November 2002

doc.: IEEE 802.11-01/686r0

IEEE P802.11
Wireless LANs

Suggested draft Text for Extended Key ID Proposal

Date:
November 8, 2002

Author:
Martin Lefkowitz

Trapeze Networks

5753 W. Las Positas Blvd., Pleasanton, CA 94588

Phone: 925-474-2241

Fax: 925-474-0642

e-Mail: lefko@trapezenetworks.com

Abstract

This document is intended to amend IEEE Std 802.11i/D2.5, November 2002 with text related to the Extended Key ID proposal.
Clause 8.3.2.2 – change figure 12 to

[image: image1.wmf]Note:

 The encipherment process has expanded the original MPDU size by 20 octets, 4 for the Initialization vector (IV) / Key

ID field, 4 for the extended IV field, 8 for the Message Integrity Code (MIC) and 4 for the Integregty Check Value (ICV).

TSC0

b4

b5

b6

b7

b0

KIDEX

LSB

TSC1

TSC5

TSC4

TSC3

TSC2

KID EX

Bits 8-11

Key

ID

Ext

IV

IV / KeyID

4 octets

Data >= 1 octets

MIC

8 octets

Encrypted

(note)

Extended IV

4 octets

ICV

4

octets

IV32

Expanded IV16

Figure 1—Construction of Expanded TKIP MPDU

Clause 8.3.2.2 – Change following text to

The ExtIV bit in the KeyId octet indicates the presence or absence of an extra 4 bytes of initialization vector, the extended IV, used in the encryption process. For TKIP the ExtIV bit shall be set, and the TSC fields shall be supplied as in Figure 12. The ExtIV bit shall be 0 for WEP packets and the extended IV shall not be supplied.

KID Ex Field is the Extended keymap ID value. This is a 12 bit field with bit 0 of the KID EX LSB being bit zero of the extended Keymap ID and bits 8-11 of the KID ex, as described in figure 12 being the upper 4 bits of the field. This field must match the Extended Keymap ID field received from the EAPOL key descriptor. If the fields are equal then the MPDU will be able to be decrypted with the key that was generated from the key data in the EAPOL key message.

TSC 0 is the most significant octet of the IV and TSC5 the least significant. Octets TSC4 and TSC5 form the IV sequence number part used with the TKIP phase 2 key hashing. Octets TSC0 – TSC3 are used in the TKIP phase 1 key hashing. It encodes the least significant 16 bits of the whole 48-bit IV. As soon as this lower 16 bit sequence number rolls over (0xFFFF (0x0000), the extended IV value—i.e., the upper 32 bits of the entire 48-bit IV—must be incremented by 1.

Informational note: The rationale for this construction is:

· Aligning on word boundaries eases implementation on legacy devices

· Adding 4 octets of extended IV eliminates IV exhaustion as a reason to re-key.

· Retain IV/Key-ID of 4 octets, add 4 octets and use the last 2 octets (16bits) of the IV as the sequence number.

· Key ID octet changes – Use one bit (bit 5) to indicate that an extended IV is present. This allows the receiver/transmitter to know that the extended mode is present. The receiver/transmitter processes the following 4 octets as the extended IV. The receiving/transmitting station also uses the value of IV4 and IV5 octets to detect that a key rollover has occurred. When a key rollover has occurred, a new Phase 1 value is calculated, and used to decrypt the received/transmitted frame.

The extended IV field shall not be encrypted.

Note that if the TSC is represented as an octet string according to the conventions of 7.1.1, then

TSC = TSC0 TSC1 TSC2 TSC3 TSC4 TSC5

where TSC0 is the least significant octet and TSC5 the most significant.
Clause 8.3.4.2 – Change following text to

[image: image2.wmf]IV / KeyID

4 octets

Data >= 1 octet

MIC

8 octets

Encrypted (note)

Note:

The encipherment process has expanded the original MPDU size by 16 octets, 4 for the IV / Key ID field, 4 for the

extended IV field and 8 for the Message Integrity Code (MIC).

Extended IV

4 octets

IV0

b4

b5

b6

b7

b3

b0

IV1

KID EX

LSB

IV5

IV4

IV3

IV2

Key

ID

KID EX

bits 8-11

Ext

IV

Figure 2—Expanded CCMP MPDU

The IV/KeyID and Extended IV fields together are called the encoded PN. This is a slight abuse of language, since the encoding includes the Key Id as well as the PN.

The CCMP formats are invisible to entities outside the 802.11 MAC data path.

Bit 5 of the KeyID octet signals an Extended Packet number field of 6 octets. For standard length Packet number/ IV fields this bit shall be set to zero (0), for extended packet number field the bit shall be set to one. The Extended IV bit (bit 5) is always set for CCMP.

KID Ex Field is the Extended keymap ID value. This is a 12 bit field with bit 0 of the KID EX LSB being bit zero of the extended Keymap ID and bits 8-11 of the KID ex, as described in figure 12 being the upper 4 bits of the field. This field must match the Extended Keymap ID field received from the EAPOL key descriptor. If the fields are equal then the MPDU will be able to be decrypted with the key that was generated from the key data in the EAPOL key message.

8.3.4.3 CCMP state

CCMP privacy uses a MIB array called the dot11CcmpKeyMappings. This supports zero, one, or two entries for each MAC address pair with which the STA maintains secure associations. The size of the dot11CcmpKeyMappings array is implementation-specific. A global MIB variable dot11CcmpKeyMappingLength indicates the number of entries in the array.

Each entry of the dot11CcmpKeyMappings groups together the following state:

1. A dot11CcmpReceiveAddress and a dot11CcmpTransmitAddress, indicating that this entry applies to all MPDUs being sent between this pair of addresses.

2. A dot11CcmpKeyID, indicating the KeyID into which this entry maps.

3. A 128-bit key called the dot11CcmpTemporalKey, referred to informally as the temporal key. This is the TK1 subfield portion of the Pairwise Transient Key as defined in 8.5.1.2, or the TK1 subfield of the Group Transient Key as defined in 8.5.1.3. This key is often called the temporal key.

4. A set of 48-bit counters called the dot11CcmpTrafficClassNPacketNumber, for constructing the next initial block. N ranges from 0 to 15, with one traffic class defined for each QoS service class. When QoS is not used, only dot11CcmpTrafficClass0PacketNumber is used.

5. A set of 48-bit replay windows called the dott11CcmpTrafficClassNReplayWindow, for detecting replays. N ranges from 0 to15. When QoS is not used, only dot11CcmpTrafficClasse0ReplayWindow is used.

6. A boolean flag called dot11CcmpEnableTransmit, to indicate when the temporal key can be used for transmitting MPDUs.

7. A boolean flag called dot11CcmpEnableReceive, to indicate when the temporal key can be used for receiving MPDUs.

8. A 32-bit counter dot11CcmpFormatErrors, to indicate the number of MPDUs received with an invalid format, initialized to zero.

9. A 32-bit counter dot11CcmpReplays, to indicate the number of received unicast MPDUs discarded by the replay mechanism, initialized to zero.

10. A 32-bit counter dot11CcmpDecryptErrors, to indicate the number of received MPDUs discarded by the CCMP decryption mechanism, initialized to zero.

11. A 48-bit counter dot11CcmpRecvdMPDU, to track the total number of protected MPDUs received.

Informative Note 1: A broadcast/multicast entry does not utilize the replay window. This is because it is impossible to detect broadcast/multicast replays using symmetric key techniques. In particular, any party holding the broadcast/multicast key can masquerade as any other member of the group, so can intrude on another’s sequence space without detection.

Informative Note 2: As an optimization, implementations may compute and maintain the AES-CCM key schedule rather than maintain the temporal key.

Informative Note 3: Extended Keymap ID errors for multicast addresses are handled via the dot11UnsupportedExtendedKeymapID count.

Clause 8.4.1 Number 4 change text to:

4. The last step is key exchange. The authentication process creates cryptographic keys shared between the IEEE 802.1X AS and the STA. The AS distributes these keys to the AP, and the AP and STA uses key confirmation handshakes, called the 4-way handshake, for the unicast key, and one or more group key handshake, to complete security association establishment. The key confirmation handshakes indicate when the link has been secured by the keys, so is safe to allow normal data traffic. If key handshakes complete successfully, STAs (including APs) shall terminate the filtering of class 3 MPDUs other than IEEE 802.1X, allowing normal data to flow.

Clause 8.4.2 Delete the following Informative Note

Informative Note: As a practical matter, the multicast cipher suite must be the weakest unicast cipher suite enabled.

Clause 8.4.3.1 Delete paragraph 4 that states;

An AP cannot support multiple group key cipher suites simultaneously within an ESS. In particular, a TSN must use the cipher suite supported by the least capable STA it admits as the group key cipher suite.

Clause 8.4.5 Item 5 - change text to

5. once a group temporal key is configured, class 3 MPDU to be transmitted as a multicast or broadcast for that Extended Keymap ID.

Clause 8.4.8 paragraph 6 change text

A second key exchange is also defined, to distribute a temporal group key. This is called the group key handshake. When the 4-way handshake completes, the AP’s Authenticator can use the group key handshake to transfer the temporal group key for the Group Key cipher suite to the STA’s Supplicant, to allow the STA to receive “secure” broadcast/multicast traffic. The group key handshake uses the EAPOL-Key messages for this exchange. When it completes, the STA can use the MLME-SETKEYS.request primitive to configure the temporal group key into the 802.11 MAC.

to

A second key exchange is also defined, to distribute a temporal group key. This is called the group key handshake. When the 4-way handshake completes, the AP’s Authenticator can use the group key handshake to transfer one or more temporal group key for the Group Key cipher suite to the STA’s Supplicant, to allow the STA to receive “secure” broadcast/multicast traffic streams. The group key handshake uses the EAPOL-Key messages for this exchange. When it completes, the STA can use the MLME-SETKEYS.request primitive to configure the temporal group key into the 802.11 MAC.

Clause 8.5.1.3 first paragraph line 16 change sentence to.

Group Keys are used between a single Authenticator and all Supplicants authenticated to that Authenticator with the corresponding Extended Keymap ID. The Authenticator may derive new Group Transient Keys when it wants to update the Group temporal keys.

Clause 8.5.2 figure 32change to

	Descriptor Type – 1 octet

	Key Information – 2 octets
	Key Length – 2 octets

	Replay Counter – 8 octets

	Key Nonce – 32 octets

	EAPOL-Key IV – 16 octets

	Key RSC – 8 octets

	Reserved 6 octets

	Extended Keymap ID

	Key MIC – 16 octets

	Key Material Length – 2 octets
	Key Data – n octets

Change text for Key ID field

Reserved. This field is six (6) octets in length. It is reserved and set to 0.

Extended Keymap ID. This is a 2 octet field that has the following format

B0
b12
b15

	Extended Keymap ID
	Reserved

The extended keymap ID field is a number from 0 to 1024 that is to be inserted into the extended keymap ID field in the MPDU for either TKIP or CCMP. The key that is derived from this key exchange is only valid when this extended keymap ID shows up in the MPDU. The default value for this field is zero

Clause 8.5.3 4 way Handshake (informative) changes

Add bullit between bullits 5 and 6 that says

· ExKeyId Extended key map ID uaed in conjunction with the GTK. This field will be set to zero when not used.

Clause 8.5.5.10 Example 4-way Handshake (Informative)

Change references to SSN in diagram to RSN.

NOTE: heading labelled 8.5.5.10 is mislabled it should be 8.5.3.10

8.5.3.10 change sentence from

The AP typically follows this with the initial Group key update.

To

The AP typically follows this with one or more initial Group key updates.

Clause 8.5.4.1 Message1

Key ID = Extended keymap ID. If extended keypmapping is unused in the group key then this field is zero.

Clause 8.5.6 Athenticator Key Management State Machine

Change starting at paragraph 3 from

Since there are two GTKs, responsibility for updating these keys is given to the Group Key state machine. That is, this state machine determines which GTK is in use at any time. When a first STA associates, the Group Key state machine has not been started and is started by GInitAKeys variable when the 4-way handshake completes. The Group Key state machine initializes the value of the Group Key and then triggers the PTK Group Key state machine, which actually sends the Group Key to the associated station.

When a second STA associates, the Group Key state machine is already initialized, and a Group Key is already available and in use. The PTK Group Key state machine is immediately triggered from the PTKINITDONE state and sends the current Group Key to the new station.

When the GTK is to be updated the GTKReKey variable is set. The SETKEYS state updates the Group Key and triggers all the PTK Group Key state machines that current exist—one per associated STA). Each PTK Group Key state machine sends the Group Key to its station. When all the stations have received the Group Key (or failed to receive the key), the SETKEYSDONE state is executed which updates the APs encryption/integrity engine with the new key.

To

Since there are two sets GTKs, responsibility for updating these keys is given to the Group Key state machine. That is, this state machine determines which GTK is in use at any time for a particular Exended Keymap ID. When a first STA associates, the Group Key state machine has not been started and is started by GInitAKeys variable when the 4-way handshake completes. The Group Key state machine initializes the value of the Group Key and then triggers the PTK Group Key state machine, which actually sends the Group Key(s) to the associated station.

When a second STA associates, the Group Key state machine is already initialized, and a Group Key is already available and in use. The PTK Group Key state machine is immediately triggered from the PTKINITDONE state and sends the current Group Key(s) to the new station.

When the GTK is to be updated the GTKReKey variable is set. The SETKEYS state updates the Group Key and triggers all the PTK Group Key state machines that current exist—one per associated STA that has received a group key with the Extended Keymap ID associated with that Group Key). Each PTK Group Key state machine sends the Group Key to its station. When all the stations, that are supposed to receive the new group key, have received the Group Key (or failed to receive the key), the SETKEYSDONE state is executed which updates the APs encryption/integrity engine with the new key.

Change

REKEYNEGOTIATING: The Authenticator enters this state when a GTK is to be sent to the Supplicant.
Informative Note: The TxRx flag for sending a Group Key is always the opposite of whether the Pairwise Key is used for data encryption/integrity or not. If a Pairwise key is used for encryption/integrity then the station never transmits with the Group Key otherwise the station uses the Group Key for transmit.

REKEYESTABLISHED: The Authenticator enters this state when it receives an EAPOL-Key message from the supplicant with the key type set to Group key.
KEYERROR: The Authenticator enters this state if the EAPOL-Key acknowledgement for the Group key update is not received before a timeout.
SETKEYS: The Authenticator enters this state when the GTK is to be updated at all Supplicants.
SETKEYSDONE: The Authenticator enters this state when the Group key update has completed.
Informative Note: SETKEYSDONE calls SetGTK to set the Group key for all associated stations if this fails all communication via this key will fail and the AP needs to detect and recover from this situation.
To

REKEYNEGOTIATING: The Authenticator enters this state when a GTK is to be sent to the Supplicant.
Informative Note: The TxRx flag for sending a Group Key is always the opposite of whether the Pairwise Key is used for data encryption/integrity or not. If a Pairwise key is used for encryption/integrity then the station never transmits with the Group Key otherwise the station uses a Group Key for transmit.
REKEYESTABLISHED: The Authenticator enters this state when it receives an EAPOL-Key message from the supplicant with the key type set to Group key.
KEYERROR: The Authenticator enters this state if the EAPOL-Key acknowledgement for the Group key update is not received before a timeout.
SETKEYS: The Authenticator enters this state when the GTK is to be updated at all Supplicants that are using the Exended Keymap ID.
SETKEYSDONE: The Authenticator enters this state when the Group key update has completed.
Informative Note: SETKEYSDONE calls SetGTK to set the Group key for all associated stations that are using the GTK/Extended Keymap ID pair, if this fails all communication via this key will fail and the AP needs to detect and recover from this situation.
Clause 8.5.6.2 Authenticator State machine variables (informative)

Change

GKeyDoneStations - Count of number of stations left to have their Group key updated.

GTKRekey – This variable is set to TRUE when a Group key update is required.

GInitAKeys – This variable is set to TRUE when the Group key update state machine is required.

GInitDone – This variable is set to TRUE when the Group key update state machine has been initialized.

GUpdateStationKeys – This variable is set to TRUE when a new Group key is available to be sent to Supplicants.

GNoStations – This variable counts the number of Authenticators so it is known how many Supplicants need to be sent the Group key.

GkeyReady – This variable is set to TRUE when a Group key has been sent to all current Supplicants. This is used by new Authenticator state machines to decide whether a Group key is available to immediately send to its Supplicant.

PInitAKeys – This variable is set to TRUE when the Authenticator is ready to send a Group key to its Supplicant after initialization.

to
GKeyDoneStations - Count of number of stations left to have their Group key updated for the extended Keymap ID.

GTKRekey – This variable is set to TRUE when a Group key update is required for the extended Keymap ID.

GInitAKeys – This variable is set to TRUE when the Group key update state machine is required for the extended keymap ID.

GInitDone – This variable is set to TRUE when the Group key update state machine has been initialized for the extended Keymap ID.

GUpdateStationKeys – This variable is set to TRUE when a new Group key/extended keymap ID is available to be sent to Supplicants.

GNoStations – This variable counts the number of Authenticators so it is known how many Supplicants need to be sent the Group key for the extended Keymap ID.

GkeyReady – This variable is set to TRUE when a Group key /extended keymap ID has been sent to all current Supplicants. This is used by new Authenticator state machines to decide whether a Group key is available to immediately send to its Supplicant.

PInitAKeys – This variable is set to TRUE when the Authenticator is ready to send a Group key /extended keymap ID to its Supplicant after initialization.

Change 8.7.1 Tx Psudo Code broadcast section to

if MPDU has a group RA and the Privacy subfield of the Capability Information field in this BSS is set to 0 then
the MPDU is transmitted without protections

else

if dot11WEPDefaultKeys[dot11WEPDefaultKeyID] [dot11extendedKeymapID] = null then
if Ethertype is 802.1X then
transmit the MPDU without protection

else

discard the MSDU and generate an

MA-UNITDATA-STATUS.indication primitive to

notify LLC that the entire MSDU was undeliverable

due to a null WEP key for this dot11extendedKeymapID
else

protect the MPDU using

dot11WEPDefaultKeys[dot11WEPDefaultKeyID],

setting the KeyID subfield of the IV field to dot11WEPDefaultKeyID and the KeyEXID to dot11extendedKeymapID
endif

endif

Change 8.7.2 Rx Psudo Code broadcast section to

if the Protected Frame subfield of the Frame Control Field is zero then
if aExcludeUnencrypted = “false” or there is no entry in

 dot11WEPKeyMappings matching the MPDU’s TA and Ethertype is 802.1X then
receive the frame without applying protections

else

discard the frame body without indication to LLC and
increment dot11WEPExcludedCount
endif

else

if dot11PrivacyOptionImplemented = TRUE then
if (the MPDU has individual RA and there is an entry in

 dot11WEPKeyMappings matching the MPDU’s TA and dot11WEPKeyMappingsKeyBroadcast is false) or (the MDPU has a multicast RA and the network type is IBSS and the network is RSN and there is an entry in dot11KeyMapppings for the TA and dot11WEPKeyMappingsKeyBroadcast is true) then
if that entry has WEPOn set to FALSE then
discard the frame body and increment

dot11WEPUndecryptableCount

else

if that entry contains a key that is null then
discard the frame body and increment

dot11WEPUndecryptableCount

else

if the ExtendedKeymap ID matches the keymap ID in the extended Keymap ID table then

attempt to decrypt with that key, incrementing

dot11WEPICVErrorCount if the ICV check fails

else

increment dot11RSNdifferentExtendedKeymapIDCount

endif

endif

else

if dot11WEPDefaultKeys[KeyID] is null then
discard the frame body and increment

dot11WEPUndecryptableCount

else

attempt to decrypt with dot11WEPDefaultKeys[KeyID],

incrementing dot11WEPICVErrorCount if the ICV check fails

endif

endif

else

discard the frame body and increment dot11WEPUndecryptableCount
endif

endif

Change 10.3.11.1.2 Key Identifer table to

	Name
	Type
	Valid range
	Description

	Key
	Bit string
	N/A
	The key value

	Length
	Integer
	N/A
	The number of bits in the Key to be used.

	Index
	Integer
	N/A
	Key Index

	Extended Keymap ID
	12 bit
	N/A
	Extended Keymap ID used with key

	Type
	Integer
	Group, Pairwise
	Defines whether this key is a Group or Pairwise key.

	Tx
	Boolean
	TRUE, FALSE
	This parameter indicates if this key is to be used for transmission and reception or just reception.

	Address
	MAC Address
	Any valid individual MAC address
	This parameter is valid only when the key type is Pairwise and contains an 802 address

	Threshold
	Integer
	N/A
	This parameter indicates the threshold for Indication

	Receive Sequence Count
	8 octets
	N/A
	Value the receive sequence counter should be initialized to

	Authenticator/Supplicant
	Boolean
	TRUE, FALSE
	Whether the key is set by the Authenticator or Supplicant. 802.11 uses this to select the correct integrity key when Michael is used.

In Annex D:

Move group key variables from dot11RSNConfigEntry into a Group Key table that contains an index for each Extended Keymap ID entry.

Change

dot11RSNStatsTable OBJECT-TYPE

SYNTAX

SEQUENCE OF Dot11RSNStatsEntry

MAX-ACCESS
not-accessible

STATUS

current

DESCRIPTION

"This table maintains per-STA statistics for SN. The entry with dot11RSNStatsSTAAddress set to FF-FF-FF-FF-FF-FF shall contain statistics for broadcast/multicast traffic."

::= { ieee802dot11i 4 }

dot11RSNStatsEntry OBJECT-TYPE

SYNTAX

Dot11RSNStatsEntry

MAX-ACCESS
not-accessible

STATUS

current

DESCRIPTION

"An entry in the dot11RSNStatsTable."

INDEX { dot11RSNConfigIndex, dot11RSNStatsIndex }

::= { dot11RSNStatsTable 1 }

Dot11RSNStatsEntry ::=

SEQUENCE {

dot11RSNStatsIndex

Unsigned32,

dot11RSNStatsSTAAddress

MacAddress,

dot11RSNStatsVersion

Unsigned32,

dot11RSNdifferentExtendedKeymapIDCount counter32,
dot11RSNStatsSelectedUnicastCipher
INTEGER,

dot11RSNStatsTKIPICVErrors

Counter32,

dot11RSNStatsTKIPLocalMICFailures
Counter32,

dot11RSNStatsTKIPRemoteMICFailures
Counter32,

dot11RSNStatsTKIPCounterMeasuresInvoked
Counter32,

dot11RSNStatsWRAPFormatErrors

Counter32,

dot11RSNStatsWRAPReplays

Counter32,

dot11RSNStatsWRAPDecryptErrors

Counter32,

dot11RSNStatsCCMPFormatErrors

Counter32,

dot11RSNStatsCCMPReplays

Counter32,

dot11RSNStatsCCMPDecryptErrors

Counter32 }

Add

dot11RSNdifferentExtendedKeymapIDCount x OBJECT-TYPE

SYNTAX

Counter32

MAX-ACCESS
Read Only

STATUS

current

DESCRIPTION

“counts the number of MPDU’s received who’s dot11RSNExtendedKeymapID was different than the ones assigned"

::= { dot11RSNdifferentExtendedKeymapIDCount 1 }

Submission
page 1
Martin Lefkowit, Trapeze Networks

_1098261058.vsd

_1098264984.vsd

