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Abstract

This document provides suggested modifications and elaborartions to Clause 8.4.1 by the addition of Cluase 8.4.1.1

Motion:

Instruct the editor to update Clause 8.4.1 to read and include text provided in this submission.
8.4  RSN security association management

8.4.1  Security association life cycle

IEEE 802.11 uses the notion of a security association to describe secure operation. Secure communications are possible only within the context of a security association, as this is the context providing the state—cryptographic keys, counters, sequence spaces, etc.—needed for correct operation of the IEEE  802.11 cipher suites.
The life cycle of a security association is naturally intertwined with the other IEEE 802.11 mechanisms. A STA can operate in either an ESS or in an IBSS, and a security association has a distinct life cycle for each.

In an ESS there are two cases: initial contact between the STA and the ESS, and roaming by the STA within the ESS. A STA and AP establish an initial security association via the following steps:

1. The STA selects an authorized ESS by selecting among APs that advertise an appropriate SSID.

Informative note: Advertising the SSID plays a crucial security function. If the STA does not know the SSID of some AP, it either must decline communication, or it has to guess the ESS of the AP. When the AP is not authorized, then the STA might present all of its credentials in an effort to find some that allow it to authenticate. This can result in unintended identity disclosure of the STA to the unauthorized AP.

Advertising the SSID also provides an important performance optimization. Without advertisements, if the AP is indeed authorized, the STA on average must present half its credentials before locating the correct ones at initial contact.

2. The STA then uses IEEE 802.11 open authentication followed by association to the chosen AP. Negotiation of security parameters takes place during association.

Informative Note: An attack altering the security parameters will be detected by the key derivation procedure.

Informative Note: IEEE 802.11 open authentication provides no security, but is included to maintain backward compatibility of the state machine.
3. After the association completes, the STA and AP shall initiate filtering of non- IEEE 802.1X class 3 MPDU’s, and the AP’s Authenticator shall initiate the IEEE 802.1X authentication. The authentication will be mutual, as the STA needs assurance that the AP belongs to the authorized network and is not a rogue.

Informative Note: Any secure network such as RSN cannot support promiscuous association as in unsecured operation of IEEE 802.11. A trust relationship must exist between the STA and the target SSID prior to association and secure operation, in order for the association to be trustworthy. The reason is that an attacker can deploy a rogue access point just as easily as a legitimate network provider, so some sort of prior enrollment procedure is necessary to establish credentials between the ESS and the STA.
4. The last step is key exchange. The authentication process creates cryptographic keys shared between the IEEE 802.1X AS and the STA. The AS distributes these keys to the AP802.1X Authenticator, e.g. the, and the AP and STA use two key confirmation handshakes, called the 4-way handhskae and group key handshake, to complete security association establishment. The key confirmation handshake indicates when the link has been secured by the keys, so is safe to allow normal data traffic. If key handshakes complete successfully, STAs (including APs) shall terminate the filtering of class 3 MPDUs other than IEEE 802.1X, allowing normal data to flow.

Informative note: The Supplicant of a STA should silently discard IEEE 802.1X messages not received from the AP.
 A STA roaming within an ESS establishes a new security association by one of two schemes:

1. (Re-)Associating followed by IEEE 802.1X authentication. In this case the station repeats the same actions as for an initial contact association, but it also uses the MLME-DELETEKEYS.request to remove the cryptographic key from the IEEE 802.11 MAC when it roams from the old AP. The STA also deletes the cryptographic keys when it disassociates/deauthenticates from all BSSIDs in the ESS.

2. A STA already associated with the ESS can instead request its 802.1X Management Entity to authenticate with a new AP before associating to that new AP. In this case the Mangement Entity can request its IEEE 802.1X Supplicant to send an AuthenticationRequest to an AP with which it is not associated. The normal operation of the DSS via the old AP provides the communication between the STA and the new AP. The STA’s IEEE 802.11 Mangement Entity delays Reassociation with the new AP until IEEE 802.1X authentication completes via the DSS. If  IEEE 802.1X authentication completes, then cryptographic keys shared between the new AP and the STA will be installed, creating an environment where Reassociation without a subsequent IEEE 802.1X full authentication makes sense.

The MLME-DELETKEYS.request terminates a security association on the local STA. This primitive destroys the cryptographic keys established for the security association, so that they cannot be used to protect further 802.11 traffic. A STA’s 802.11 Management Entity uses this primitive in one of two situations: when it disassociates or deauthenticates from an AP in an ESS, and when it associates to a new AP.

The life cycle of a security association is different in an IBSS. When explicit authentication is not used, a STA sets the AuthenticationRequest variable to request that its IEEE 802.1X implementation initiate the 4-way handshake of 8.5 with a Pre-Shared Key (PSK) with IBSS peer STAs it encounters. A STA should use this primitive when it encounters another STA belonging to the IBSS with which it has no security association.

Informative Note: A STA can receive 802.1X messages from a previously unknown MAC address. Membership in the IBSS is determined by the peer STA’s ability to use the correct PSK.

Informative Note: Any STA targeted from the IBSS may decline to form a security association with the joining STA. An attempt to form a security association may also fail because, e.g., the peer uses a different pre-shared key.

In an IBSS each STA defines its own group key to secure its broadcast/multicast transmissions. After establishing a security association, each STA shall use the Group Key Handshake to distribute its transmit Group Key to its new peer STA. 

A security association terminates in an IBSS in the same way it does in an ESS, by the 802.11 Management Entity invoking the MLME-DELETEKEYS.request primitive.

Infromative Note: A STA should remove all association state and send a deauthenticate message if it receives an MLME-DELETEKEYS.request.

8.4.1.1 IEEE 802.11 ESS Authentication and Key Management Mechanisms Primer

There are three authentication and key management architectures in IEEE 802.11, namely “Open” and “Shared Key”, which were defined for use in the context of WEP in IEEE 802.11-1999, and the newer IEEE 802.1X-based authentication mechanisms that are defined for use in the context of a Robust Security Network (RSN). In fact, the terms RSN and IEEE 802.1X are effectively synonymous, since a Robust Security Network is defined in clause 3 as: “An IEEE 802.11 ESS relying on IEEE 802.1X for its authentication and key management services.”

IEEE 802.1X “Port-Based Network Authentication” was originally designed for switched networks, in which eavesdropping is infeasible (or at least somewhat challenging) due to the fact that each station is endowed with a dedicated link to a switch. The original IEEE 802.1X standard was designed based on the assumption that tapping in to the communication link between the station and the switch was non-trivial, and would be relatively easy to detect. When the standard first appeared, networks were rapidly adopting switched topologies, abandoning shared hubs, so there was no strong demand for IEEE 802.1X to support shared-media LANs, although the standard does not prohibit operation over shared LAN topologies. As IEEE 802.11 wireless LANs increased in popularity, and the need for a properly designed authentication and key management protocol presented itself, it was natural to want to leverage the mechanisms that had already been defined in another IEEE 802 standard, rather than inventing something specific to IEEE 802.11.

IEEE 802.1X-2001 defines a framework for running the Extensible Authentication Protocol (EAP)
 over LANs, sometimes known as EAPoL.  IEEE 802.1X extensions need to be defined to ensure that the network authentication services are secure in shared-medium networks such as those based on IEEE 802.11

EAPoL is the protocol that is used to exchange the EAP messages that perform the authentication between the STA (the EAP Client) and an EAP entity known as the Authentication Server (AS). The station seeking to be authenticated uses EAPoL to communicate with the device that enforces the authentication, for example an Ethernet switch or an IEEE 802.11 Access Point. The EAPoL exchange takes place between two entities, one associated with the station desiring to be authenticated (in IEEE 802.1X parlance, known as the “Supplicant”) and the other associated with the device that enforces the access to the network, e.g., the switch or AP, known as the “Authenticator”. Besides restricting network access only to authenticated stations, the Authenticator also acts as a mediator in the EAP conversation between the EAP Client and the AS.

EAP packets are encapsulated in EAPoL frames to enable them to cross the LAN medium. EAPoL also has some control features (i.e., to initiate authentication, an EAPoL-Start message was defined; similarly, an EAPoL-Logoff message was defined to terminate a connection. However, the EAPoL-Logoff message is not used in the context of IEEE 802.11 RSNs). IEEE 802.1X-2001 also defined an optional capability to exchange encryption keys, using the EAPoL-Key message, but did not define ways of using the EAPoL-Key message type to enable secure key exchange. Note that the format of the EAPoL-Key message is slightly different in IEEE 802.11 than in IEEE 802.1X-2001.

The next Figure shows the relationship between the STA (Supplicant), AP (Authenticator) and the Authentication Server (AS). While EAP messages are used between the STA and AS, these messages are encapsulated in EAPoL frames as they are transmitted from Supplicant to Authenticator. Similarly, the EAP message may also be encapsulated over the required secure channel that must exist between the Authenticator and AS. For example, if the AS supports Remote Authentication Dial-In User Service (RADIUS), its messages can augment EAP, for example, to transmit a master key from the Authentication Server to the Authenticator. Note that RADIUS is not mandated by the IEEE 802.11 or IEEE 802.1X standards, but RADIUS is a convenient protocol that may be used for this purpose. Strictly speaking, the protocol between the Authenticator and the Authentication Server is not within the scope of IEEE 802.11; though IEEE 802.11 presumes the existence of a secure channel between the two. Like EAPoL, RADIUS has messages to augment EAP, for example, RADIUS may be used to transmit the pairwise master key (PMK) from the Authentication Server to the Authenticator, over the secure channel being provided by RADIUS or a protocol with similar attributes. The transmission of the PMK to the Authenticator is not accomplished using EAP messages, since EAP is an end-to-end protocol between the Supplicant and the AS.
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The EAP is not tied to any particular authentication algorithm, hence its extensibility. It defines a small number of messages that are used to communicate between the AS and the EAP Client. This design allows the two peer entities to mutually determine whether or not the newly connected device should be granted access to the network (based on the algorithm-specific authentication credentials, such as the user’s identification and password)., The Authenticator is able to interpret the outcome of the negotiation without being required to participate in the negotiation itself, by simply recognizing an EAP-Success or EAP-Failure message.

EAPoL employs a small number of packet types to carry the various EAP messages between the Supplicant and the Authenticator. The Authenticator simply acts as a relay for these EAP packets by extracting the EAP packets from within the EAPoL frames and sending those EAP packets to the Authentication Server over the secure channel.

All EAPoL frames are normal IEEE 802.11 data frames, thus they follow the format of IEEE 802.11 MSDUs and MPDUs. With reference to the IEEE 802.11 MAC frame format defined in clause 7.1.2, an MPDU may be up to 2346 octets in length, which encapsulates an MSDU payload that is up to 2312 octets in length. The remaining 34 octets in the MPDU comprise the IEEE 802.11 header (30 octets) and the four-octet Frame Check Sequence that concludes the frame.

EAPoL messages are just like any other data packet (MSDU) that might be transmitted over an IEEE 802.11 LAN, and as such are de-multiplexed using information contained in the LLC/SNAP header, which comprises the first eight octets after the MPDU header. The following figure illustrates an MPDU that contains an EAP packet, encapsulated in an EAPoL (IEEE 802.1X) header.
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The IEEE 802.2 LLC header’s DS (Destination Service Access Point, or DSAP) and SS (Source Service Access Point, or SSAP) fields are both set to a value of 0xAA, which indicates that an IEEE 802.2 Sub-Network Access Protocol (SNAP) header follows the LLC header. The IEEE 802.2 LLC header’s Control field is set to 0x03, indicating that this is an unnumbered information frame. To indicate that a standard Ethernet type is being used in the IEEE 802.2 SNAP header’s Type field, the IEEE 802.2 SNAP OUI field is set to a value of 0x000000. A value of 0x888E in the SNAP header’s Type field indicates that an IEEE 802.1X frame header is next.

The IEEE 802.1X header begins after SNAP’s Type field, starting with the IEEE 802.1X Protocol Version (PV) field, the value of which is defined in the current IEEE 802.1X specification.. The next field is the one-octet IEEE 802.1X Packet Type (PT), which can take one of the five values, whose meanings are described in the following table.
	0x00
	EAP-Packet
	Indicates that an EAPoL frame contains an EAP packet

	0x01
	EAPoL-Start
	Used to initiate EAP protocol processing

	0x02
	EAPoL-Logoff
	Not recommended for use with IEEE 802.11

	0x03
	EAPoL-Key
	Used by the Authenticator and Supplicant to derive or exchange cryptographic keying information

	0x04
	EAPoL-Encapsulated-ASF-Alert
	Used by a Supplicant to send ASF alerts prior to being fully authenticated


The IEEE 802.1X Packet Body Length (PBL) follows the Packet Type. Because the LLC/SNAP header is eight octets long, and the IEEE 802.1X header is an additional four octets, consuming a total of 12 octets of the MSDU, the IEEE 802.1X Packet Body Length (PBL) value can be at most 2300 octets (since the MSDU can be at most 2312 octets). The limit of 2300 is for unencrypted EAPoL-KEY messages. Note that in cases where the EAPoL-Key message is encrypted (using WEP, CCMP, TKIP, or WRAP), additional octets will be consumed which will effectively reduce the maximum MPDU payload capacity, hence the maximum PBL will not be able to be as large. 

When the Packet Type field in an EAPoL packet is set to a value of 0x00 (meaning EAP-Packet), an EAP packet header follows the IEEE 802.1X header. The EAP packet header begins with a one-octet Code field that defines the function of the EAP packet. The EAP packet format is as follows:
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There are only four EAP Codes, namely 0x01 (Request), 0x02 (Response), 0x03 (Success), and 0x04 (Failure). For EAP-Request or -Response packets, the one-octet Identifier field contains a value that is used to match Responses to Requests.

An EAP packet need not have a Data field, but a Data field will be present if the Code is set to Request or Response. For such EAP-Request and EAP-Response packets, the first octet of the Data field is a Type field that indicates which authentication algorithm is in use (e.g., EAP-TLS, PEAP, TTLS, etc.). The remainder of the Data field will be algorithm-specific data. 

The STA initiates the association process. Once the STA and AP have completed the association process, the AP and STA will indicate success via one of the following APIs:

· MLME-ASSOCIATE.indication,

· MLME-ASSOCIATE.confirm,

· MLME-REASSOCIATE.indication, or

· MLME-ASSOCIATE.confirm.

If the AP is RSN-capable and configured such that RSN is enabled, the EAPoL-Start message is sent by the AP, triggered once the STA and the AP have completed their association. The completion of the association is detected by one of the APIs above. The AP advertises its RSN capabilities in its own configuration-dependent RSN IE that it constructs based on the subset of its RSN capabilities that have been enabled, and the AP’s RSN IE is then included in the AP’s Beacon and Probe Response frames. The Supplicant’s STA also constructs an RSN Information Element (RSN IE) that represents its configured RSN capabilities in the management frames that are used to facilitate association, which lets the Authenticator’s STA (in the AP) know that this particular STA desires to join the RSN.

At first, the pending association may only be used by the Upper Layer Authentication (ULA) protocol (i.e., EAP and its associated authentication method). Until the authentication process is complete, the Supplicant’s IEEE 802.1X Port Access Entity (PAE) filters all non-EAP traffic. Until authentication is complete, the PAE ensures that only EAP packets are sent or received between this STA and the wireless medium.

The authentication process allows the Authenticator and the Supplicant to prove to each other that they both know the PMK and it is essential that this be done without divulging the PMK to eavesdroppers. Even though the EAP Client has been successfully authenticated by the Authentication Server, it cannot use the link until it has successfully derived the necessary encryption and authentication keys, which depend on the ciphersuite chosen in the RSN IE in the AP’s Beacon and Probe Response frames. The format of the RSN IE is as follows:
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An EAP authentication method is negotiated as follows. One peer proposes an EAP authentication method to the other by sending an EAP-Request packet with the Type field’s value set to the assigned number of the desired authentication method. If the receiving peer supports that authentication method, it will respond with an EAP-Response using the same Type as was proposed by the first peer. If the receiving peer does not support this authentication method, its EAP-Response packet will have the Type set to “NAK”, and the original peer may then attempt to authenticate using a different method by proposing a different Type. A successful EAP authentication message flow is documented in the following figure.
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At the completion of a successful EAP authentication exchange, the AS informs the EAP Client that the authentication has succeeded by sending an EAP-Success packet (Code = 0x03). The Authenticator is able to detect the EAP-Success code, and registers the fact that this EAP Client now represents an authenticated station. Using the secure channel between the AS and the Authenticator, the AS also sends one other essential piece of information to the Authenticator, the Pairwise Master Key (PMK) that has been generated by both the EAP Client and the AS. By virtue of the EAP Client’s authentication exchange with the AS, the EAP Client already knows the PMK.

The Supplicant and the Authenticator cannot trust each other until they have securely determined that each party knows the PMK. In order to establish that trust relationship, the Authenticator and Supplicant use a “four-way handshake” to convince each other that they are who they claim to be, and to mutually derive the necessary encryption and authentication keys from the PMK. The four-way handshake does not reveal any essential keying information to eavesdroppers, but does provide each party with proof that they both know the PMK.

The following diagram depicts the four-way handshake, composed of EAPoL-Key messages. The parenthetical items next to each message are the “interesting” parts of each EAPoL-Key Descriptor. There are always nine elements in the EAPoL-Key Descriptor, but not all are relevant to each message:
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A replay counter is part of each EAPoL-Key message, and enables detection (and thus prevention) of replay attacks. The replay counter is incremented by 1 for each successive message in the four-way handshake. Each retransmission of a given message uses the same replay counter value as was used when the message was first transmitted.

The first EAPoL-Key message of the four-way handshake is sent from the Authenticator to the Supplicant. The main purpose of the first message is to carry the randomly generated Authenticator Nonce (ANonce). Any observer could eavesdrop on this message and learn the Authenticator’s chosen ANonce. Upon receiving the first message, the Supplicant has learned the ANonce. Subsequent messages in the four-way handshake ensure that only the legitimate Authenticator is in communication with the Supplicant.

Once the Supplicant has received the first message and generated its own SNonce, it has sufficient information to generate keys used for directed packet transmission and reception. Also, derived keys protecting (i.e., providing message integrity and confidentiality to) the remainder of the key exchange are derived from the ANonce contained in this first message, as well as the SNonce and the STA’s RSN IE.

Any eavesdropper could also have attempted to impersonate the Authenticator by forging an EAPoL-Key message after it saw the EAP-Success packet. However, such an impostor would not know the PMK, thus it will not be able to successfully forge future EAPoL-Key messages, so the only exposure at this point is possibly to denial-of-service attacks. 

The second EAPoL-Key message is from the Supplicant to the Authenticator, which acknowledges receipt of the first message. The second message contains a payload known as the RSN Information Element (RSN IE) that the Supplicant’s STA has constructed based on the cipher suites it supports, and is the same RSN IE that the STA used during the association process. The AP has created its own RSN IE that defines which cipher suites are allowed to be used within this ESS. By sending its RSN IE to the Authenticator, the Supplicant informs the Authenticator of which cipher suites it supports, which controls how the keys are derived. Of the set of cipher suites that are supported by the STA and the set that is supported by the AP, a valid cipher suite is chosen from the intersection of those two sets.

The second message of the four-way handshake also transmits the Supplicant’s Nonce (SNonce) to the Authenticator. Once the Supplicant has randomly generated its SNonce, it now has sufficient information to derive the necessary encryption and authentication keys that will be used during this security association, pending successful completion of the four-way handshake.

Finally, the second message also contains a digital signature that protects (i.e., is computed over) the entire EAPoL-Key packet, using one of the keys that the Supplicant has derived from the PMK and the two Nonces, among other inputs. This digital signature is included in the second message in the MIC field of the EAPoL-Key Descriptor. The Authenticator will be able to verify this digital signature once it has received the second message from the Supplicant, and has itself derived the key that was used to compute this MIC field value. Only a Supplicant that knew both of the nonces and the PMK could have sent this message, since it contains a digital signature that could only have been computed if the PMK were known.

Like the first message, the second message is also sent in the clear (but as noted above, it is protected by the digital signature that is computed over the EAPoL-Key message and included in the EAPoL-Key Descriptor). The second message can also be observed by third parties, who also could have seen the ANonce and SNonce in the first and second message, as well as the Supplicant’s RSN IE, but who nonetheless cannot forge the digital signature (MIC) in the EAPoL-Key message without knowledge of the PMK.

The key derivation process alluded to above, in both the Supplicant and the Authenticator, is known as the “Pairwise Key Hierarchy”. The Pairwise Key Hierarchy defines how to combine the ANonce, the SNonce, the Authenticator’s MAC address (AA), the Supplicant’s MAC address (SA), and a specific ASCII string, as well as the PMK, as input to a pseudo-random function (PRF). The PRF outputs a large number of bits sufficient to define the EAPoL-Key encryption and message integrity check keys and the pairwise temporal key(s) for protecting unicast data traffic (the temporal keys are used for authentication and encryption). The length of the output of the PRF depends on the cipher suite that was determined based on comparing the RSN IEs in the association process.

Specifically, the PRF output is separated into the following components: the EAPoL-Key MIC Key (abbreviated MK; used to digitally sign the EAPoL-Key message), the EAPoL-Key Encryption Key (abbreviated EK; used to encrypt the EAPoL-Key Descriptor’s Key Material field during the Group Key Exchange, but it is not used in the four-way handshake that implements the pairwise key exchange; the EK is used to encrypt the EAPoL-Key Key Material field of the EAPoL-Key Descriptor in the Group Key Exchange), and the temporal key(s) for the cipher suite defined in the RSN IE. The Pairwise Key Hierarchy is illustrated in the following figure.
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The complete output of the pseudo-random function (PRF) is known as the Pairwise Transient Key (PTK), of which bits 0 – 127 are the MK, bits 128 – 255 are the EK, and bits 256 – 383 represent temporal key number 1 (TK1). Temporal key number 2 (TK2), if present (which depends on the needs of the cipher suite defined in the RSN IE), is found in bits 384 – 511.

Note that the Authenticator cannot perform the PTK derivation until it has received the SNonce from the Supplicant, since the SNonce is part of the input in the PTK derivation. In other words, the Authenticator cannot execute the Pairwise Key Hierarchy until after it has received the second message of the four-way handshake. The Authenticator and the Supplicant both derive identical temporal keys because they both compute the Pairwise Key Hierarchy using the same inputs. Because only this Supplicant and this Authenticator (and the Authentication Server) are presumed to know the PMK, no eavesdropper can learn enough information from simply observing the four-way handshake to impersonate the Supplicant or the Authenticator.

The third EAPoL-Key message of the four-way handshake is sent by the Authenticator to the Supplicant, and it is used to direct the Supplicant to install the temporal encryption key(s) in the Supplicant’s STA. The third message sets the “Install” bit for the first time in the four-way handshake, as well as the ANonce (the same randomly chosen value that was sent in the first message), the RSN IE (must be identical to the RSN IE that was sent in the AP’s Beacons and/or Probe Responses), and a digital signature computed over the third message’s EAPoL-Key packet by the Authenticator using the MK that it has now derived.
When set, the EAPoL-Key message’s Install bit directs the receiver to configure its local STA with the derived temporal key(s). In the case of the third message the Supplicant is the receiver of the message, so the Authenticator is using the Install bit to tell the Supplicant to prepare to receive encrypted unicast traffic. The third message is similar to the first message, but it conveys much more information, built on what has been learned in the first and second messages.

The final EAPoL-Key message of the four-way handshake is very similar to the second message. In this message, the Supplicant is directing the Authenticator to install the per-association temporal key(s) into the Authenticator’s STA. The fourth message is stating that the Supplicant has installed the temporal encryption key(s) in its STA and is ready to receive unicast data encrypted using the cipher suite specified in the RSN IE. As with the second and third messages, the fourth message contains a digital signature that is computed over the EAPoL-Key message using the MK. Since the fourth message acknowledges the third message, it tells the Authenticator that the temporal keys have been installed on the Supplicant’s STA. Furthermore, by virtue of the Install bit being set in the fourth message, the Supplicant is directing the Authenticator to install the temporal keys for this security association into its STA (i.e., in the AP). The entire fourth message is encrypted using the temporal keys and the cipher suite that has been negotiated prior to this point in the four-way handshake.

Once the keys have been installed, the AP’s STA can send encrypted unicast traffic to the Supplicant’s STA. The fourth message’s EAPoL-Key Descriptor contains a digital signature over the EAPoL-Key message, which is digitally signed (i.e., MIC’ed) using the MK. This MIC field was computed as in the second and third messages. In contrast to the previous messages, the fourth message is not sent in the clear, but is encrypted using the derived temporal key(s) using whatever unicast cipher suite was defined in the RSN IE. Thus, the fourth message will be encrypted using CCMP, TKIP, or WRAP.

If the fourth message does not reach the Authenticator, the Supplicant’s STA must still be prepared to accept unencrypted traffic from the Authenticator (which would most probably be a re-transmission of the third message, since the Authenticator will not have received the fourth message from the Supplicant, which, among other functions, serves to acknowledge the third message from the Authenticator). Provided the fourth message has been properly received and interpreted by the Authenticator, the per-association keys are installed on the Authenticator’s STA, and future unicast data is encrypted using TK1 and/or TK2, as required by the RSN IE. Once the four-way handshake is complete, the Authenticator’s and Supplicant’s IEEE 802.1X PAE permits unicast traffic to flow through their respective STAs, which encapsulates the packets according to the cipher suite(s) indicated in the RSN IE.

The “Install” bit in the third and fourth messages directs the IEEE 802.1X entity in the Supplicant or the Authenticator, respectively, to configure its local STA with the keying information derived from the PTK. The API that is used to convey this information from the 802.1X entity to the STA is the MLME-SETKEYS.request. In the event that an Authenticator or Supplicant decides to terminate an association, the MLME-DELETEKEYS.request API is used.

Now that the unicast pairwise key hierarchy calculations have been completed, unicast traffic must be sent in encrypted form, using the derived temporal keys. However, multicast and broadcast traffic would still need to be sent in the clear, which is why there is a small additional handshake (two messages) in which the Authenticator transmits the Group Transient Key (GTK) to the Supplicant.

All the STAs in an ESS use the same Group Transient Key, but the Authenticator securely delivers it to each authenticated Supplicant, in a process that is protected by the unicast temporal encryption keys that have now been derived. The EAPoL-Key messages of the GTK exchange are encrypted using unicast key(s) derived from the PTK. The encrypted Group Key exchange is illustrated in the following diagram:
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The Group Key Hierarchy involves a similar calculation to the Pairwise Key Hierarchy, in which the Authenticator derives the Group Transient Key from the Group Master Key, the Authenticator’s [MAC] Address (AA), and the GNonce, as shown in the following diagram:
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As noted in the diagram, when TKIP is the cipher suite indicated in the RSN IE, the PRF is set to output 256 bits of GTK, so that the Group Temporal Key 2 will also be derived, which is the second 128 bits of the output of the PRF. Otherwise (e.g., in the cases of CCMP and WRAP), the GTK is only 128 bits long. In such cases, the PRF’s output is just 128 bits long, and those 128 bits are directly mapped into the Group Temporal Key 1.

Based on the contents of the RSN IE (i.e., whether or not TKIP is in use), a Supplicant that receives the encrypted GTK from the Authenticator is able to decipher one or two Temporal Keys from the GTK that it receives from the Authenticator. Both of the EAPoL-Key messages in the Group Key Exchange are digitally signed by the MK, after the EK has been used to encrypt the Key Material field of the EAPoL-Key Descriptor, which holds the GTK. The Group TK1 (and possibly also TK2), are subsequently configured into the Supplicant’s STA and the Authenticator’s STA via the MLME-SETKEYS.request API. When this procedure is complete, the Supplicant’s STA can now send encrypted broadcast and multicast traffic, in addition to the prior ability to send encrypted unicast traffic.












































































�	The EAP was originally designed to support authentication over the Point-to-Point Protocol (PPP), and is a product of the Internet Engineering Task Force (IETF).
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