August 2002

doc.: IEEE 802.11-02/499r0

IEEE P802.11
Wireless LANs

Use of 802.1X with IBSS

Date:

August 15, 2002

Author:

Tim Moore

Microsoft

1 Microsoft Way

Redmond, WA 98052

timmoore@microsoft.com

David Halasz

Cisco Systems, Inc.

320 Springside Drive

Akron, OH 44333

dhala@cisco.com

Doug Smith

Cisco Systems, Inc.

320 Springside Drive

Akron, OH 44333

dsmit@cisco.com

Jonathan Edney

Qosine Ltd

jon.edney@ntlworld.com
Abstract

Each station in an ad-hoc network will contain an 802.1X Supplicant and Authenticator. They may also contain an Authenticator Server is credentials other than PSK are required. The multicast cipher and Authenticator key management protocol must be configured for the IBSS and can be learnt via the beacon/probe response. The unicast cipher is negotiated between each pair of stations. Each station has its own multicast cipher key for transmitting broadcast packets. Each station’s Authenticator uses the Group key update handshake to inform all other stations of the Group key required to decode its broadcast packets.

[image: image1]
7.3.2.17 RSN information element in IBSS

Remove None as an authentication suite and make 0 reserved. Change table to

	OUI
	Value
	Meaning

	
	
	Authentication Type
	Key Management Type

	00:00:00
	0
	Reserved
	Reserved

	00:00:00
	1
	Unspecified authentication over 802.1X– RSN default
	802.1X Key Management as defined in 8.5 – RSN default

	00:00:00
	2
	None
	802.1X Key Management as defined in 8.5, using pre-shared key

	00:00:00
	3-255
	Reserved
	Reserved

	Vendor Specific
	Any
	Vendor Specific
	Vendor Specific

	Other
	Any
	Reserved
	Reserved

Remove text with a description about None

Add text “No unicast cipher in the information element in Probe response for IBSS”

8.3.2.4.2 TKIP counter measures

Change section 1.5.5.3.1 to be both ESS and IBSS and add the text in red.

ESS or IBSS case

If an Authenticator detects a MIC failure on a MSDU it receives, it shall take the following steps:

For an MSDU which was encrypted with a Group key:

1. Delete the Group encryption and integrity keys in question.

2. Wait until 60 seconds have occurred from the last MIC failure (either from an EAPOL-Key message with a MIC failure or a local MIC failure)

3. Force an update of the Group transient key to all stations

4. Log details of the MIC failure.

For an MSDU which was encrypted with a Pairwise Key:

1. Drop any received data messages except 802.1X messages until the Pairwise Key is deleted or changed.

2. Wait until 60 seconds have occurred from the last MIC failure (either from an EAPOL-Key message with a MIC failure or a local MIC failure)

3. Force a 4-way handshake to change the Pairwise key

4. Log details of the MIC failure.

If a Supplicant detects a MIC failure, it shall take the following steps:

For an MSDU which was encrypted with a Group Key:

1. Delete the Group encryption and integrity keys in question.

2. Send an EAPOL-Key message to the Authenticator that issued the key requesting for a new Group key.

3. Log details of the MIC failure at the station and AP.

For an MSDU which was encrypted with a Pairwise Key:

1. Drop any received data messages except 802.1X messages until the Pairwise Key is deleted or changed.

2. Send an EAPOL-Key message to the Authenticator that issues the key requesting for a new Pairwise key.

3. Log details of the MIC failure at the station and AP.

8.4.1 Security association life cycle
When a new station joins an IBSS the station that responded to the probe request knows the new stations MAC address and the new station knows the MAC address of this station from the probe response. The new station does not know MAC addresses of other stations in the IBSS nor do other stations know about the new station.

Stations in the IBSS can learn about other station in a number of ways. When a station learns about the MAC address of another station in the IBSS, it should initiate 802.1X with that station. This includes receiving an 802.1X message from a MAC address you do not know.

A new station on joining an IBSS will initialize its transmit Group key for broadcast traffic. The new station now has a Group key in place so can send broadcast messages. There are a number of broadcast messages a station may transmit on joining an IBSS. If the station is an IPv4 DHCP station it will send a broadcast DHCP discovery message. If the station is an IPv4 static station it will send an ARP broadcast to check for duplicate IP addresses. If the station is an IPv6 station it will send broadcast neighbor discovery messages to check for duplicate IP addresses. The station may also transmit router discovery messages.

Stations on receiving a message that cannot be decrypted from a MAC address they are not authenticated with should initiate 802.1X authentication to that MAC address.

So all the stations in range of the new station will receive the broadcast message and will initiate 802.1X to the new station, on completion of the 802.1X authentications and the new stations 802.1X authentications back, the new station will be authenticated and part of the IBSS.

8.4.4 RSN policy selection in an IBSS
The negotiation of unicast ciphers must be between the two stations involved. The Beacon/Probe response may not come from that station so cannot be used for negotiating the unicast cipher, so in IBSS mode there must be an empty list of unicast ciphers in the beacon and probe response. The 4-way handshake is between the two stations involved so can be used to negotiate the unicast cipher.

The beacon/probe response contains an empty list of unicast ciphers; the multicast cipher for the IBSS and the authenticated key management protocol (AKMP) for IBSS. This allows a station to understand what is required to join the IBSS.

The unicast cipher negotiation is done via the 4-way handshake with message 2 containing a list of unicast ciphers and message 3 containing a single unicast cipher. The stations still need to check that the multicast cipher and AKMP are the same as the beacon/probe response.

Note: Only one of the 4-way handshakes should do the negotiation. This is specified below in the AKMP section.

Note: The RSN information elements in message 2 and 3 are not the same as in the MAC messages, the multicast cipher and AKMP are the same but the unicast ciphers may be different.

Note: When an IBSS network uses a pre-shared key, a unicast cipher can still be negotiated but any station in the IBSS can obtain the unicast keys via sniffing for the Nonces and calculating the PMK using the PSK.

An ESS can still negotiate the unicast cipher via the beacon/probe response/associate request messages to allow deployments that want to configuration the AP with the list of allowed ciphers since the 4-way handshake the negotiation is the wrong way round for this.

What happens if mix of non-RSN and RSN stations? Non-RSN will beacon without RSN IE, RSN stations will beacon with RSN IE. Non-RSN stations will ignore RSN IE. RSN stations will get confused about whether IBSS is RSN or not. A RSN station will find a non-RSN station during 4-way handshake to a non-RSN station but there is no way to tell non-RSN station to go away. RSN stations need to ignore that the RSN IE/capability is missing from beacon/probe response and log that a station is not RSN. If the multicast cipher is WEP then non-RSN stations will work if all the stations use a fixed multicast key.

Configuration for non-RSN and RSN stations is

Non-RSN stations use multicast static cipher key

RSN stations may use a unicast cipher key

A RSN capable station on receiving a non-RSN beacon/probe response should switch to use a pre-configured static multicast WEP key.

Need to add a configuration option on client to enable legacy interop. In this case a network key and key index needs to be selected.

8.4.7 RSN authentication in an IBSS
The methods of authenticating key management in IBSS are the same as in ESS. However, pre-shared key authentication will work in IBSS without additional protocols.

8.4.9 RSN key management in an IBSS
The 4-way handshake is done between each pair of stations in both directions. Only one of the handshakes installs a Pairwise key but both generate a PTK in each direction.

The Authenticator does an additional check over ESS to set the Pair variable. The Pair variable is set if the station supports Pairwise keys and if the MAC address of the station is lower that the MAC address of the other station.

The unicast cipher negotiation is done via the 4-way handshake with message 2 containing a list of unicast ciphers and message 3 containing a single unicast cipher. The negotiation is only done in the exchange with the Authenticator with the lower MAC address. The stations still need to check that the multicast cipher and AKMP are the same as the beacon/probe response.

Each Authenticator generates its own Group keys and uses the Group Key update handshake to send the GTK to other stations that it has carried out a 4-way handshake with.

8.5.6 Authenticator key management state machine

[image: image2.emf]GNoStations--

DISCONNECTED

Send EAPOL(0, 0 ,1 , 0, 0, P, ANonce, 0, 0, 0)

TimeOutCtr++

PTK START

PTK = Calc PTK(ANonce, SNonce)

Check MIC(PTK)

Send EAPOL(0, 1, 0, Pair, 0, P, ANonce, 0, MIC(PTK), 0)

If Pair == 1

Set PTK(0, Tx/RX, PTK)

GInitAKeys = True

PInitAKeys = True

PTKINITNEGOTIATING

UCT

TimeoutEvt

TimeoutCtr>N

!MICVerified

EAPOLKeyRecvd &&

!TimeoutEvt

PInitAKeys = False

GUpdateStationKeys = False

Send EAPOL(1, 1, 1, Pair, GN, G, ANonce, GNonce, MIC(PTK), GTK[AN]);

TimeOutCtr++

REKEYNEGOTIATING

MSK = 0

If Unicast cipher supported by Authenticator and Supplicant && (ESS || (IBSS && AA < SA))

Pair = 1

802.1X::portMode = Disabled

Remove PTK(0)

Remove GTK(0..N)

802.1X:VirtualPort = 1

802.1X:VirtualSecure = 0

INITIALIZE

GNoStations++

ANonce = Counter++;

GNonce = Counter++;

GN=1;

PTK = GTK[0..N] = 0;

802.1X::portControl = Auto;

802.1X::portMode = Enabled;

AUTHENICATION

MSK = RadiusKey;

INITMSK

Init

AuthenticationRequest

802.1X::aSuccess

GTKReKey = False

GInitDone = True

GKeyDoneStations = GNoStations

GM=GN, GN=!GN;

GNonce = Counter++;

GTK[GN] = Calc GTK(GNonce);

GUpdateStationKeys = True

SETKEYS

GTKAuthenticator &&

(GTKReKey

|| (GInitAKeys && !GInitDone))

Check MIC(PTK)

GKeyDoneStations–-

TimeOutCtr = 0

802.1X::VirtualSecure = 1

REKEYESTABLISHED

EAPOLKeyRecieved

SetGTK(GN, Tx/Rx, GTK[GN])

GKeyReady = True

SETKEYSDONE

GKeyDoneStations == 0

TimeoutEvt

GUpdateStationKeys

|| (GKeyReady && PInitAKeys)

UCT

GKeyDoneStations--

KEYERROR

TimeoutCtr>N

UCT

STADeauthenticate()

DEAUTHENTICATE

UCT

DeauthenticateEvt

Check MIC(PTK)

ANonce = Counter++;

GNonce = Counter++;

GTKReKey = True

UPDATEKEYS

EAPOLKeyRecvd

UCT

ANonce = Counter++;

GNonce = Counter++;

GTKRekey = True

IntegrityFailed = False

MICFAILURE

IntegrityFailed

UCT

Note: Only the INITIALIZE state modified to check for IBSS and MAC address to set the Pair variable.

8.7.1 Tx pseudo-code

The red text below is the changed Tx pseudo-code to support the new IBSS broadcast keying.

if dot11PrivacyInvoked is “false”

the MPDU is transmitted without encryption

else

if (the MPDU has an individual RA

 and there is an entry in dot11WEPKeyMappings for that RA

 and dot11WEPKeyMappingsKeyBroadcast is false)

 or (the MPDU has a multicast RA

 and the network type is IBSS

 and network is RSN

 and there is an entry in dot11WEPKeyMappings for the TA

 and dot11WEPKeyMappingsKeyBroadcast is true)

if that entry has WEPOn set to “false”

the MPDU is transmitted without encryption

else

if that entry contains a key that is null

discard the entire MSDU and generate an

MA-UNITDATA-STATUS.indication primitive to

notify LLC that the MSDU was undeliverable due to

a null WEP key

else

encrypt the MPDU using that entry’s key, setting the KeyID subfield of the IV field to zero

else

if (the MPDU has a group RA and the Privacy subfield of the Capability Information field in this BSS is set to 0)

the MPDU is transmitted without encryption

else

if dot11WEPDefaultKeys[dot11WEPDefaultKeyID] is null

if Ethertype is 802.1X

the MPDU is transmitted without encryption

else

discard the MSDU and generate an

MA-UNITDATA-STATUS.indication primitive to

notify LLC that the entire MSDU was undeliverable

due to a null WEP key

else

encrypt the MPDU using

dot11WEPDefaultKeys[dot11WEPDefaultKeyID],

setting the KeyID subfield of the IV field to dot11WEPDefaultKeyID

endif

8.7.2 Rx pseudo-code

The red text below is the changed Rx pseudo-code to support the new IBSS broadcast keying.

if the WEP subfield of the Frame Control Field is zero

if aExcludeUnencrypted is “false” or (there is not an entry in

 dot11WEPKeyMappings matching the MPDU’s TA and Ethertype is 802.1X)

receive the frame without decryption

else

discard the frame body without indication to LLC and

increment dot11WEPExcludedCount

else

if dot11PrivacyOptionImplemented is “true”

if (the MPDU has individual RA

 and there is an entry in dot11WEPKeyMappings for the MPDU’s TA

 and dot11WEPKeyMappingsKeyBroadcast is false)

 or (the MPDU has a multicast RA

 and network type is IBSS

 and network is RSN

 and there is an entry in dot11WEPKeyMappings for the MPDU’s TA

 and dot11WEPKeyMappingsKeyBroadcast is true)

if that entry has WEPOn set to “false”

discard the frame body and increment dot11WEPUndecryptableCount

else

if that entry contains a key that is null

discard the frame body and increment

dot11WEPUndecryptableCount

else

attempt to decrypt with that key, incrementing

dot11WEPICVErrorCount if the ICV check fails

else

if dot11WEPDefaultKeys[KeyID] is null

discard the frame body and increment

dot11WEPUndecryptableCount

else

attempt to decrypt with dot11WEPDefaultKeys[KeyID],

incrementing dot11WEPICVErrorCount if the ICV check fails

else

discard the frame body and increment dot11WEPUndecryptableCount

endif

10.3.11.1.2 Semantics of the Service Primitive

Add to the table of parameters into SetKeys

	Name
	Type
	Valid range
	Description

	Auth/Supplicant
	Boolean
	TRUE, FALSE
	Whether key is set by the Authenticator or Supplicant. The MAC uses this to selects the correct integrity key to use.

Annex D - MIB

Add to dot11WEPKeyMappingsEntry the following variable

dot11WEPKeyMappingsKeyBroadcast OBJECT-TYPE

SYNTAX TruthValue

MAX-ACCESS read-write

STATUS current

DESCRIPTION

"Boolean as to whether WEP is to be used for IBSS broadcast keys."

::= { dot11WEPKeyMappingsEntry 3 }

Informational section on one way to put together an IBSS

Walk Through

[image: image3]
1. Joins IBSS by setting SSID

This is a MAC level join of the IBSS.

2. Station generates a GMK and sets the GTK

This is a local action; the station now has a broadcast key so it can send btoadcast messages

3. Station higher level services (e.g. TCP/IP) sends broadcast messages

Examples such as DHCP discover, arp request

Broadcast messages sent by higher level services are encrypted by the Group key and sent onto the air.

4. Remote station receives an encrypted broadcast message from an unauthenticated station

There can be more than one remote station receiving these broadcast messages so multiple remote stations can receive these messages and act on them

5. Remote station initates 4-way handshake to station

Multiple remote stations may be initiating 4-way handshakes. The Remote station is the Authenticator for this 4-way handshake.

6. Station receives message 1 of 4-way handshake from an unauthenticated remote station

The station is going to follow the same rule if it receives a message from an unauthenticated station it should initiate the 4-way handshake to it.

7. Station initates 4-way handshake to remote station

In this case the station is the Authenticator for this 4-way handshake. There may be multiple 4-way handshakes initiated to different remote stations.

8. The remote station initiated 4-way handshake completes. The remote station and station now have a remote station PMK

Each station/station pair has two PMKs. A PMK owned by the authenticator of a station and a PMK generated by a 4-way handshake initiated by the authenticator of the other station. This allows the remote station to be able to send Group key updates to this station.

9. The station initiated 4-way handshake completes. The station and remote station now have a station PMK.

This allows this station to be able to send Group key updates to the remote station.

10. The station or remote station authenticator with the higher MAC address PMKs is the unicast key between the station and remote station

Message 3 of the 4-way handshake tells the other station whether to install the PTK derived from the PMK as a pairwise key.

11. The station initates a group key update to the remote station using the station PMK

A station sends its GTK using its PMK to encrypt and sign the GTK.

12. The remote station initiates a group key update to the station using the remote station PMK.

AS/A

S

AS/A

S

STA1

STA2

Station

Remote Station

Broadcast message

4-way handshake

4-way handshake

Group key update

Group key update

Set GTK

Submission
page 1
Tim Moore, Microsoft, et.al.

_1088248586.vsd
text�

GNoStations--�

disconnected�

Send EAPOL(0, 0 ,1 , 0, 0, P, ANonce, 0, 0, 0)
TimeOutCtr++�

PTK start�

�

GKeyDoneStations--�

PTK = Calc PTK(ANonce, SNonce)
Check MIC(PTK)
Send EAPOL(0, 1, 0, Pair, 0, P, ANonce, 0, MIC(PTK), 0)
If Pair == 1
	Set PTK(0, Tx/RX, PTK)
GInitAKeys = True
PInitAKeys = True�

PTKinitnegotiating�

KEYERROR�

�

UCT�

TimeoutEvt�

TimeoutCtr>N�

!MICVerified�

TimeoutCtr>N�

�

EAPOLKeyRecvd && !TimeoutEvt�

GUpdateStationKeys
|| (GKeyReady && PInitAKeys)�

PInitAKeys = False
GUpdateStationKeys = False
Send EAPOL(1, 1, 1, Pair, GN, G, ANonce, GNonce, MIC(PTK), GTK[AN]);
TimeOutCtr++�

rekeynegotiating�

MSK = 0
If Unicast cipher supported by Authenticator and Supplicant && (ESS || (IBSS && AA < SA))
	Pair = 1
802.1X::portMode = Disabled
Remove PTK(0)
Remove GTK(0..N)
802.1X:VirtualPort = 1
802.1X:VirtualSecure = 0�

Initialize�

UCT�

GNoStations++
ANonce = Counter++;
GNonce = Counter++;
GN=1;
PTK = GTK[0..N] = 0;
802.1X::portControl = Auto;
802.1X::portMode = Enabled;�

AUTHENICATION�

MSK = RadiusKey;�

initmsk�

STADeauthenticate()�

Init�

AuthenticationRequest�

DEAUTHENTICATE�

802.1X::aSuccess�

�

UCT�

UCT�

DeauthenticateEvt�

GTKReKey = False
GInitDone = True
GKeyDoneStations = GNoStations
GM=GN, GN=!GN;
GNonce = Counter++;
GTK[GN] = Calc GTK(GNonce);
GUpdateStationKeys = True�

setkeys�

GTKAuthenticator && (GTKReKey
|| (GInitAKeys && !GInitDone))�

Check MIC(PTK)
GKeyDoneStations�-
TimeOutCtr = 0
802.1X::VirtualSecure = 1�

rekeyestablished�

EAPOLKeyRecieved�

�

SetGTK(GN, Tx/Rx, GTK[GN])
GKeyReady = True�

setkeysDONE�

GKeyDoneStations == 0�

TimeoutEvt�

�

Check MIC(PTK)
ANonce = Counter++;
GNonce = Counter++;
GTKReKey = True�

UPDATEKEYS�

EAPOLKeyRecvd�

UCT�

ANonce = Counter++;
GNonce = Counter++;
GTKRekey = True
IntegrityFailed = False�

MICFAILURE�

IntegrityFailed�

�

UCT�

