMKcachingGroup OBJECT-GROUP

OBJECTS {

dot11RSNAConfigSMKLifetime,

dot11RSNAConfigSMKReauthThreshold

}

STATUS current

DESCRIPTION

"The dot11RSNSMKcachingGroup object class provides the necessary

support for managing SMK caching functionality in the STA"

::= { dot11Groups 29 }
Notice: This document has been prepared to assist IEEE 802.11. It is offered as a basis for discussion and is not binding on the contributing individual(s) or organization(s). The material in this document is subject to change in form and content after further study. The contributor(s) reserve(s) the right to add, amend or withdraw material contained herein.

Release: The contributor grants a free, irrevocable license to the IEEE to incorporate material contained in this contribution, and any modifications thereof, in the creation of an IEEE Standards publication; to copyright in the IEEE’s name any IEEE Standards publication even though it may include portions of this contribution; and at the IEEE’s sole discretion to permit others to reproduce in whole or in part the resulting IEEE Standards publication. The contributor also acknowledges and accepts that this contribution may be made public by IEEE 802.11.

Patent Policy and Procedures: The contributor is familiar with the IEEE 802 Patent Policy and Procedures <� HYPERLINK "http://%20ieee802.org/guides/bylaws/sb-bylaws.pdf" \t "_parent" �http:// ieee802.org/guides/bylaws/sb-bylaws.pdf�>, including the statement "IEEE standards may include the known use of patent(s), including patent applications, provided the IEEE receives assurance from the patent holder or applicant with respect to patents essential for compliance with both mandatory and optional portions of the standard." Early disclosure to the Working Group of patent information that might be relevant to the standard is essential to reduce the possibility for delays in the development process and increase the likelihood that the draft publication will be approved for publication. Please notify the Chair <� HYPERLINK "mailto:stuart.kerry@philips.com" \t "_parent" �stuart.kerry@philips.com�> as early as possible, in written or electronic form, if patented technology (or technology under patent application) might be incorporated into a draft standard being developed within the IEEE 802.11 Working Group. If you have questions, contact the IEEE Patent Committee Administrator at <� HYPERLINK "mailto:patcom@ieee.org" \t "_parent" �patcom@ieee.org�>.

Abstract

This submission proposes normative text suitable for incorporation into 802.11REVma. This submission addresses security flaws identified in STAKey key exchange.

Submission
page 1
STAKey Ad-Hoc Group

_1197542638.vsd
Station Master Key (SMK)

Station to Station Transient Key (STK)
(X bits)

EAPOL-Key Key Confirmation Key L(STK, 0, 128)
SKCK

EAPOL-Key Key Encryption Key L(STK, 128, 128)
SKEK

Temporal Key
TKIP: L(STK, 256, 256)
CCMP: L(STK, 256, 128)
(TK)

PRF-X(SMK, “Peer key expansion”, Min(MAC_I,MAC_P) || Max(MAC_I,MAC_P) Min(INonce,PNonce) || Max(INonce,PNonce))

_1197825109.vsd
Reserved

Pre-Auth

No Pairwise

PTKSA Replay Counter

GTKSA Replay Counter

PeerKey Enabled

B9

B15

Reserved

B0

B1

B2

B3

B4

B5

B6

B8

B10

_1197829436.vsd

_1197989237.vsd
STKINIT

TimeoutCtr=0

SMKNEGOTIATING1

Send EAPOL(SMKMesgNo = 1)
TimeoutCtr++

MLME-PeerKeySTART .request(STA_P, RSNIE)

SMKNEGOTIATING2

Send EAPOL(SMKMesgNo = 3)

EAPOLKeyReceived && SMKMesgNo == 2 && MICVerified

SMKNEGOTIATING3

Install SMKSA
TimeoutCtr=0

EAPOLKeyReceived && SMKMesgNo == 5 && MICVerified

SMKNEGOTIATING4

Install SMKSA

EAPOLKeyReceived && SMKMesgNo == 4 && MICVerified

STKSTART

Send EAPOL(STKMesgNo = 1)
TimeoutCtr++

STKCALCNEGOTIATING

STKKey= Calc STK(INonce, PNonce)
TimeoutCtr = 0

UCT

EAPOLKeyReceived && STKMesgNo == 2 && MICVerified

STKCALCNEGOTIATING1

STKKey= Calc STK(INonce, PNonce)

EAPOLKeyReceived && STKMesgNo == 1

TimeoutCtr>N

to StkInit

STAKCALNEGOTIATING2

Send EAPOL(STKMesgNo = 3)
TimeoutCtr++

TimeoutEvt

UCT

STKINITDONE

If (Initiator STA)
	MLME-SETKEYS.request(STKKey, length, 0, STA_P, 0, Initiator, RSNIE)
	MLME-SETPROTECTION.request(STA_P, Rx_Tx, STK)
Else
	MLME-SETKEYS.request(STKKey, length, 0, STA_I, 0, Peer, RSNIE)
	MLME-SETPROTECTION.request(STA_I, Rx_Tx, STK)

EAPOLKeyReceived && STKMesgNo == 4 && MICVerified

STKCALNEGOTIATING4

Send EAPOL(STKMesgNo = 4)

STKCALNEGOTIATING3

Send EAPOL(STKMesgNo = 2)

UCT

EAPOLKeyReceived && STKMesgNo == 3 && MICVerified

UCT

PeerKeyInit

TimeoutCtr>N

to StkInit

TimeoutEvt

TimeoutCtr>N

to StkInit

TimeoutEvt

_1197825664.vsd
Key Descriptor Version

Key Type

_1197554976.vsd
4 octets

Key Lifetime
(in second)

_1197562740.vsd
32 octets

SMK

32 octets

Key Nonce

_1197548073.vsd

_1197548754.vsd

_1196152841.vsd
2 octets

2 octets

Error Type

MUI

_1196529707.vsd
Laptop computer

SNonce = Random

ANonce = Random

EAPOL-Key(0,0,1,0,P,0,0,ANonce, 0,0)

802.11 Station
802.1X Supplicant

802.11 Access Point
802.1X Authenticator

Calculate PTK using ANonce and SNonce

Calculate PTK using ANonce and SNonce

EAPOL-Key(0,1,0,0,P,0,0,SNonce,MIC,RSNIE)

Set Temporal Encryption and MIC Keys

Set Temporal Encryption and MIC Keys
Set GTK for KeyID

EAPOL-Key(1,1,1,1,P,0,Key RSC, Anonce, MIC, RSNIE, GTK[KeyID])

EAPOL-Key(1,1,0,0,P,0,0,0,MIC, 0)

_1196530503.vsd
Laptop computer

802.11 Station
802.1X Supplicant

802.11 Access Point
802.1X Authenticator

Gnonce=Get Next Key Counter

EAPOL-Key(1,1,1,0,G,0,Key RSC,0, MIC,GTK[KeyID])

Decrypt GTK Set in Key ID

Set GTK in Key ID

EAPOL-Key(1,1,0,0,G,0,0,0,MIC,0)

_1195736373.vsd
32 octets

Key Nonce

