January 2003

doc.: IEEE 802.11-03/118r0

IEEE P802.11
Wireless LANs

Alternate Text for TGi 8.3.4

Date:
November 13, 2002

Author:
Paul A. Lambert, Russ Housley, Onno Letanche, Dorthey Stanley

Abstract

This document presents a more editorially correct version of the normative text for the CCM processing in clause 8.3.4 of the TGi specification.

Instruct the editor to replace the normative text of TGi D30 clause 8.3.4 with the following:
8.3.4 Counter-Mode/CBC-MAC Protocol (CCMP)

This clause specifies a protocol based on the Advanced Encryption Standard (AES) and Counter-Mode/CBC-MAC (CCM) This protocol is called the Counter-Mode/CBC-MAC Protocol (CCMP), which provides confidentiality, authentication, integrity, and replay protection.. Implementation of CCMP is mandatory for RSN compliance.

8.3.4.1 CCMP overview

CCMP employs AES using the CCM mode of operation. The CCM mode combines Counter (CTR) mode for confidentiality and Cipher Block Chaining Message Authentication Code (CBC-MAC) for authentication and integrity. These cryptographic primatives have been used and studied for a long time, and they have well-understood cryptographic properties. They provide good security and performance in both hardware or software.

CCM uses the same temporal key for both CTR mode and the CBC-MAC. CCM requires a fresh temporal key (TK) for every session. CCM requires a unique nonve value for each frame protected by a given TK, and CCMP uses a 48-bit packet number (PN) for this purpose. Reuse of a TK and packet number (PN) voids all security guarantees.

Annex F provides a reference implementation and test vectors for CCM mode.

8.3.4.2 CCMP MPDU format

Figure 1 depicts the MPDU format when using CCMP.

[image: image1.wmf]CCMP Header

8 octets

Data

>= 1 octets

MIC

8 octets

Encrypted (note)

PN0

b4

b5

b6

b7

b3

b0

PN1

Rsvd

PN5

PN4

PN3

PN2

Rsvd

Key

ID

Rsvd

Ext

IV

MAC Header

Figure 1—Expanded CCMP MPDU

CCMP processing expands the original MPDU size by 16 octets, 8 octets for the CCMP Header and 8 octets for the Message Integrity Code (MIC). The CCMP Header is constructed from the PN, ExtIV and KeyID fields.

Bit 5 of the KeyID octet signals that the security processing the CCMP Header extends the MPDU by 8 octets (rather than 4 octets used by WEP). The Extended IV bit (bit 5) is always set for CCMP.

The reserved bits shall be set to zero (0) and shall be ignored on reception.

8.3.4.3 CCMP encapsulation

Figure 2 depicts the CCMP encapsulation process. CCMP encrypts the payload of a plaintext MPDU and encapsulates the resulting ciphertext using the following steps:

[image: image2.wmf]Construct

AAD

Construct

Nonce

CCM

encryption

||

Increment PN

Construct

CCMP header

Plaintext MPDU

MAC header

A2,Priority

Data

Key

PN

KeyId

Encrypted MPDU

Encrypted

Data, MIC

Figure 2—CCMP encapsulation block diagram

1. Increment the Packet Number (PN), to obtain a fresh PN for each MPDU.

2. The fields in the MAC header are used to construct the Additional Authentication Data (AAD) for the CCM mode. The CCM algorithm provides integrity protection for the fields included in the AAD. MAC Header fields that may change when retransmitted are muted by either being set to zero or being excluded from the AAD.

3. Construct the CCM Nonce block from the PN, A2 and the Priority of the MPDU.

4. Encode the new PN and the KeyId into the 8 octet CCMP Header.

5. CCM originator processing uses the temporal key (TK), AAD, Nonce and MPDU data to form the ciphertext and MIC.

6. The Encrypted MPDU is formed by concatenating the original MAC Header, the CCMP header, the Encrypted Data and the MIC, as described in clause 8.3.4.2.

The following clauses describe the details of these processing steps.

8.3.4.3.1 PN Procesing

The PN is incremented for each MPDU. The PN shall never repreat for a series of encrypted MPDUs using the same temporal key (TK).

8.3.4.3.2 Construct AAD

The AAD is constructed from the MAC Header. The AAD does not include the header Duration field, because the Duration field value can change due to normal IEEE 802.11 operation. For simalr reasons, the computation masks the FC Retry bit to zero. AAD construction is performed as follows:

· FC – MPDU Frame Control field, with:

· Subtype b4 b5 b6 bits masked to zero;

· Retry bit masked to zero;

· PwrMgt bit masked to zero;

· MoreData bit masked to zero; and

· The Protected bit shall always be set to 1.

· A1 – MDPU Address 1.

· A2 – MPDU Address 2.

· A3 – MPDU Address 3.

· A4 – MPDU Address, if present.

· SC – MPDU Sequence Control.

· QC – The Quality of Service Control, if present, with:

· ll bits of the QC except the QC-TID are set to zero.

The format of the AAD is shown in the figure 4.

[image: image3.wmf]A1

FC with specified

muted bits

2

6

A2

6

SC

6

A3

2

6

A4

Figure 3—AAD Construction

8.3.4.3.3 Construct CCM Nonce

The Nonce field occupies is 13 octets, and its structure is shown in [image: image4.wmf]Priority

Octet

b3

b4

b6

b7

b2

b0

Reserved

Priority

1

A2

6

PN

13

b1

b5

Figure 4.

The Nonce has an internal structure QoS-TC || A2 || PN, where

· This Priority octet is reserved for the QoS traffic class and shall be set to the fixed value 0 (0x00 hex) when there is no QoS traffic class field. When there is a QoS traffic class, it is encode in bits 4, 5, 6, and 7 for the Priority octet. Bits 0, 1, 2, and 3 are reserved, and they are always set to zero.

· MPDU address A2 occupies octets 2 through 7. This shall be encoded with the octets ordered with A2 octet 0 at octet index 2 and A2 octet 5 at octet index 7.

· PN occupies octets 9 through 13. The octets of PN shall be ordered such that PN0 is at octet index 13 and PN5 is at octet index 8.

[image: image5.wmf]Priority

Octet

b3

b4

b6

b7

b2

b0

Reserved

Priority

1

A2

6

PN

13

b1

b5

Figure 4—Nonce Construction

8.3.4.3.4 Construct CCMP header

The format of the 8 octet CCMP header is given in clause 8.3.4.2. The header encodes the PN and KeyId values used to encrypt the MPDU.

8.3.4.3.5 CCM originator processing

CCM is a generic authenticate-and-encrypt block cipher mode, and in this specification, CCM is used with the AES block cipher. CCM has two parameters, and CCMP uses the following values for the CCM parameters:

· M = 8; indicating that the MIC is 8 octets.

· L = 2; indicating that the length field is 2 octets, which is sufficient to hold the length of the largest possible 802.11 MAC frame in octets.

There are four inputs to CCM originator processing:

· Key; the key used for CCM is the TK.

· Nonce; the nonce is 13 octets, and it is constructed as described in clause 8.3.4.3.3.

· Frame body; the frame body of the MPDU.

· AAD; additional authenticated data (AAD) that is constructed from the MAC header as described in clause 8.3.4.3.2.

The CCM originator processing provides authentication and integrity of the frame body and the AAD as well as confidentiality of the frame body.

There are two outputs from CCM originator processing:

· Encrypted frame body; the encrypted frame body is exactly the same size as the plaintext frame body.

· MIC; the MIC is 8 octets.

8.3.4.3.6 CCMP Encrypted MPDU

The CCMP encrypted MPDU is formed by concatenating the MAC Header, CCMP Header, Encrypted Frame Body and the MIC as described in section 8.3.4.2.

8.3.4.4 CCMP decapsulation

Figure 5 depicts the CCMP decapsulation process. CCMP decrypts the payload of a ciphertest MPDU and decapsulates a plaintext MPDU using the following steps:

[image: image6.wmf]Construct

AAD

Construct

Nonce

CCM

decryption

||

Encrypted MPDU

MAC header

A2, Priority

Key

Plaintext

data

Replay check

Plaintext

MPDU

MIC

Data

PN

PN

Figure 5—CCMP decapsulation block diagram

1. The Encrypted MPDU is parsed to construct the AAD and Nonce values.

2. The AAD is formed from the MAC Header of the Encrypted MPDU.

3. The Nonce value is constructed from A2, the PN, and Priority (when QC field is available).

4. The MIC is extracted for use in the CCM integrity checking.

5. The CCM recipient processing uses the temporal key (TK), AAD, Nonce, MIC and MPDU ciphertext data to recover the MPDU plaintext data as well as check the integrity of the AAD and MPDU plaintext data.

6. The received MAC Header and the MPDU plaintext data from the CCM recipient procesing may be concatenated to form a Plaintext MPDU.

7. The decryption processing prevents replay of MPDUs by validating that the PN in the MPDU is greater than the received PN maintained for the session.

The following clauses describe the details of this processing.

8.3.4.4.1 Construct AAD

The CCM Additional Authenticated Data (AAD) field is constructed from the MAC Header as described in clause 8.3.4.3.3.

8.3.4.4.2 CCM recipient processing

CCM recipient processing must use the same parameters as CCM originator processing. That is, AES is used as the block cipher, M = 8, and L = 2.

There are five inputs to CCM originator processing:

· Key; the key used for CCM is the TK.

· Nonce; the nonce is 13 octets, and it is constructed as described in clause 8.3.4.4.3.

· Encrypted frame body; the encrypted frame body from the received MPDU.

· AAD; additional authenticated data (AAD) is the canonical MAC header as described in clause 8.3.4.4.1.

· MIC; the MIC is 8 octets.

The CCM recipient processing checks the authentication and integrity of the frame body and the AAD as well as decrypting the frame body. The plaintext is returned only if the MIC check is successful.

There is one output from error free CCM recipient processing:

· frame body; the plaintext frame body, which is exactly the same size as the encrypted frame body.

When CCM recipient processing detects an error, the frame body is not returned, but an error indication is returned.

8.3.4.4.3 Construct CCM Nonce

The CCM Nonce is constructed as described in clause 8.3.4.3.2.

8.3.4.4.4 Decrypted CCMP MPDU

The decasulation process succeeds when the calculated MIC matches the MIC value received in the Encrypted MPDU. The original MAC Header is concatenated with the plaintext data resulting from the successful CCM recipient processing to create the plaintext MPDU.

8.3.4.4.5 PN and replay detection

This section describes the usage of the PN for replay detection. The PN is extracted from the CCMP Header as described in clause 8.3.4.2. Then, the following processing rules are used to detect replay:

1. The Packet Number (PN) values shall correspond to MPDUs.

2. The PN (a 48-bit counter) shall be selected from a single pool by each transmitter for each temporal key (TK). Each transmitter a separate counter for each TK.

3. The PN shall be implemented as a 48-bit monotonically incrementing non-negative integer, initialized to zero when the corresponding TK is initialized or refreshed.

4. A receiver shall maintain a separate set of PN replay counters for each MAC address from which it receives CCMP traffic. The receiver initializes the replay counter whenever it resets the TK for a peer.

8.3.4.5 CCMP state

CCMP privacy uses a MIB array called the dot11CcmpKeyMappings. This supports one entry for each MAC address pair with which the STA maintains secure associations. The size of the dot11CcmpKeyMappings array is implementation-specific. A global MIB variable dot11CcmpKeyMappingLength indicates the number of entries in the array.

Each entry of the dot11CcmpKeyMappings groups together the following state:

1. A dot11CcmpReceiveAddress and a dot11CcmpTransmitAddress, indicating that this entry applies to all MPDUs being sent between this pair of addresses.

2. A dot11CcmpKeyID, indicating the KeyID into which this entry maps.

3. A 128-bit key called the dot11CcmpTemporalKey, referred to informally as the temporal key. This is the TK1 subfield portion of the Pairwise Transient Key as defined in 8.5.1.2, or the TK1 subfield of the Group Transient Key as defined in 8.5.1.3. This key is often called the temporal key.

4. A set of 48-bit counters called the dot11CcmpTrafficClassNPacketNumber, for constructing the next initial block. N ranges from 0 to 15, with one traffic class defined for each Priority class. When QoS is not used, only dot11CcmpTrafficClass0PacketNumber is used.

5. A set of 48-bit replay counters called the dot11CcmpTrafficClassNReplayCounter, for detecting replays. N ranges from 0 to 15. When Priority is not used, only dot11CcmpTrafficClasse0ReplayCounter is used.

6. A boolean flag called dot11CcmpEnableTransmit, to indicate when the temporal key can be used for transmitting MPDUs.

7. A boolean flag called dot11CcmpEnableReceive, to indicate when the temporal key can be used for receiving MPDUs.

8. A 32-bit counter dot11CcmpFormatErrors, to indicate the number of MPDUs received with an invalid format, initialized to zero.

9. A 32-bit counter dot11CcmpReplays, to indicate the number of received unicast MPDUs discarded by the replay mechanism, initialized to zero.

10. A 32-bit counter dot11CcmpDecryptErrors, to indicate the number of received MPDUs discarded by the CCMP decryption mechanism, initialized to zero.

11. A 48-bit counter dot11CcmpRecvdMPDU, to track the total number of protected MPDUs received.

Informative Note: As an optimization, implementations may compute and maintain the AES-CCM key schedule rather than maintain the temporal key (TK).

8.3.4.6 CCMP processing with QoS Control (Informative)

The CCMP procesing protects fields in the MPDU header. This section describes the additional processing requirements for CCMP when the MPDU contains the QoS Control (QC) field)

8.3.4.6.1 CCM Nonce with QC-TID

The QoS-TCID occupies bits 0 to bits 3 of octet 1 of the Nonce. This field is reserved for the QoS traffic class and shall be set to the fixed value 0 (0x00 hex) when there is no QC field.

8.3.4.6.2 CCM AAD with QC field

The CCM AAD is constructed directly from the MAC Header. When MPDUs contain the QC field the QC field shall be included in the AAD with all bits of the QC except the QC-TID set to zero.

[image: image7.wmf]A1

FC with specified

muted bits

2

6

A2

6

SC

6

A3

2

6

A4

2

QC

Figure 6—AAD Construction

Note that both A4 and QC are optional fields.

8.3.4.6.4 Replay detection

The recipient shall maintain a separate replay counter for each IEEE 802.11 Traffic Class, and shall use the PN recovered from a received frame to detect replayed frames. A replayed frame occurs when the PN extracted from a received frame is repeated or not greater than the current Traffic Class replay counter value for the frame’s traffic class. The replay counter accommodates frames that may be delayed due to traffic class priority values.

�<Is there a MIB variable that needs to be incremented?>

Submission
page 2
P. Lambert, R. Housley, O. Letanche, D. Stanley

_1104207117.vsd

_1104208514.vsd

_1104212272.vsd

_1104207285.vsd

_1104199452.vsd

_1104199419.vsd

