December 2002

doc.: IEEE 802.11-02/795r1

IEEE P802.11
Wireless LANs

Proposed PRF Text Changes

Date:
22 December 2002

Author:
Jesse Walker

Intel Corporation

2111 N.E. 25th Avenue

Phone: +1 503 712-1849

e-Mail: jesse.walker@intel.com

Abstract

This submission proposes changes to the 802.11i Pseudo-Random Function (PRF) text. The new text repairs defects in the existing text, and also introduces an AES-based PRF, intended to be utilized with the AES-based cipher suites.

Motivation

This submission addresses several perceived problems with the PRF currently defined in the IEEE 802.11i Draft 3.0 (hereafter called “the Draft”).

1. Instead of an incrementing counter, the Draft has erroneously specified a constant “0” octet between its label and nonce strings.

2. The Draft specifies the PRF Length parameter as an octet, but allows it to assume values greater than 255.

3. The Draft reference implementation of PRF from Annex F does not match the Draft pseudocode, as it fails to include the length field as specified in the normative portion of the Draft. This introduces a security weakness, in that if the same key, prefix, and data are inadvertantly used to generate keys of different length, the shorter key will be a prefix of the longer. It also implies that the Draft test vectors are incorrect.

4. The PRFs in the Draft cannot benefit from 256 bit keys, as HMAC-SHA1 internally hashes keys of this length into a 160-bit key. This implies that the keys produced by the PRFs have at most 160 bits of entropy. It is desirable to have a PRF that can benefit from the full 256 bits of key utilized by IEEE 802.11i.

5. For highly constrained environments it would be useful to have a PRF available that uses only the AES encryption primitive, the only cryptographic primitive required by the IEEE 802.11i cipher suites.

The proposed text would remedy all of these problems.

Proposed Text

Change the text of Clause “8.5.1.1 PRF” to read:

8.5.1.1 PRF

This specification utilizes Pseudo-Random Functions (PRF) to derive cryptographic keys. It defines an HMAC-SHA1 based PRF for WEP and for TKIP key derivation, and a PRF based on AES-CBC-MAC for CCMP and for WRAP key derivation.

Informative Note. This specification defines separate PRFs RC4 and AES based cipher suites, to allow constrained devices implementing only the mandatory-to-implement cipher suite to utilize a single cryptographic primitive, AES.

Purpose. A PRF generates a stream of bits that is computationally indistinguishable from a stream of uniformly distributed random bits. This property allows a PRF to be exploited to derive cryptographic keys.

PRF interface. The PRFs defined here take four parameters and output an octet string. The parameters and their rationale are:

a) Key, a symmetric secret known only to the invoker and perhaps at most one of its peer, and perhaps by a single trusted third party. Key is always a octet string of 256 bits (32 octets).

b) Label, an ASCII text string, to indicate the purpose of this use of the PRF. The Label guards against the same Key, Nonce string, and Length being reused in different contexts. Label is always a well-known, hence public, value. In its computation, the PRFs defined do not include any null padding that might delimit this string.

c) Nonce, an octet string of data assumed to vary on each invocation of each PRF. If Nonce is different on each invocation of a PRF, then the output produced by the PRF will be fresh, i.e., never-before-used. Nonce is usually public information. In its computation the defined PRFs do not include any null padding that might delimit this string.

d) Length is an unsigned 16-bit integer indicating the number of bits the PRF should output.

The output is an octet string of Length-bits that, without knowledge of Key, is claimed to be computationally indistinguishable from an octet string of random bits.

Notation. The function Substring(A, b, c) denotes the substring of the bit string A beginning with bit b of A and ending with bit c of A. Since each octet in an octet string consists of 8 bits, bit b refers to the (b mod 8)-th bit of the (b/8)-th octet of the string A; similarly, c refers to the (c mod 8)-th bit of the (c/8)-th octet of the string A. The usage assumes b < c. 7.1.1 governs both the octet ordering and the bit ordering within an octet.

The decription uses “||” to denote octet string concatenation and “(” bit-wise exclusive OR. |(| denotes the length of its argument in bits.

The function HMAC-SHA1(K, S) denotes HMAC-SHA1 of the octet string S under the key K. FIPS PUB 180-1 defines the SHA1 primitive. RFC 2104 defines the HMAC construction.

The function AES-Encrypt(K, S) denotes encryption of the octet string S under the key K. FIPS PUB 197 defines the AES encrypt primitive.

PRF-SHA. The first PRF defined is called PRF-SHA. Pseudo-code defining PRF-SHA is given by:

Input:
Key = a 256-bit (32 octet) key

Label = an ASCII text string

Nonce = an octet string assumed different on each invocation

Length = the length of the output key in bits.

Output:
A derived bit string of Length bits
PRF-SHA(Key, Label, Nonce, Length)

R (“”

for i (0 to (Length+159)/160 – 1 do
R (R || HMAC-SHA1(Key, Label || i || Nonce || Length)

return Substring(R, 0, Length)

PRF-SHA begins by initializing a register R to the null string. It operates HMAC-SHA1 in a variant of counter mode, mapping i (HMAC-SHA1(Key, Label || i || Nonce || Length) for each loop iteration. If HMAC-SHA1 simulates a pseudo-random function, then each loop iteration produces a distinct value that is computationally indistinguishable from a random string of 160 bits. Each iteration appends this 160 bits of output from HMAC-SHA1 to the register R. PRF-SHA executes the loop n times, where n = (Length+159)/160, implying n satisfies 160((n–1) < Length (160(n, when the register R thus contains 160(n bits. The algorithm terminates by outputting the first Length bits of R.

For the purpose of each HMAC computation, the algorithm represents Length as a single octet when Length < 256 and as a little-Endian unsigned 16-bit integer—i.e., with the least significant bit 0 first (left most) and most significant bit 15 last (right most)—otherwise.

For each HMAC operation the algorithm represents i as an octet.

Informative Note: Including Length in each invocation of HMAC-SHA1 guards against the algorithm producing one key that is the prefix of a longer one if the PRF is invoked in different contexts with the same Label and Nonce.

Informative Note. SHA1 is the core of HMAC-SHA1. HMAC internally hashes the Key, as its length exceeds output length of the hash function being used, in this case the 160 bits output by SHA1. This internal hashing implies that the output of PRF-SHA has at most 160 bits of entropy, as an attacker can reproduce the output generated by the PRF and the public data using a 2160 exhaustive search attack. This shows PRF-SHA cannot obtain the full benefit of all 256 bits of Key.

Informative Note. SHA1 automatically pads its data parameter Label || i || Nonce || Length to a 512-bit boundary, so the PRF definition explicitly prohibits an external padding scheme.

PRF-AES. The second defined PRF is called PRF-AES. Pseudo-code defining PRF-AES is given by

Input:
Key = a 256-bit (32 octet) key

Label = an ASCII text string

Nonce = an octet string assumed different on each invocation

Length = the length of the output key in bits.

Output:
A derived bit string of Length bits
PRF-AES(Key, Label, Nonce, Length)

R (“”

for i (0 to (Length+127)/128 – 1 do
R (R || AES-CBC-MAC(Key, Label || i || Nonce || Length || Pad)

return Substring(R, 0, Length)

The AES-CBC-MAC primitive used here is defined below. The defintion of PRF-AES is very similar to PRF-SHA. It uses the same basic construction, with AES-CBC-MAC replacing HMAC-SHA1, and a register R that contains a multiple of 128 bits instead of one that contains a multiple of 160.

Because AES operates on 128-bit blocks and performs no internal padding, it is necessary to pad the data argument Label || i || Nonce || Length to a 128 bit boundary. The padding scheme PRF-AES uses is

· When the length in bits of the data parameter Label || i || Nonce || Length is already a multiple of 128, Pad is the null string (i.e., no padding).

· When the length in bits of the data parameter Label || i || Nonce || Length is not a multiple of 128, zero pad it with enough bits to bring the string length to the next multiple of 128. More formally, let r denote the string length in bits modulo 128, i.e., r (| Label || i || Nonce || Length | mod 128. Then the Pad is a 128– r bits string of zero bits appended to Label || i || Nonce || Length.

As with PRF-SHA, the algorithm represents Length in the AES-CBC-MAC computation as a single octet when Length < 256 and as a little-Endian unsigned 16-bit integer—i.e., with the least significant bit 0 first (left most) and most significant bit 15 last (right most)—otherwise.

Informative Note. The key produced by PRF-AES has at most 256-bits of entropy.

The version of AES-CBC-MAC used relies on the AES encrypt primitive but not the decrypt, just as the mandatory-to-implement CCM mode, as indicated by the following pseudo-code:

Input:
Key = a 256-bit (32 octet) key

Plaintext = a plaintext octet string to encrypt

Length = the length of the output in bits, always a multiple of 128

Output:
A 128 bit string indistinguishable from a random 128-bit string without knowledge of Key
AES-CBC-MAC(Key, Plaintex, Length)

Partition Plaintext = P0 P1 … Pk–1 into 128-bit (16 octet) blocks, where k = Length/128, and P0 consists of bits 0-127 (octets 0-15) of Plaintext, P1 consists of bits 128-255 (octets 15-31), and generally Pi consists of bits 256(i – ((256)((i+1) – 1) (octets 16((i– 1) to 16(i– 1); each of the blocks are ordered from least significant bit (left) to most significant (right)—i.e., each block is a string of 16 octets, ordered according to the conventions of Clause 7.1.1.

R (0x00000000000000000000000000000000

for i (0 to k–1 do
R (AES-Encrypt(Key, P0 (R)

return R
AES-CBC-MAC begins by partitioning the Plaintext input into 128-bit blocks P0 P1 … Pk–1. After accomplishing this, the algorithm initializes a register R with the 128-bit zero string. The algorithms XORs the register contents with each successive block Pi , AES encrypts the result, and finally replaces the register contents with the encrypted value before moving on to the next block Pi+1. After consuming all of the blocks in this way, the algorithm returns the final register contents.

PRF usage. PRF-SHA and PRF-AES are never used directly. Instead, each instance of their use is parameterized to derive keys for a specific context:

	Name of PRF Usage
	Usage Defiition
	Usage Description

	PRF-Group-WEP-40(K, Nonce)
	PRF-SHA(K, “group key expansion”, Nonce, 40)
	This is used to compute all Group Transient Keys used for WEP-40.

	PRF-Group-WEP-104(K, Nonce)
	PRF-SHA(K, “group key expansion”, Nonce, 104)
	This is used to compute all Group Transient Keys used for WEP-104.

	PRF-Group-TKIP(K, Nonce)
	PRF-SHA(K, “group key expansion”, Nonce, 256)
	This is used to compute all Group Transient Keys used for TKIP.

	PRF-Pairwise-TKIP(K, Nonce)
	PRF-SHA(K, “pairwise key expansion”, Nonce, 512)
	This is used to compute all Pairwise Transient Keys used for TKIP.

	PRF-Group-CCMP(K, Nonce)
	PRF-AES(K, “CCMP group key expansion”, Nonce, 128)
	This is used to compute all Group Transient Keys used for CCMP.

	PRF-Pairwise-CCMP(K, Nonce)
	PRF-AES(K, “CCMP pairwise key expansion”, Nonce, 384)
	This is used to compute all Pairwise Transient Keys used for CCMP.

	PRF-Group-WRAP(K, Nonce)
	PRF-AES(K, “WRAP group key expansion”, Nonce, 128)
	This is used to compute all Group Transient Keys used for WRAP.

	PRF-Pairwise-WRAP(K, Nonce)
	PRF-AES(K, “WRAP pairwise key expansion”, Nonce, 384)
	This is used to compute all Pairwise Transient Keys used for WRAP.

Informative Note. This specification includes in the label the name of the AES-based cipher suite consuming the derived key, to guard against accidental reuse of the same key and nonce string in different contexts.

Informative Note. This specification often uses the term PRF to refer to any of these PRFs and PRF usages. When more specificity is required, either the correct PRF usage is clear from context or is given explicitly.

Replace Annex F, Clause 5, with the following:

F.5 PRF-SHA reference implementation and test vectors

F.5.1 PRF-SHA reference implementation

Informative Note: This is not intended to be production quality code.

void prf_sha(

unsigned char* output, /* OUT – out buffer, at least length/8 octets */

unsigned char* key, /* IN – AES encryption key */

int key_length, /* IN – number of key bits */

char* label, /* IN – null terminated text label used by the PRF */

unsigned char* nonce, /* IN – nonce string used by the PRF */

int nonce_length, /* IN – number of bits in nonce string */

unsigned short length) /* IN – number of bits to output */

{

int i;

int iterations = length/(8*16);

int data_length;

unsigned char r[128]; /* register for output */

unsigned char data[1024]; /* buffer for data string */

unsigned char* p; /* ptr into r = where to put next block of output */

unsigned char* cptr; /* ptr into data = where to put counter value */

data_length = strlen(label);

memcpy(data, label, data_length);

cptr = &buffer[data_length];

data_length++;

memcpy(&data[data_length], nonce, nonce_length/8);

data_length += nonce_length/8;

data[data_length] = (unsigned char)(length & 0xff);

data_length++;

if (length >= 256) {

data[daa_length] = (unsigned char)((length >> 1) & 0xff);

data_length++;

}

for (i = 0, p = &r[0]; i < iterations; ++i, p += 16) {

*cptr = (unsigned char) (i & 0xff);

hmac_sha1(data, data_length, key, key_length/8, p);

}

for (i = 0; i < length/8; ++i)

*output++ = r[i];

}

F.5.2 PRF-SHA test vectors

Add the following text to Annex F, renumbering sub-clauses appropriately:

Test Case 1

Key:
ecd898d0699bec825ccf3ac1eb7a5402d460f5aac938a658516fe7c7966b8420

Key bits:
256

Label:
group key expansion

Label octets:
19

Nonce: ccc8d49042d4d867164d2e59a0a32b5001de4b8de0cfc957ad915815a68a0c57b9ea6ec785ea770b8ea2fe36a02a43a859c7dc2ed6dcb31772e6eff56b5df0bb

Nonce bits:
512

Output bits:
40

Output:
080000005f

Test Case 2

Key:
ecd898d0699bec825ccf3ac1eb7a5402d460f5aac938a658516fe7c7966b8420

Key bits:
256

Label:
group key expansion

Label octets:
19

Nonce: ccc8d49042d4d867164d2e59a0a32b5001de4b8de0cfc957ad915815a68a0c57b9ea6ec785ea770b8ea2fe36a02a43a859c7dc2ed6dcb31772e6eff56b5df0bb

Nonce bits:
512

Output bits:
104

Output:
080000005f096c0061ff6b00c8

Test Case 3

Key:
ecd898d0699bec825ccf3ac1eb7a5402d460f5aac938a658516fe7c7966b8420

Key bits:
256

Label:
group key expansion

Label octets:
19

Nonce: ccc8d49042d4d867164d2e59a0a32b5001de4b8de0cfc957ad915815a68a0c57b9ea6ec785ea770b8ea2fe36a02a43a859c7dc2ed6dcb31772e6eff56b5df0bb

Nonce bits:
512

Output bits:
128

Output:
a46b55b13c2d3967f78b3171beed8a7a

Test Case 4

Key:
ecd898d0699bec825ccf3ac1eb7a5402d460f5aac938a658516fe7c7966b8420

Key bits:
256

Label:
pairwise key expansion

Label octets:
22

Nonce: ccc8d49042d4d867164d2e59a0a32b5001de4b8de0cfc957ad915815a68a0c57b9ea6ec785ea770b8ea2fe36a02a43a859c7dc2ed6dcb31772e6eff56b5df0bb

Nonce bits:
512

Output bits:
512

Output: 2dd935500ccc2d424ab8e5c7f3631aea088e30b151807b70946be188dcc2f45b34cf70328dd3515ce0e82768493a7963cae1c8e5a0df10c95787dd63d4ea22c4

Test Case 5

Key:
60438a8bd1973f949c53669df44b0c2ad22130d162768c465a6620273510ad8a

Key bits:
256

Label:
group key expansion

Label octets:
19

Nonce: e66abbeb61074811d38b46644f52492b79adc746f2b4c618353374014090486212439cd81c701ec559b848089e374eaaecdf496a5e73d999f3ef08bc49ca61a4

Nonce bits:
512

Output bits:
40

Output:
2dd935500c

Test Case 6

Key:
dafac56896303f7731dd57b4472031a4685b29b89030470697ba91261fcf739e

Key bits:
256

Label:
group key expansion

Label octets:
19

Nonce: eb306f81a52d1a014caf3f542b1cdcfdf099b9ac7471ab3c5b0c8896672744f2527bde3c43012f80047ceb22aae19d0a58b4e1654ee3cb1f10facb3b4d4be6f8

Nonce bits:
512

Output bits:
128

Output:
13a74940d5b9b11a28e04b0dd6156ca9

Test Case 7

Key:
0fe7fd919563fa12f55c41ecf5847fa31647a7cebdc791d00fbde6a2baa7c7e4

Key bits:
256

Label:
pairwise key expansion

Label octets:
22

Nonce: 4436aefd0c7ea296fe28ac990d966a3f960ae92ae8c3e837bc7de8469bfb8305c893204944c6c0353ce2868cbe364040a1e40bb470c2f0fc185f6e793992d133

Nonce bits:
512

Output bits:
512

Output: e2c86c45d8b561f1d61ddbf474347326bc5892c8aa68138780c57b1ce340a93ef26861f6559f6343e4c31ed94cfb4b2dcc2507417a7784967c011efb32dc6880

F.6 PRF-AES reference implementation and test vectors

F.6.1 PRF-AES reference implementation

Informative Note: This is not intended to be production quality code.

#define AES_BLK_SIZE 16

#define KEYBYTES 32

#define KEYBITS (KEYBYTES * 8)

#define BLOCKBYTES 16

#define FIRSTBYTE 0 /* little-Endian arithmetic assumed */

#define LASTBYTE (BLOCKBYTES - 1) /* little-Endian arithmetic assumed */

#define ROUNDS (KEYBITS/32 + 6)

void aes_cbc_mac(

unsigned char* out, /* OUT – output buffer, at least 128 bits */

unsigned int schedule[4*(ROUNDS+1)], /* IN –AES key schedule */

int rounds, /* IN – number of rounds of AES (key size) */

unsigned char* data, /* IN – data to compute CBC-MAC of */

int data_length) /* IN – number of octets of data */

{

int blocks = data_length/AES_BLK_SIZE;

int i, j;

unsigned char r[AES_BLK_SIZE] = { 0 }; /* register initialized to 0 */

unsigned char* p;

/* for each block... */

for (i = 0; i < blocks; ++i) {

/* ...XOR data with register r contents... */

for (j = 0, p = data; j < AES_BLK_SIZE; ++j) {

r[j] ^= *p++;

}

/* ...encrypt, and place the result back into r */

rijndaelEncrypt(schedule, rounds, r, r);

data += 16;

}

/* copy r’s contents into the output buffer */

for (i = 0; i < AES_BLK_SIZE; ++i)

*out++= r[i];

}

void prf_aes(

unsigned char* output, /* OUT – out buffer, at least length/8 octets */

unsigned char* key, /* IN – AES encryption key */

int key_length, /* IN – number of key bits */

char* label, /* IN – null terminated text label used by the PRF */

unsigned char* nonce, /* IN – nonce string used by the PRF */

int nonce_length, /* IN – number of bits in nonce string */

unsigned short length) /* IN – number of bits to output */

{

int rounds;

int i;

int iterations = length/(8*16);

int data_length, pad_length;

unsigned int schedule[4*(ROUNDS+1)]; /* key schedule for the PRF */

unsigned char r[128]; /* register for output */

unsigned char data[1024]; /* buffer for data string */

unsigned char* p; /* ptr into r = where to put next block of output */

unsigned char* cptr; /* ptr into data = where to put counter value */

/* initialize the AES key schedule from the input key */

rounds = key_length/32 + 6;

(void) rijndaelKeySetupDec(schedule, key, KEYBITS);

/* construct the data string = label || 0 || nonce || length */

/* label... */

data_length = strlen(label);

memcpy(data, label, data_length);

/* ...counter... */

cptr = &data[data_length]; /* this is where the counter goes */

data_length++;

/* ...nonce string... */

memcpy(&data[data_length], nonce, nonce_length/8);

data_length += nonce_length/8;

/* ...and output length in bits */

data[data_length] = (unsigned char)(length & 0xff);

data_length++;

if (length >= 256) {

data[data_length] = (unsigned char)((length >> 1) & 0xff);

data_length++;

}

if ((data_length % 16) == 0) {

/* pad the data string to a 16 octet boundary */

pad_length = 16 - (data_length % 16);

for (i = 0; i < pad_length; ++i)

data[data_length + i] = 0;

data_length += pad_length;

}

/* use AES-CBC-MAC in "counter mode" on the data */

for (i = 0, p = &r[0]; i < iterations; ++i, p += AES_BLK_SIZE) {

/* update the counter...*/

*cptr = (unsigned char) (i & 0xff);

/* ... and "encrypt" into the register r */

aes_cbc_mac(p, schedule, rounds, data, buffer_length);

}

/* copy the contents of register r into output */

for (i = 0; i < length/8; ++i)

*output++ = r[i];

}

F.6.2 PRF-AES test vectors

Test Case 1

Key:
ecd898d0699bec825ccf3ac1eb7a5402d460f5aac938a658516fe7c7966b8420

Key bits:
256

Label:
CCMP group key expansion

Label octets:
24

Nonce: ccc8d49042d4d867164d2e59a0a32b5001de4b8de0cfc957ad915815a68a0c57b9ea6ec785ea770b8ea2fe36a02a43a859c7dc2ed6dcb31772e6eff56b5df0bb

Nonce bits:
512

Output bits:
128

Output:
9dd207d47d46a9a8e11bd40419e6df31
Test Case 2

Key:
ecd898d0699bec825ccf3ac1eb7a5402d460f5aac938a658516fe7c7966b8420

Key bits:
256

Label:
CCMP pairwise key expansion

Label octets:
27

Nonce: ccc8d49042d4d867164d2e59a0a32b5001de4b8de0cfc957ad915815a68a0c57b9ea6ec785ea770b8ea2fe36a02a43a859c7dc2ed6dcb31772e6eff56b5df0bb

Nonce bits:
512

Output bits:
384

Output: ecbb721cfd081750c94cd5348211d523495993d85a22f3434d4b2a5bfea336e58dcdd315dddc1a5add838ddfa7683d64

Test Case 3

Key:
ecd898d0699bec825ccf3ac1eb7a5402d460f5aac938a658516fe7c7966b8420

Key bits:
256

Label:
WRAP pairwise key expansion

Label octets:
27

Nonce: ccc8d49042d4d867164d2e59a0a32b5001de4b8de0cfc957ad915815a68a0c57b9ea6ec785ea770b8ea2fe36a02a43a859c7dc2ed6dcb31772e6eff56b5df0bb

Nonce bits:
512

Output bits:
384

Output: 0f62fa2a00cf24e8d219f5ca18ff9a89d69869cbe028e831b7b21f948747b8725b6dd7903d1d46fc935eedd8ed0b2e1f

Test Case 4

Key:
60438a8bd1973f949c53669df44b0c2ad22130d162768c465a6620273510ad8a

Key bits:
256

Label:
CCMP group key expansion

Label octets:
24

Nonce: e66abbeb61074811d38b46644f52492b79adc746f2b4c618353374014090486212439cd81c701ec559b848089e374eaaecdf496a5e73d999f3ef08bc49ca61a4

Nonce bits:
512

Output bits:
128

Output:
4518070c300b4c27dca3c27527a5a94c
Test Case 5

Key:
dafac56896303f7731dd57b4472031a4685b29b89030470697ba91261fcf739e

Key bits:
256

Label:
CCMP pairwise key expansion

Label octets:
27

Nonce: eb306f81a52d1a014caf3f542b1cdcfdf099b9ac7471ab3c5b0c8896672744f2527bde3c43012f80047ceb22aae19d0a58b4e1654ee3cb1f10facb3b4d4be6f8

Nonce bits:
512

Output bits:
384

Output: a16bf639e8db6b9f9d9c04af46acd6e8267302aa425a378f9cd45c92638b89b1a3b98993ef65f61e186bafbac1224466

Test Case 6

Key:
0fe7fd919563fa12f55c41ecf5847fa31647a7cebdc791d00fbde6a2baa7c7e4

Key bits:
256

Label:
WRAP pairwise key expansion

Label octets:
27

Nonce: 4436aefd0c7ea296fe28ac990d966a3f960ae92ae8c3e837bc7de8469bfb8305c893204944c6c0353ce2868cbe364040a1e40bb470c2f0fc185f6e793992d133

Nonce bits:
512

Output bits:
384

Output: f962e3d721d19a4b9bdb2023da48f74ba2ce0986b8b463147478f3665e92e3103744db167bb1eb4ac8636a991b046c42

Submission
page 7
Jesse Walker, Intel Corporation

