December 2002

doc.: IEEE 802.11-02/795r1

IEEE P802.11
Wireless LANs

Proposed PRF Text Changes

Date:
14 March 2003

Author:
Jesse Walker

Intel Corporation

2111 N.E. 25th Avenue

Phone: +1 503 712-1849

e-Mail: jesse.walker@intel.com

Abstract

This submission proposes changes to the 802.11i Pseudo-Random Function (PRF) text. The new text introduces an AES-based PRF.

Motivation

This submission addresses several perceived problems with the Pseudo-Random Function (PRF) currently defined in the IEEE 802.11i Draft 3.0 (hereafter called “the Draft”).

1. The Draft PRF has an easily rectified weakness that allows prefix attacks.

2. The PRF in the Draft cannot benefit from 256 bit keys, as HMAC-SHA1 internally hashes keys of this length into a 160-bit key. This implies that the keys produced by the PRFs have at most 160 bits of entropy. It is desirable to have a PRF that can benefit from the full 256 bits of key utilized by IEEE 802.11i.

3. The draft NIST SP 800-56 defines a different PRF.

4. For highly constrained environments it would be useful to have a PRF available that uses only the AES encryption primitive, the only cryptographic primitive required by the IEEE 802.11i cipher suites.

The proposed text would remedy these problems.

Proposed Text

Change the text of Clause “8.5.1.1 PRF” to read:

8.5.1.1 PRF

This specification utilizes Pseudo-Random Functions (PRF) to derive cryptographic keys. It defines a new function called AES-PRF for key derivation.

Purpose. A PRF generates a stream of bits that is computationally indistinguishable from a stream of uniformly distributed random bits. This property allows a PRF to be exploited to derive cryptographic keys.

PRF interface. The PRFs defined here take six parameters and output an octet string. The parameters and their rationale are:

a) Key, a symmetric secret known only to the invoker and perhaps at most one of its peer, and perhaps by a single trusted third party. Key is always a octet string of 256 bits (32 octets).

b) AuthenticatorMac, the MAC address of the Authenticator.

c) SupplicantMac, the MAC address of the Supplicant.

d) Label, an ASCII text string, to indicate the purpose of this use of the PRF. The Label guards against the same Key, Nonce string, and Length being reused in different contexts. Label is always a well-known, hence public, value. In its computation, the PRFs defined do not include any null padding that might delimit this string.

e) Nonce, an octet string of data assumed to vary on each invocation of each PRF. If Nonce is different on each invocation of a PRF, then the output produced by the PRF will be fresh, i.e., never-before-used. Nonce is usually public information. In its computation the defined PRFs do not include any null padding that might delimit this string.

f) Length is an unsigned 8-bit integer indicating the number of octets the PRF should output.

The output is an octet string of Length-octets that, without knowledge of Key, is claimed to be computationally indistinguishable from an octet string of random bits.

Notation. The function Prefix(A, b) denotes the first b octets of the octet string A. 7.1.1 governs both the octet ordering and the bit ordering within an octet.

The decription uses “|” to denote octet string concatenation and “(” bit-wise exclusive OR. |(| denotes the length of its argument in octets.

The function AES-Encrypt(K, S) denotes encryption of the octet string S under the key K. FIPS PUB 197 defines the AES encrypt primitive.

PRF-AES. Pseudo-code defining PRF-AES is given by

Input:
Key = a 256-bit (32 octet) key

AuthenticatorMAC = the IEEE 802 MAC Address of the Authenticator
SupplicantMAC = the IEEE 802 MAC Address of the Supplicant
Label = an ASCII text string

Nonce = an octet string assumed different on each invocation

Length = the length of the output key in bits.

Output:
A derived bit string of Length bits
PRF-AES(Key, AuthenticatorMAC, SupplicantMAC, Label, Nonce, Length)

R (“”

iterations ((Length+15)/16

for i (1 to iterations do
R (R | AES-CBC-MAC(Key, AuthenticatorMAC | SupplicantMAC | i | Label | Nonce | Length)

return Substring(R, 0, Length)

The AES-CBC-MAC primitive used here is defined below.

Because AES operates on 128-bit blocks and performs no internal padding, it is necessary to pad the data AuthenticatorMAC | SupplicantMAC | i | Label | Nonce | Length to a 128 bit boundary. PRF-AES uses the padding scheme:

· When the length in bits of the data parameter AuthenticatorMAC | SupplicantMAC | i | Label | Nonce | Length is already a multiple of 128, Pad is the null string (i.e., no padding).

· When the length in octets of the data parameter AuthenticatorMAC | SupplicantMAC | i | Label | Nonce | Length is not a multiple of 16, pad it with enough zero octets to bring the string length to the next multiple of 16. More formally, let r denote the string length in bits modulo 16, i.e., r (| AuthenticatorMAC | SupplicantMAC | i | Label | Nonce | Length | mod 128. Then the Pad is a 16– r octet string of zero octets appended to AuthenticatorMAC | SupplicantMAC | i | Label | Nonce | Length.

PRF-AES represents Length in the AES-CBC-MAC computation as a single octet when Length < 256.

The version of AES-CBC-MAC used relies on the AES encrypt primitive but not the decrypt, just as the mandatory-to-implement CCM mode, as indicated by the following pseudo-code:

Input:
Key = a 256-bit (32 octet) key

Plaintext = a plaintext octet string to encrypt

Length = the length of the output in octets, always a multiple of 16

Output:
A 16 octet string indistinguishable from a random 16-octet string without knowledge of Key
AES-CBC-MAC(Key, Plaintex, Length)

Partition Plaintext = P1 P2 … Pk into 16 octet blocks, where k = Length/16, and P1 consists of octets 0-15 of Plaintext, P2 consists of octets 16-31, and generally Pi consists of bits 16(i – ((16)((i+1) – 1); each block is a string of 16 octets, ordered according to the conventions of Clause 7.1.1.

R (0x00000000000000000000000000000000

for i (1 to k do
R (AES-Encrypt(Key, Pi (R)

return R
AES-CBC-MAC begins by partitioning the Plaintext input into 128-bit blocks P1 P2 … Pk. After accomplishing this, the algorithm initializes a register R with the 128-bit zero string. The algorithms XORs the register contents with each successive block Pi , AES encrypts the result, and finally replaces the register contents with the encrypted value before moving on to the next block Pi+1. After consuming all of the blocks in this way, the algorithm returns the final register contents.

PRF usage. PRF-AES is never used directly. Instead, each instance of their use is parameterized to derive keys for a specific context:

	Name of PRF Usage
	Usage Defiition
	Usage Description

	PRF-Group-WEP-40(K, AuthenticatorMAC, SupplicantMAC, Nonce)
	PRF-AES(K, AuthenticatorMAC, SupplicantMAC, “group key expansion”, Nonce, 5)
	This is used to compute all Group Transient Keys used for WEP-40.

	PRF-Group-WEP-104(K, AuthenticatorMAC, SupplicantMAC, Nonce)
	PRF-AES(K, AuthenticatorMAC, SupplicantMAC, “group key expansion”, Nonce, 13)
	This is used to compute all Group Transient Keys used for WEP-104.

	PRF-Group-TKIP(K, AuthenticatorMAC, SupplicantMAC, Nonce)
	PRF-AES(K, AuthenticatorMAC, SupplicantMAC, “group key expansion”, Nonce, 32)
	This is used to compute all Group Transient Keys used for TKIP.

	PRF-Pairwise-TKIP(K, AuthenticatorMAC, SupplicantMAC, Nonce)
	PRF-AES(K, AuthenticatorMAC, SupplicantMAC, “pairwise key expansion”, Nonce, 32)
	This is used to compute all Pairwise Transient Keys used for TKIP.

	PRF-Group-CCMP(K, AuthenticatorMAC, SupplicantMAC, Nonce)
	PRF-AES(K, AuthenticatorMAC, SupplicantMAC, “group key expansion”, Nonce, 16)
	This is used to compute all Group Transient Keys used for CCMP.

	PRF-Pairwise-CCMP(K, AuthenticatorMAC, SupplicantMAC, Nonce)
	PRF-AES(K, AuthenticatorMAC, SupplicantMAC, “pairwise key expansion”, Nonce, 16)
	This is used to compute all Pairwise Transient Keys used for CCMP.

Informative Note. This specification often uses the term PRF to refer to any of these PRFs and PRF usages. When more specificity is required, either the correct PRF usage is clear from context or is given explicitly.

Replace Annex F, Clause 5, with the following:

F.5 PRF-AES reference implementation and test vectors

F.5.1 PRF-AES reference implementation

Informative Note: This is not intended to be production quality code.

#define AES_BLK_SIZE 16

#define KEYBYTES 32

#define KEYBITS (KEYBYTES * 8)

#define BLOCKBYTES 16

#define FIRSTBYTE 0 /* little-Endian arithmetic assumed */

#define LASTBYTE (BLOCKBYTES - 1) /* little-Endian arithmetic assumed */

#define ROUNDS (KEYBITS/32 + 6)

void aes_cbc_mac(

unsigned char* out, /* OUT – output buffer, at least 128 bits */

unsigned int schedule[4*(ROUNDS+1)], /* IN –AES key schedule */

int rounds, /* IN – number of rounds of AES (key size) */

unsigned char* data, /* IN – data to compute CBC-MAC of */

int data_length) /* IN – number of octets of data */

{

int blocks = data_length/AES_BLK_SIZE;

int i, j;

unsigned char r[AES_BLK_SIZE] = { 0 }; /* register initialized to 0 */

unsigned char* p;

/* for each block... */

for (i = 0; i < blocks; ++i) {

/* ...XOR data with register r contents... */

for (j = 0, p = data; j < AES_BLK_SIZE; ++j) {

r[j] ^= *p++;

}

/* ...encrypt, and place the result back into r */

rijndaelEncrypt(schedule, rounds, r, r);

data += 16;

}

/* copy r’s contents into the output buffer */

for (i = 0; i < AES_BLK_SIZE; ++i)

*out++= r[i];

}

void prf_aes(

unsigned char* output, /* OUT – out buffer, at least length/8 octets */

unsigned char* key, /* IN – AES encryption key */

int key_length, /* IN – number of key bits */

char* AuthMacAddr; /* IN – Authenticator MAC Address */

char* SuppMacAddr; /* IN – Supplicant MAC Address */

char* label, /* IN – null terminated text label used by the PRF */

unsigned char* nonce, /* IN – nonce string used by the PRF */

int nonce_length, /* IN – number of bits in nonce string in octets */

unsigned char length) /* IN – number of octets to output */

{

int rounds;

int i;

int iterations = (length+15)/16;

int data_length, pad_length;

unsigned int schedule[4*(ROUNDS+1)]; /* key schedule for the PRF */

unsigned char r[128]; /* register for output */

unsigned char data[1024]; /* buffer for data string */

unsigned char* p; /* ptr into r = where to put next block of output */

unsigned char* cptr; /* ptr into data = where to put counter value */

/* initialize the AES key schedule from the input key */

rounds = key_length/32 + 6;

(void) rijndaelKeySetupDec(schedule, key, KEYBITS);

/* construct the data string =

 * AuthMac | SuppMac | i | label | nonce | length */

/* AuthMac... */

data_length = 6;

memcpy(data, AuthMac, data_length);

/* ...SuppMac... */

memcpy(&data[data_length], SuppMac, data_length);

data_length += data_length;

/* ...counter... */

cptr = &data[data_length]; /* this is where the counter goes */

data_length++;

/* label... */

data_length += strlen(label);

memcpy(&data[data_length], label, data_length);

/* ...nonce string... */

memcpy(&data[data_length], nonce, nonce_length);

data_length += nonce_length;

/* ...and output length */

data[data_length] = (unsigned char)(length);

data_length++;

if ((data_length % 16) == 0) {

/* pad the data string to a 16 octet boundary */

pad_length = 16 - (data_length % 16);

for (i = 0; i < pad_length; ++i)

data[data_length + i] = 0;

data_length += pad_length;

}

/* use AES-CBC-MAC in "counter mode" on the data */

for (i = 0, p = &r[0]; i < iterations; ++i, p += AES_BLK_SIZE) {

/* update the counter...*/

*cptr = (unsigned char) (i & 0xff);

/* ... and "encrypt" into the register r */

aes_cbc_mac(p, schedule, rounds, data, buffer_length);

}

/* copy the contents of register r into output */

for (i = 0; i < length; ++i)

*output++ = r[i];

}

F.5.2 PRF-AES test vectors

TBS

Submission
page 3
Jesse Walker, Intel Corporation

