August 2002

doc.: IEEE 802.11-02/545r0

IEEE P802.11
Wireless LANs

Mapping Password to PSK

Date:

September 3, 2002

Author:

Tim Moore

Microsoft

1 Microsoft Way

Redmond, WA 98052

timmoore@microsoft.com

Doug Whiting

HiFn, Inc.

dwhiting@hifn.com

Jesse Walker

Intel Inc

jesse.walker@intel.com

Abstract

Pre-shared keys need a 256 bit key. Requiring a user to enter 64 hex characters is going to be difficult for users to enter them correctly. Using ASCII strings is easier for a user but users enter a limited set of characters which limits the set of possible keys.

This password hash was introduced to encourage users unfamiliar with cryptographic concepts to enable the security features of their WLAN. The infrastructure does not yet exist to configure WLAN security through more automatable techniques in all scenarios (e.g., public/private key pairs), and non Information Technology professionals typically lack the expertise and inclination to enter keys. Most users, however, are familiar with passwords and more comfortable entering them than keys. This proposal is intended to provide an interoperable scheme for entering passwords.

A password typically has about 2.5 bits of security per character so the password hash converts an n byte password into a key with about 2.5n + 12 bits of security. Hence, it provides a relatively low level of security, with keys generated from short passwords subject to dictionary attack. Use of the key hash is recommended only for the home. A key generated from a password of less than 20 characters is unlikely to deter attacks against small businesses and enterprises.

The proposal uses PBKDF2 from PKCS #5 v2.0: Password-based Cryptography Standard or RFC2898.

PSK = PBKDF2 (Password, ssid, ssidlength, 4096, 256)

Password is an ASCII string which has a minimum of 8 and a maximum of 63 characters not including the terminator. SSID is an octet array up to 32 octets in length.

The limit of 63 characters is because 64 characters is the length of hex characters for 256bits.

Passwords should contain characters from the following three groups:

	Group
	Examples

	Letters (uppercase and lowercase)
	A, B, C... (and a, b, c...)

	Numerals
	0, 1, 2, 3, 4, 5, 6, 7, 8, 9

	Symbols (all characters not defined as letters or numerals)
	` ~ ! @ # $ % ^ & * () _ + - = { } | [] \ : " ; ' < > ? , . /

It is recommended that the ssid is changed from the default ssid so directories generated from standard default ssids do not help attacking the key.

Thanks to Russ Housley and Niels Ferguson for their comments and suggestions.
Example code

// F(P, S, c, i) = U1 xor U2 xor ... Uc

// U1 = PRF(P, S || Int(i)

// U2 = PRF(P, U1)

// Uc = PRF(P, Uc-1)

//

void F(char *password, unsigned char *ssid, int ssidlength, int iterations, int count, unsigned char *output)

{

unsigned char digest[36], digest1[A_SHA_DIGEST_LEN];

int i, j;

// U1 = PRF(P, S || int(i))

memcpy(digest, ssid, ssidlength);

digest[ssidlength] = (unsigned char)((count>>24) & 0xff);

digest[ssidlength+1] = (unsigned char)((count>>16) & 0xff);

digest[ssidlength+2] = (unsigned char)((count>>8) & 0xff);

digest[ssidlength+3] = (unsigned char)(count & 0xff);

hmac_sha1((unsigned char *)password, (int)strlen(password),

digest, ssidlength+4, digest1);

// output = U1

memcpy(output, digest1, A_SHA_DIGEST_LEN);

for(i = 1; i < iterations; i++) {

// Un = PRF(P, Un-1)

hmac_sha1((unsigned char *)password, (int)strlen(password),

digest1, A_SHA_DIGEST_LEN, digest);

memcpy(digest1, digest, A_SHA_DIGEST_LEN);

// output = output xor Un

for(j = 0; j < A_SHA_DIGEST_LEN; j++) {

output[j] ^= digest[j];

}

}

}

// password - ascii string up to 63 characters in length

// ssid - octet string up to 32 octets

// ssidlength - length of ssid

// output must be 40 octets in length and outputs 256 bits of key

int PasswordHash (char *password, unsigned char *ssid, int ssidlength,

unsigned char *output)

{

if((strlen(password) < 8) || (strlen(password) > 63)

 || (ssidlength > 32)) return 0;

F(password, ssid, ssidlength, 4096, 1, output);

F(password, ssid, ssidlength, 4096, 2,

&output[A_SHA_DIGEST_LEN]);

return 1;

}

Test Vectors

Password=”password” SSID=”IEEE” SSIDLength=4

534036bd932a231c80f8b52ccb18ce0d17cc78fc4675c7b4dfa4396540111450

Password=”ThisIsAPassword” SSID=”ThisIsASSID” SSIDLength=11 520f0426ee757e8dfbb254e17971409a66969b2483f7492b5342dcce682b1155

Password=”aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa” SSID=”ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ” SSIDLength =32

b4266b172c373a47260ee97faa0d199aaba2a31dbe5fc5a8becc1784857c0fbc

Submission
page 1
Tim Moore, Microsoft, et.al.

