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Abstract

The Post EAP Key Management (PEKM) protocol is a media-independent protocol that provides key management facilities for link layers that utilize EAP, defined in RFC 3748.  As with EAP, PEKM can be encapsulated to run over multiple media, including 802.3, 802.11 and  802.16. This document provides a summary of the PEKM protocol as well as describing its operation over 802.11.
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1. Introduction
Post-EAP Key Management Protocol (PEKM) is a media-independent protocol designed to provide key management functionality for link layers supporting EAP, defined in [RFC3748]. 
Since PEKM supports enhanced key cache management, and pre-key of transient session keys, it is optimized for use on wireless networks.  However, as with EAP, PEKM can be encapsulated to run over multiple media, including 802.3, 802.11 and  802.16.  

The need for PEKM became apparent as multiple link layers, including IEEE 802.3, 802.11 and 802.16, adopted EAP for media-independent authentication, but at the same time began to develop their own distinct post-EAP key management protocols.  Given the similar requirements for the post-EAP key management protocols now under development, it would appear that the “stovepipe” standardization efforts now underway represent a duplication of effort, as well as a potential hindrance to the development of multi-homed embedded devices with limited footprint. 
The design goal of PEKM was to produce a simple, secure and efficient post-EAP key management protocol that would be suitable for encapsulation on multiple media, enabling development of PEKM implementations that can simultaneously handle post-EAP key management for multiple link layers. 

This document provides a summary of the PEKM protocol as well as describing its operation over 802.11.
1.1 Terminology

AAA

Authentication, Authorization, and Accounting.  AAA protocols with EAP support include RADIUS [RFC3579] and Diameter [DIAM-EAP].  In this document, the terms "AAA server" and "backend authentication server" are used interchangeably.

Authenticator
The end of the link initiating EAP authentication.  The term authenticator is used in [IEEE-802.1X], and has the same meaning in this document.

EAP

Extensible Authentication Protocol, defined in [RFC3748]. 

NAS
Network Access Server.  Also known as an Authenticator. 

NAS-Id

The identifier used by an EAP authenticator/AAA client to identify itself to a 

AAA Server (e.g. NAS-Identifier attribute). 
peer


The end of the link that responds to the authenticator.  In [IEEE-802.1X], this end is 

known as the Supplicant.
PEKM

Post-EAP Key Management
Pre-authentication

The encapsulation of EAP within 802.1X frames forwarded over the DS. 

Pre-key

The process of establishing a PTK prior to connection is known as “pre-key”.

Peer-Id


The identifier used by an EAP peer to identify itself to the EAP authenticator.  

Supplicant
The end of the link that responds to the authenticator in [IEEE-802.1X].  In 


this document, this end of the link is called the peer. 
1.2 Motivation

The design goals of PEKM are media independence, improved resilience to denial of service attacks, and reduced roaming latency. 

Media independence is provided by defining PEKM packet formats independent of the link layer technology that encapsulates them.  As a result, PEKM may be adapted for use on multiple media, including 802.3, 802.11 and 802.16.  By providing for an extensibility via type-length-value (TLV) tuples, the key management capabilities of PEKM can be adapted for use on new media by definition of appropriate TLVs. 

Denial of service resilience is provided by protection against first message attacks as well as by synchronization of the PEKM state machine with the link layer state machine.  In the case of 802.11,  protection of management frames is also provided by encapsulating PEKM-Confirm messages within 802.11 Association/Reassociation Request and Response frames as well as by encapsulating PEKM-Control-Request messages within Disassociate and Deauthenticate frames.  

Many separate issues contribute to roaming latency in wireless networks.  Within 802.11, contributors include: 

· Detection. Experiments have shown that some 802.11 STAs take a long time to detect loss of connectivity prior to initiating a scan.  Since times as long as 30 seconds have been observed, there is good reason to believe that this is a serious problem.  However, since this is largely an implementation issue, no standards work is required to address it. 
· Rate negotiation.  Experiments have shown some 802.11 STAs utilize inefficient rate negotiation algorithms that can result in loss of connectivity for periods as long as 100 ms. Again however, this is largely an implementation issue and does not appear to require standards work. 

· Scanning. Scanning times may contribute significantly to roaming latency.  Optimization of scanning times require cooperation between the STA and AP, so this is a fertile area for standards work.  However, many of these issues are already being addressed within IEEE 802.11k. 
· 802.11 management overhead.  The 802.11 standard defines management frames for transport of authentication as well as management of associations.  While it is questionable whether these frames were necessary, at this point their existence needs to be taken as a given.  Unfortunately, rather than leveraging the existing management technology, IEEE 802.11i overlaid additional security  management functionality.  This has burdened 802.11 with dual (and conflicting) state machines that both add to roaming latency and introduce security vulnerabilities (such as denial of service attacks).  For example, even though 802.1X contributes its own authentication technology, the exchange of 802.11 authentication frames is still required;  and even though 802.1X and 802.11i define when packets may be sent and received from the DS, frames for the management of associations (Association/Reassociatoin/Deassociate/Deauthenticate) are still used. 

· EAP authentication.  Many EAP methods require a significant number of roundtrips, both over 802.11 between the STA and AP, as well as between the AP and the AAA server.  This can be a significant problem both for roaming latency and for reliability, since extended conversations are more vulnerable to packet loss.  However, since EAP methods are developed within the IETF, this issue cannot be addressed in IEEE 802.

· Key cache efficiency.  IEEE 802.11i enables the caching of  keys derived during EAP authentication.  Given the penalties paid by a STA that must undertake unnecessary EAP authentication operations, key cache efficiency is an important contributor to roaming latency.   Unfortunately, the key cache management functionality in 802.11i is seriously flawed.  For example,  IEEE 802.11i assumes that an EAP peer and authenticator only have a single port associated with them.  This leaves the specification unable to properly define the key scope when used with a multi-homed EAP peer or a WLAN switch attached to multiple Access Points.  Another issue with IEEE 802.11i is that the protocol does not negotiate the lifetime of the PMK or PTK.  As a result, STA roaming decisions cannot be optimized and STAs and APs may get out of sync.  Together, these effects may cause a STA to complete a full EAP authentication that would not otherwise be necessary. 
· Post-EAP key management.  IEEE 802.11i defines a post-EAP key management handshake for the purpose of PTK derivation and GTK transport.  Since aspects of this protocol duplicate existing 802.11 management frame functionality,  some amount of redundancy is introduced.  IEEE 802.11i effectively requires 4 round-trips (Open Authentication + 4-way handshake + Association/Reassociation) in addition to the exchanges required to complete EAP authentication. 

· However, measurements have shown that the contribution of the additional handshakes introduced by 802.11i is relatively modest (e.g. on the order of 25-30 ms) compared to the other effects described above. 

PEKM reduces roaming latency by increasing PMK cache hit efficiency on both the EAP peer and authenticator, and  reducing the number of exchanges required to complete EAP authentication and transient session key derivation. 

Given the large latencies required for EAP authentication, even for EAP methods that support fast reconnect, improvements in PMK cache efficiency make a large contribution to reduction in roaming latency.  This is particularly true in global roaming, where the home AAA server may be located thousands of miles away and several AAA proxy hops from the NAS/EAP authenticator.  In these situations even optimized EAP methods may generate authentication latencies in excess of 500 ms, even when utilizing fast reconnect.  Thus, one of the design goals of PEKM is to enable increases in PMK cache efficiency. 

In PEKM, the NAS-Identifier is advertised by the AP, providing the STA with the information it needs to determine the scope of derived keys.  PEKM also supports explicit binding of PTKs to EAP peer and authenticator ports, supporting EAP peers with multiple radios, as well as WLAN switches.  This results in substantially improved PMK cache hit rates, and a reduction in AAA server load. 
By clarifying the scope of the PMK cache on the Authenticator,  PEKM enables a reduction in EAP pre-authentication traffic on networks where multi-port EAP authenticators (e.g. WLAN switches) are deployed.  Rather than repeatedly attempting pre-authentication to the same EAP authenticator (e.g. a WLAN switch), or blindly using “optimistic PMK caching”, a PEKM-enabled EAP peer can instead choose to pre-authenticate only when an EAP authenticator is discovered for which a PMK cache entry does not exist.  This both reduces the load on the AAA server arising from unnecessary EAP authentication traffic, as well as reducing the post-EAP key management traffic.  

Another issue limiting cache efficiency is the determination of key lifetimes.  PEKM explicitly negotiates the lifetimes of both the PMK and PTK. 
The end result is that a PEKM-enabled station entering an environment with a limited number of EAP authenticators (e.g. WLAN switches) will rapidly identify the distinct EAP authenticators available, will complete EAP pre-authentication to them, and via PEKM will negotiate as a long a PMK (and PTK) lifetime as is permitted by the EAP authenticator.  In environments involving low density deployments of EAP peers, this typically results in PMK cache lifetimes of at least eight (8) hours, and possibly as long as several days.  As long as the EAP peer remains within the same environment, during this period, no EAP authentication exchanges will occur,  and no AAA traffic, for the purposes of authentication or authorization, will be generated, not even for the purposes of fast reconnect.  The only exchanges that will occur will involve PEKM messages.  As the EAP peer roams from point of attachment to point of attachment, the peer will utilize “pre-key” (PEKM-Init exchange) to pre-establish PTK and other associated state (such as capabilities),  and then will conclude an Association/Reassociation exchange in order to install key state (via the PEKM-Confirm exchange).  

PEKM reduces critical path authentication traffic to a single round-trip. In PEKM the PEKM-Init exchange can be handled via “pre-key” leaving only the PEKM-Confirm exchange (a one round-trip exchange embedded in the Association/Reassociation exchange) in the critical path.  This results in a substantial improvement in handoff latency compared with IEEE 802.11i. 

In PEKM-capable STAs and APs, EAP authentication is always completed prior to Association/Reassociation.  The crucial advantage though is that one need only complete one full EAP authentication per authenticator (identified by NAS-Id). 
Another contributor to latency reduction in PEKM is support for STAs with multiple radios/ports. While this is not common today, in the future such configurations may become popular.  By allowing an EAP peer to use the same PMK to simultaneously derive PTKs for use on multiple ports, PEKM provides for explicit binding between a derived PTK and the STA MAC address and AP BSSID with which it may be used.

Miscellaneous benefits of PEKM include: 
· Elimination of first message attacks.  A first message attack has been discovered in IEEE 802.11i.  PEKM does not fall prey to this attack since all PEKM messages (including the PEKM-Init-Request) are protected. 
· Support for IBSS.  In IEEE 802.11i, two EAP exchanges, two 4-way handshakes and 2 group-key handshakes are required to negotiate keys in IBSS.  PEKM is a peer-to-peer protocol that enables bi-directional GTK transport, enabling IBSS authentication to occur within a single PEKM exchange, and where supported by the EAP method, a single EAP exchange. 
· Management frame protection.  IEEE 802.11i does not support management frame protection, enabling both local and distant denial of service attacks.  PEKM provides support for protection of Association/Reassociation, Dissassociate and Deauthenticate messages.

· Compatibility with existing applications.  The lack of coordination between the IEEE 802.11i key state machine and the 802.11 state machine results in problems with network applications.  For example, with 802.11-2003  “link up” is signaled on the STA after receipt of the Association/Reassociation-Response.  With IEEE 802.11i the “link up” indication needs to be delayed until after completion of the post-EAP key management handshake. This leads to applications that consume “link up” indications (including DHCP) timing out and retransmitting, or hanging altogether.  Since the PEKM state machine is synchronized with the 802.11-2003 state machine,  keys are installed and deleted simultaneously with the creation and destruction of association state.  Thus, PEKM is compatible with existing applications. 

1.3 Parties and Identification model


The parties and identifiers utilized within the PEKM protocol are shown in Figure 1.3-1. 
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Figure 1.3-1 PEKM: Parties & Identifiers
Prior to beginning the PEKM conversation, it is necessary for the EAP peer to discover the EAP authenticator.  The mechanism by which this occurs is media dependent.  For example, within 802.11, the Beacon and Probe Request/Response mechanisms are utilized for this purpose.  The IEEE 802.11k Neighbor Report can also be used by an EAP peer to discover EAP authenticators.  

PEKM assumes that either the EAP peer or authenticator may have multiple ports, and as a result, neither party can be uniquely identified using a port MAC address.  For example, an EAP peer may have multiple interfaces and an EAP authenticator may be a WLAN switch that is attached to multiple Access Points (AP). 

Since the EAP authenticator may correspond to multiple APs, and the EAP peer may correspond to multiple STAs,  in order for the PEKM Initiator and Responder to properly manage their key caches, it is critical for the parties to be uniquely identified.   For example, a STA wishing to roam to an AP would typically like to know beforehand whether that AP has a PMK in its cache usable with the STA.  

Within PEKM, the identification model is based on identifiers used by EAP [RFC3748] and RADIUS [RFC2865].  Within PEKM, an 802.1X Supplicant will use as its identifier (known as the peer-id in this specification) the identity that it utilized within the completed EAP method exchange, and if that is not available, the identity that it provided in the EAP-Response/Identity.   Within PEKM, an 802.1X Authenticator will utilize as its identity (known as the nas-id within this specification) the value of the NAS-Identifier attribute that was sent to the AAA server by the Authenticator, acting as a RADIUS client. 

In order to enable a STA to determine prior to roaming which APs may have PMK cache entries, a PEKM-capable AP includes the NAS-Identifier value within the Beacon and Probe Response frames.  This enables the EAP peer to delineate which potential points of attachment correspond to the EAP authenticator. 
For the purposes of PEKM, the NAS-Identifier is treated as undistinguished octets which are not parsed or modified.  This enables an EAP method supporting Channel Bindings (defined in [RFC3748] Section 7.15) to verify that the value of the NAS-Identifier sent by the AP/Authenticator to the AAA Server is the same as the value sent by the AP to the Supplicant, thereby preventing one EAP authenticator from masquerading as another one. 
Within the EAP Key Management Framework [I-D.ietf-eap-key],  EAP methods derive and export the MSK/EMSK on the EAP peer and server.  The AAA-Key is then calculated from the MSK/EMSK and transported to the EAP Authenticator; the lower order 32 octets of that AAA-Key are known as the PMK.  
PEKM adds an anonce entry to the PMKSA stored on the authenticator and STA. The initial value of this entry is that selected by the authenticator in the first 802.11i 4way handshake after the PMK was established, and before any PEKM exchanges have been performed.
Since PEKM utilizes endpoint identifiers that are independent of the ports on which the exchange is run, in establishing PTK/GTK and associated state, the ports need to be stated explicitly.  The Supplicant port used in the PEKM exchange is known as the PEER_PORT parameter in this specification;  the Authenticator port used in the exchange is known as the AUTH_PORT parameter.  In 802.11, the PEER_PORT parameter corresponds to the MAC address of the STA on which it is desired to derive the PTK/GTK and associated state;  the AUTH_PORT parameter corresponds to the AP BSSID.  
1.4 Operational Model
PEKM is a peer to peer protocol that is designed to work in both Infrastructure and Adhoc (e.g. 802.11 IBSS) environments.  

In an Infrastructure environment, the PEKM Initiator will typically correspond to the 802.1X Supplicant or 802.11 Station (STA), whereas the PEKM Responder will typically correspond to the 802.1X Authenticator or 802.11 Access Point (AP).   

In any environment, PEKM Initiators and Responders derive Pairwise Transient Keys (PTKs) based upon Pairwise Master Keys (PMKs), which are typically derived during an EAP authentication exchange.  The PEKM exchange also serves to securely confirm capabilities, some of which may have previously been advertised insecurely out of band (such as in an 802.11 Beacon or Probe Response). 

In an Infrastructure environment, PEKM enables the Authenticator/AP to deliver a Group Transient Key (GTK) to the Supplicant/STA, as well as to subsequently update that GTK.  In an Adhoc environment,  either peer may deliver a GTK to the other peer.  Where both peers initiate a PEKM exchange, a tie breaker is used so that only a single PEKM conversation goes forward.  In IEEE 802 media, the tie breaker is for the peer with the largest MAC address (taken as a 64-bit integer) to serve as the Initiator and for the other conversation to be abandoned.  This enables adhoc peers to be provisioned for secure communications using a single PEKM exchange.  Depending on the EAP implementations on the peers and the EAP method in use, it also maybe possible for a single EAP authentication to take place;  see [RFC3748] Section 2.4 for details.
2.  Protocol Overview
PEKM is a simple request-response protocol. A PEKM Initiator sends PEKM requests and a PEKM Responder sends PEKM responses.    

PEKM consists of two exchanges of four messages (request-response,  request-response). The first one, called PEKM-Init, establishes a shared PTK, negotiates capabilities, and possibly distributes a GTK; the last one, called PEKM-Confirm, installs the shared PTK and confirms capabilities. 
There is also a PEKM-Control-Request message (unacknowledged when PEKM is run over 802.11)  which can delete an established state (a PTK, PMK, or TSPEC capabilities)  and an unconfirmed PEKM-Error message which a Responder can send to an Initiator in response to a  PEKM-Confirm-Request which is invalid.

PEKM messages consist of a PEKM header followed by one or more type-length-value (TLV) attributes which convey all the information needed in a particular message.

A PEKM-Confirm-Request MUST always be preceded by a PEKM-Init utilizing the same  <PEER_PORT, AUTH_PORT, PMKID> tuple; however, the PEKM-Confirm-Request need not immediately follow receipt of the PEKM-Init-Response.  This enables state to be established and cached for later use.  The maximum time elapsing between the PEKM-Init-Response and the PEKM-Confirm-Request messages is negotiated within the PEKM-Init exchange. 

A PEKM-Control-Request message MUST always be preceded by a PEKM-Init-Response utilizing the same < PEER_PORT, AUTH_PORT, PMKID> tuple; but  there is no requirement that a PEKM-Confirm-Request precede PEKM-Control messages. That is, established state can be deleted prior to installation.
A PEKM-Error message received by an Initiator in response to a PEKM-Init-Request MUST be silently ignored.  That is, the PEKM-Error message is only accepted in place of a PEKM-Confirm-Response.
2.1 QoS support

PEKM supports negotiation of QoS capabilities, both within the PEKM-Init and the PEKM-Confirm exchanges. 

TSPEC and TCLAS capabilities are negotiated by including the respective IEs in the PEKM-Init exchange as TSPEC- or TCLAS-capabilities attributes. An Initiator may include QoS specifications in a PEKM-Init-Request.  If a Responder is unable or unwilling to honor that request, a subset, or none, can be returned by the Responder in a PEKM-Init-Response.  An Initiator can indicate that a particular QoS specification (or set of QoS specifications) is mandatory and if the Responder is unable or unwilling to honor that request the rejection can be returned in an authenticated PEKM-Init-Response.

A PEKM-Init-Response that indicates partial honoring (or a rejection) of the QoS capabilities in a PEKM-Init-Request MUST still contain  PMKID and MIC attributes indicating that the request was properly received and a PTK was created. Responders which return such a response SHOULD respond with a short PTK lifetime indicating that the PTK and any QoS capabilities reserved for the Initiator will be shortly deleted if not confirmed.
2.2 Key Cache Model
Once a PMK cache entry has been established between an EAP peer and an EAP authenticator, a PEKM-Init exchange can be used to create PTK/GTK and associated state between a PEER_PORT and an AUTH_PORT, using the PMKID corresponding to the PMK cache entry. 
The PEKM-Init exchange can be utilized by a STA wishing to establish a PTK on another port of an authenticator to which it is already connected, or it could be used to establish a PTK on an entirely different authenticator on which it has already established a PMK via EAP pre-authentication.  
Given that PEKM peers can derive a PTK and associated state on alternative ports, what is to keep an authenticated and associated attacker from over-writing the PTK and associated state of other STAs?  For example, why can’t an attacker utilize the PEER_PORT of a victim with a valid PMKID and PMK, thereby overwriting the victim’s PTK and associated state? 
The answer is that PEKM-Init, PEKM-Confirm and PEKM-Delete messages identify PTKs and associated state using the <PEER_PORT, AUTH_PORT, PMKID> tuple.  Unless the attacker possesses the PMK corresponding to the victim’s PMKID, it cannot overwrite the victim’s PTK and associated state;  it can only create and destroy new state. 
2.3 Compatibility with EAP/RADIUS

PEKM was designed to coexist with EAP [RFC3748] [I-D.ietf-eap-key],  RADIUS [RFC2865][RFC3576][RFC3579][RFC3580], and Diameter [RFC3588][ I-D.ietf-aaa-eap]. PEKM does not require changes to EAP, RADIUS, or DIAMETER, nor does it impose additional requirements upon EAP methods, beyond those already described in [WLANREQ].  However, were new mechanisms for derivation and transport of AAA-Keys to be developed (such as [I-D.irtf-aaaarch-handoff]), then PEKM would support them. 
Where the link layer supports this,  PEKM permits the exchange of PEKM-Init messages between peers which are not yet attached.  For example,  EAP pre-authentication may be utilized to establish PMK state prior to attachment, and PEKM-Init messages then may be used to establish PTK/GTK and capability state, also prior to attachment and the flow of data. 
2.4  802.11 Adaptation
When PEKM operates over 802.11, the PEER_PORT attribute will contain the STA MAC address, in binary format, and the AUTH_PORT attribute will contain the AP_BSSID, also in binary format. 
Within 802.11, the AP provides a PEKM IE in its beacons and  probe responses. This describes its desire to do the PEKM protocol.  One or more NAS-Identifiers are included in the PEKM IE that defines the key scope of cached PMKs the AP has.
Within 802.11, in most cases the STA serves as the PEKM Initiator, and the AP serves as the PEKM Responder. The PEKM-Init exchange is accomplished in an IBSS network by sending PEKM messages encapsulated in EAPOL-Key messages as 802.11 Class 1 frames and in an Infrastructure network by sending PEKM messages encapsulated within 802.11 authentication frames. This allows state to be established in a target AP prior to association to that AP - "make before break". 

The PEKM-Confirm exchange is encapsulated within an 802.11 (Re)associate request (PEKM-Confirm request) and  (Re)associate response (PEKM-Confirm response). The PEKM-Control message is embedded within  802.11 Disassociate or 802.11 Deauthenticate frames.

A PEKM-Control message that is part of an 802.11 Disassociate request deletes the PTK and any other associated state estabished by a PEKM-Init exchange.  A PEKM-Control message that is part of an 802.11 Deauthenticate request deletes all state - PTK, PMK, and any other associated state - for the peer established with a PEKM-Init exchange.

A STA that has completed a PEKM-Init exchange with an AP MUST include a PEKM-Control message in any 802.11 Disassociate or 802.11 Deauthenticate frames that it sends to the AP. Similarly an AP that has completed a PEKM-Init exchange with a STA MUST include a PEKM-Control message in any 802.11 Deauthenticate frames it sends the STA.  

A STA that has completed a PEKM-Init exchange with an AP SHOULD ignore any 802.11 Disassociate or Deauthenticate frames that do not include an embedded PEKM-Control message.  An AP that has completed a PEKM-Init exchange with a STA SHOULD ignore any 802.11 Disassociate or Deauthenticate frames that do not include a PEKM-Control message. 
The process of PTK/GTK establishment is illustrated in Figure 2.4-1.  
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Figure 2.4-1: PEKM Exchange
2.5 State Machine

As noted in Section 2.1,  PEKM-Confirm messages install key state and are embedded within 802.11 Association/Reassociation frames.  Similarly, PEKM-Control messages delete key state and are embedded within 802.11 Deauthenticate and Disassociate frames.  

By installing key state at the same time that association state is created, and by deleting key state at the same time that association and authentication state is deleted, PEKM attempts to keep key management and association management in sync.  That is, within PEKM, key state cannot be installed on a STA that has not successfully associated and a STA that successfully associates will always have installed keys.  

Similarly within PEKM, Disassociate and Deauthenticate frames contain embedded PEKM-Control messages deleting key state.  That is, within PEKM a STA or AP will discard a Deauthenticate or Disassociate frame unless a valid PEKM-Control message is embedded within it.

The integration of the PEKM and 802.11 state machines are shown in Figure 2.3. 
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Figure 2.5-1:  PEKM State Machine

2.6 Key Hierarchy

PEKM does not modify the key hierarchy defined in IEEE 802.11i and the EAP Key Management Framework [I-D.ietf-eap-key].  For example, PEKM is agnostic with respect to the key naming scheme.  For example, PEKM can utilize the PMKID scheme utilized in IEEE 802.11i, or the protocol can utilize an alternative EAP key  naming scheme such as the one defined in the EAP Key Management Framework.  From the point of view of PEKM, PMKIDs are treated as opaque data so that the naming scheme is immaterial. 
3. Messages

The format of message definitions is:

 ---> PEKM-Exch-Req { attr1 [, attr2 ... ] }

 <--- PEKM-Exch-Resp { attr1 [, attr2 ... ] }

where: "Exch" indicates the particular exchange; "attr<n>" indicates the nth attribute, which is appended to the n-1th attribute with the first attribute appended to the PEKM header; anything between brackets is optional; and, everything between section delimiters is part of the message.

Attributes in PEKM messages are unordered with the exception of the PMKID and MIC attributes. In the PEKM-Init exchange a unique PMKID attribute MUST precede each MIC attribute and there MUST be a one-to-one relationship between PMKID attributes and MIC attributes in this message. The PMKID/MIC pair(s) MUST be the last attribute(s) in a PMK-Init exchange. In the PEKM-Confirm exchange the MIC attribute MUST be the last attribute in the message. Other than that there is no specific attribute order implied and PEKM implementations MUST NOT reject a PEKM message because the attributes are not in a particular order. Unexpected attributes in a PEKM message MUST be ignored. 

3.1 PEKM-Init-Request
A PEKM-Init-Request message may be sent either by a STA or by an AP.  That is, either the STA or the AP may act as the Initiator in a  PEKM-Init exchange.  The STA always acts as the Initiator prior to Association/Reassociation;  however after completion of the Association/Reassociation, either the STA or AP may act as the Initiator in a  PEKM-Init exchange, in order to update the PTK and/or the GTK. 

Prior to sending the PEKM-Init-Request the Initiator shall compute PTKs for the cached PMKs it shares with the Responder and whose PMKIDs it will include in the PEKM-Init-Request. Prior to doing this the Initiator derives a random snonce value and increments the anonce value in each PMKSA to derive a specific anonce value for each cached PMK (note: if the anonce for a particular PMK would wrap back to zero that PMK MUST NOT be used and if no other PMKs exists for this authenticator in the cache a full 802.1x/EAP authentication MUST be performed). The PTK is computed as:



PTK-n = prf(PMK-n, anonce-n | snonce | PEER_PORT| AUTH_PORT)

  PEKM-Init-Request

     { peer-id, nas-identifier, PEER_PORT, AUTH_PORT, snonce, 
       [ pmk_lifetime_desired, ptk_lifetime_desired,][gtk, ] [capabilities,] 
       PMKID-1, anonce-1, MIC(PTK-1-KCK, hdr-inclusive to 1st-PMKID-not-inclusive),

       [ PMKID-2, anonce-2, MIC(PTK-2-KCK, hdr-inclusive to 1st-PMKID-not-inclusive}

       ... ]

     }

A PEKM-Init-Request sent by a STA to an AP MUST contain the following attributes: peer-id, nas-identifier, PEER_PORT, AUTH_PORT, snonce, and at least one PMKID/anonce/MIC triplet.  It can optionally include some capabilities, a pmk_lifetime_desired and ptk_lifetime_desired, and additional unique PMKID/anonce/MIC attribute triplets. 

The PMKID attribute indicates the PMKID of a PMK the Initiator has cached that it believes the Responder has also cached. For each PMKID included the corresponding PTK is used to compute the associated MIC attribute.

An Initiator may optionally request a particular lifetime for a PTK. This value is in milliseconds.

Optionally, an encrypted broadcast/multicast key can be sent by the Initiator to the Responder using the gtk attribute.  In IBSS, this may be used in order to enable the symmetrical distribution of GTKs between the parties.  In Infrastructure mode, this can be used by an AP acting as a PEKM Initiator, in order to update the GTK.  In Infrastructure mode, where the STA acts as the PEKM Initiator, the gtk attribute may not be sent within a PEKM-Init-Request. 

The contents of the MIC, which are shown as "hdr-inclusive to 1st-PMKID-not-inclusive", are the portion of the message from, and including, the PEKM header to the last attribute preceding the first PMKID.

Upon receipt of a PEKM-Init-Request, the Responder will validate it by ensuring the required attributes have been sent in the request. If the request is not valid it MUST be silently dropped. If the request is valid the Responder will determine whether it has at least one cached PMK that matches the PMKID attribute(s) sent in the request. If none exist the request MUST be silently dropped. If more than one exist the Responder will select one cached PMK using a technique that is out of the scope of this specification. The only requirement placed on this selection technique is that for each PMKID the Responder checks that the value of the corresponding anonce value is greater than the value stored in the respective PMKSA. If the value is not greater the PMK MUST NOT be selected.
Using that PMK (PMK-X) it will compute a PTK (PTK-X) as:



PTK-X = prf(PMK-X, anonce | snonce | PEER_PORT| AUTH_PORT)

The Responder will then validate the value of the MIC attribute. If it is incorrect the request MUST be silently dropped. If it is correct the Responder determines whether any included capabilities can be satisfied.  An Initiator can indicate whether capabilities are required or not. A Responder that is unable to grant required capabilities MUST send a PEKM-Init-Response with a capability rejection. In the case where a PEKM-Init-Request is sent by an AP in order to

update the GTK/PTK, the capabilities field is typically omitted. 

A successful PEKM-Init exchange implicitly deletes the state from a previous PEKM-Init with the same <PEER_PORT, AUTH_PORT, PMKID> tuple. An exception is when an update attribute is included.  In this case, only the portion of the state specified by the update attribute is

deleted.  For example, where the AP sending a PEKM-Init-Request  indicates that only a GTK update is requested, the PTK is not automatically deleted. 
3.2 PEKM-Init-Response
If the MIC is correct the Responder responds with a PEKM-Init-Response. 

  PEKM-Init-Response

     { peer-id, nas-id, PEER_PORT, AUTH_PORT, snonce, 
       pmk_lifetime_desired, ptk_lifetime_desired, [gtk, ]

       [capabilities,]

       PMKID-X, anonce-X, MIC(PTK-X-KCK, hdr-inclusive to PMKID-not-inclusive)

     }   

A PEKM-Init-Response MUST contain the following attributes: peer-id, nas-id, PEER_PORT, AUTH_PORT, snonce,  the lifetime of the PMK and PTK, and the PMKID, anonce, and  MIC attributes.  If the Initiator requested some capabilities the response must include agreed-upon 

capabilities.  Optionally, an encrypted broadcast/multicast key can be sent to the Responder using the gtk attribute.

The PMKID of the selected cached PMK is indicated as PMKID-X and the PTK is used in computation of the MIC attribute. The contents of the MIC are the portion of the message from, and including, the PEKM header to the last attribute preceding the PMKID.

In the PEKM-Init exchange, the Initiator and Responder exchange values for the desired PMK and PTK lifetimes.   The lifetimes indicate the time that the Initiator or Responder would prefer to cache the keys and associated capabilities.  The outcome of this exchange is that both the Initiator and Responder set the PMK and PTK lifetimes to the smaller of the values offered by the Initiator and Responder.  

Where an AP acts as the PEKM Responder, it is expected that the PTK lifetime value will be small as an AP does not want to keep too much capacity reserved.  Both the Initiator and Responder MUST delete cached results from a PEKM-Init exchange after the expiry of the negotiated PTK lifetimes; the PMK and associated state MUST be deleted after the expiry of the negotiated PMK lifetime.  

For example, where the STA acts as the PEKM Initiator, it includes the lifetime(s) that it desires in the PEKM-Init-Request, and the AP replies with lifetime offer(s) in the PEKM-Init-Response.  Both sides then use the smaller of the PTK lifetime offers as the PTK lifetime, and the smaller of the PMK offers as the PMK lifetime.  Since the smaller of the lifetime offers is utilized, when the AP acts as a Responder it need only reply with a lifetime equal to or smaller than the Initiator

(STA) lifetime. 

Upon receipt of this response the Initiator will validate it: ensure the required attributes have been sent in the response, whether the requested capabilities have been granted, and whether the MIC is correct. If the response is not valid for any reason it MUST be silently dropped. A valid

response results in the Initiator caching the PTK and the granted capabilities.

The Initiator MUST NOT reject a PEKM-Init-Response because the indicated lifetime of a key is different than the requested lifetime.

3.3 PEKM-Confirm-Request

A PEKM-Confirm-Request may only be sent by a STA.  

A STA includes a PEKM-Confirm-Request with a (Re)association request it sends to an AP to which it has previously concluded a PEKM-Init exchange. If capabilites were negotiated during the PEKM-Init exchange the agreed-upon capabilites MUST be included in the PEKM-Confirm-Request. An AP that receives a PEKM-Confirm-Request which does not assert negotiated capabilities SHOULD NOT honor those capabilities. The PEKM-Confirm-Request MUST contain a MIC attribute as the final attribute and the contents of that MIC are from the 802.11 (re)associate-request to the PEKM header (and any additional attributes that precede the MIC, if sent).

  PEKM-Confirm-Request

     { MIC(PTK-X-KCK, (re)assoc-request inclusive to pekm hdr inclusive) }

Upon receipt of this message the AP verifies that the MIC is correct. If it is incorrect it includes a PEKM-Error-Resp containing the "invalid MIC" attribute in the (re)association response and that  response MUST include a status code of TBD. An AP MUST NOT delete any cached keys due to receipt of a a PEKM-Confirm-Request with an invalid MIC. 

  PEKM-Error-Response

     { invalid_mic),

       MIC(PTK-X-KCK, (re)assoc-response inclusive to invalid-mic inclusive),

     }

If the MIC is correct but the (re)association is being denied for other reasons the AP includes a PEKM-Error-Response containing the "unspecified error" attribute in the (Re)association response and it is expected that the status code of that response will indicate the reason for denial.

If the MIC is correct the AP installs the PTK for use, initiates a PTK lifetime timer, and responds with a PEKM-Confirm-Response. The PEKM-Confirm-Response MUST contain a ptk-lifetime attribute and a MIC attribute. The MIC attribute MUST be the final attribute and the contents

of that MIC are from, and including, the 802.11 (Re)associate-response to the MIC attribute (including any additional attributes that precede the MIC, if sent).

  PEKM-Confirm-Response

     { ptk_lifetime,

       MIC(PTK-X-KCK, reassoc-response inclusive to ptk_lifetime inclusive) }

Upon receipt of this message the STA verifies that the MIC is correct. If it is incorrect the STA MUST respond with an 802.11 Disassociate frame and include a PEKM-Control message to delete the PTK. It SHOULD then repeat a PEKM-Init exchange with the target AP. If the MIC is

correct the STA installs the PTK and begins using it.

3.4 PEKM-Control-Request
A PEKM-Control message can be sent by either an AP or a STA to indicate to its peer that state that has been established for communication with that peer should be deleted. The PEKM-Control exchange is a request-response exchange for media which can support receipt of a response. For media such as 802.11 where the management frame in which the PEKM-Control message is appended will result in a termination of communication it is unacknowledged (in the PEKM sense).

For 802.11, PEKM-Control messages can be encapsulated within Disassociate or Deauthenticate frames. 

  PEKM-Control

     { MIC(PTK-X-KCK, frame inclusive to pekm hdr inclusive) }

The contents of the MIC are from the start of the 802.11 management frame to the PEKM header inclusive.

Any managment frame from a peer to which a PEKM-Init exchange has been completed that includes a PEKM-Control message MUST be rejected if the MIC is not valid.

When a PEKM-Control message is received by a STA in a Deauthenticate frame it MUST delete the PTK, PMK used for communication with that peer.

When a PEKM-Control message is received by an AP in a Disassociate frame it MUST delete the PTK and any capabilities it had reserved for that STA. When a PEKM-Control message is received by an AP in a Deauthenticate frame it MUST delete the PTK, PMK and any capabilities it had reserved for that STA.

3.5 Versioning

PEKM messages include a version in the form of major.minor. This document describes the 1.0 version of PEKM, that is the major version is one (1) and the minor version is zero (0).

Major versions are incremented when the format of a PEKM message changes or the meaning of a PEKM message changes such that it would not be properly parsed by an older, existing version of PEKM. Minor versions are incremented when some incremental additions have been

made to PEKM that enhance its capabilities or convey additional information in a way that does not change the format or meaning of a PEKM message.

Future versions of PEKM MAY NOT mandate support for earlier major versions of this protocol so an implementation MUST NOT assume that a peer that supports version "n" will therefore support version "n - i" (where both "n" and "i" are non-zero integers and "n" is greater than "i").

A PEKM implementation that receives a PEKM message with a higher major version number than it supports MUST drop that message. A PEKM implementation that receives a PEKM message with a lower major version number SHOULD drop down to the version of PEKM the peer supports. There may be justifiable reasons, though, for which the peer wishes to drop a PEKM message with a lower major version.

A PEKM implementation that receives a PEKM message with a higher minor version number MUST NOT drop that message. It MUST respond with the minor version number that it supports and will necessarily not support whatever incremental capabilites were added that justified the bump in the minor version. A PEKM implementation that receives a PEKM message with a lower minor version MUST NOT drop that message. It SHOULD revert back to the minor version which the peer supports and not include any incremental capabilites that were added that

justified the bump in the minor version.

3.6 Retransmission

There are no retransmission requirements imposed by PEKM and it is assumed the medium over which the PEKM protocol takes place provides a minimal packet error rate.  Since PEKM messages are never sent to the multicast address, when encapsulated within 802.11, PEKM messages may be retransmitted at the 802.11 layer. 

3.7 Private Extensions of PEKM

PEKM includes hooks to allow for experimentation and proprietary enhancement. The major and minor version MUST NOT be used to indicate private versions of PEKM. Instead, PEKM messages can use a private opcode to define new messages and PEKM attributes can use private types to send new information.

Private messages and/or attributes MUST NOT be sent to a peer that has not agreed to receive them. There is no negotiation mechanism included in PEKM to determine whether a peer is willing to receive private messages and/or attributes so any such agreement must be done in an out-of-band fashion.

A PEKM implementation MUST drop a PEKM message using a private use opcode if it has not previously agreed to receive such a message from that peer. A PEKM implementation SHOULD drop a message containing a non-mandatory private use attribute if it has not previously agreed to receive such an attribute from that peer. A PEKM implementation MUST drop a message containing a mandatory private use attribute if it has not previously agreed to receive

such an attribute from that peer.

4. Message Formats

PEKM messages consist of a PEMK header followed by one or more type-length-value (TLV) attributes.

4.1 PEKM header

                       1                   2                   3

   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  |  Maj  |  Min  |    Opcode     |          length               |

  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Where:

  - Maj (4 bits): the major number of the PEKM version

  - Min (4 bits): the minor number of the PEKM version  

  - Opcode (1 octet): indicates the type of PEKM message

  - length (2 octets): the total length of the PEKM message

    including all attributes and including the length of the

    PEKM header itself

Valid Opcodes:

       name                 value

       -----                ------

    Init request

     1

    Init response

     2

    Confirm request


3

    Confirm response

4

    Control-Request           5

    Control-Response          6 (unused in 802.11)

    Error response            7

  values 8-127 are reserved for future PEKM development

  values 128-255 are for private use among mutually consenting parties.

Note that the high-order bit of the opcode will indicate whether it is private (1) or not (0).

4.2 PEKM Attribute Format
PEKM attributes are encoded as type-length-values.

                       1                   2                   3

   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  | flags |    attribute type     |     attribute length          |

  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  |                                                               |

  ~                       attribute value                         ~

  |                                                               |

  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Where:

  - flags (4 bits): attribute specific, MUST be zero unless 

    the specific attribute utilizes these bits

  - attribute type (12 bits): is the type of attribute

    otherwise noted for a particular attribute

  - attribute length (2 octets): is the length of the attribute

    including the type and length fields themselves

  - attribute value (variable): is the value of the attribute

Valid attributes:

    name                      type

   -----                      ----

   snonce


      
1

   anonce


      
2

   peer-id


     3

   nas-id


      
4

   PEER_PORT


     5

   AUTH_PORT


     6

   ptk-lifetime


7

   pmk-lifetime


8

   gtk




9

   mic




10

   TSPEC-capabilities

11

   TCLAS-capabilities

12

   pmkid


      
13

   invalid_mic



14

   unspecified_error

15

   types 16-2047 are reserved for future PEKM development

   types 2048-4095 are for private use among mutually consenting parties

Note that the high-order bit of the attribute type will determine whether it is private (1) or not (0).

4.3 Port attributes

The PEER_PORT and AUTH_PORT attributes are six (6) octets in length. 
The flags field MUST be zero (0) for this attribute.
Note that the PEER_PORT utilized within PEKM-Init, PEKM-Confirm or PEKM-Control messages may not necessarily correspond to the EAP peer endpoint address (e.g. 802.11 STA MAC address)  used during the original EAP conversation.  Similarly, the AUTH_PORT used in PEKM-Init, PEKM-Confirm or PEKM-Control messages may not correspond to the EAP Authenticator endpoint address (e.g. 802.11 AP BSSID) used during the EAP conversation.  Furthermore, neither the PEER_PORT nor AUTH_PORT need correspond to source or destination addresses used within the PEKM-Init, PEKM-Confirm or PEKM-Control frames.  However, PEKM-Init state once established is associated with the < PEER_PORT, AUTH_PORT, PMKID> tuple, so that subsequent PEKM-Confirm and PEKM-Control messages need to utilize this same tuple. 
4.4 TSPEC- and TCLAS-capabilities

Capabilities attributes encapsulate a TSPEC or TCLAS IE and allow a PEKM-Init request/response to emulate a ADDTS request/response.

Capabilities are rejected by an AP by returning the attribute with a length of four (4), that is with no attribute value.

The flags field of a capabilities attribute is defined as:

   0 1 2 3 

  +-+-+-+-+

  |M|0|0|0|

  +-+-+-+-+

where:

       M- when set in a PEKM-Init-Request it indicates that the


  STA's request is mandatory. If the AP is unable to fulfill


  the request the corresponding PEKM-Init-Response MUST return


  a capabilities rejection with the M bit clear. If the AP


  is able to satisfy the capabilities request it MUST set


  the M bit in its response.


  If the M bit was not set in a PEKM-Init-Request it MUST NOT


  be set in a PEKM-Init-Response.

The attribute value of a TSPEC- or TCLAS-capabilities attribute consists of the respective IE and the length is dependent on that IE>

4.4 Lifetime attributes

The PMK- and PTK-lifetime MUST be four (4) octets in length, therefore the "length" field of a lifetime attribute MUST be eight (8). The units of lifetime of a lifetime attribute are milliseconds. Therefore the maximum lifetime of a PMK or PTK can be 4,294,967 seconds or

slightly over 49 days.

4.5 Nonce attributes

The anonce and snonce attributes MUST be a minimum of eight (8) octets and SHOULD NOT be more than thirty-two (32) octets.

The flags field MUST be zero (0) for this attribute.

4.6 GTK attribute
The GTK attribute is an encrypted key for broadcast/multicast use and is determined by the cipher and VLAN (or network) upon which the authenticated user of the STA is placed. The cipher for use with the GTK is unambiguously determined by the group cipher in the RSN IE that accompanies the PEKM IE in beacons and probe responses. The network or VLAN upon which the user of the STA must be placed is determined by the authenticated identitiy of that user as determined by the 802.1X/EAP exchange which created the corresponding PMK.

The GTK MUST be encrypted using [RFC3394] using the KEK of the PTK as the encryption key for the algorithm.

The flags field MUST be zero (0) for this attribute.

4.7 MIC attribute

The MIC algorithm used with PEKM is HMAC-SHA1, the HMAC [RFC2104] formulation of the [FIPS180-1] Digest, SHA1. The attribute value of the MIC attribute is the twenty (20) octet output of that algorithm. Therefore the length field of the MIC attribute MUST be twenty-four (24).

The flags field MUST be zero (0) for this attribute.
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