September 2002

doc.:IEEE 802.11-02/477r1

IEEE P802.11
Wireless LANs

Proposal for Informative Schemes for Generating Randomness

Date:
September 5, 2002

Authors:

Tim Moore

Microsoft

1 Microsoft Way

Redmond, WA 98052

Phone: +1 425-703-9861

e-mail: timmoore@microsoft.com

Doug Whiting

Hifn

5973 Avenida Encinas, Suite 110

Carlsbad, CA 92008

Phone: +1 760-827-4502

e-mail:dwhiting@hifn.com

Clint Chaplin

Symbol Technologies

6480 Via Del Oro

San Jose, CA 95119-1208

Phone: +1 408-528-2766

e-mail: cchaplin@sj.symbol.com

Abstract

The security schemes that TGi are proposing require that stations generate randomness to be used for key generation. Current AP implementation may not have a good method of generating randomness. This submission suggests two solutions: one pure software solution using packet times, and one hardware solution. We recommend that these solutions be included in the draft as an informative appendix.

1 Generate random numbers on an AP

For cryptographic reasons we need the AP to generate a random number. In order to generate this random number, the AP needs to collect randomness. By taking multiple samples of a process that contains some randomness, the AP can probably collect enough randomness. By passing the complete sample set through a PRF, all the randomness will be distilled into the random number that is needed.

This is an informational appendix that describes two methods to generate a random number. The first is a software solution that can be done on existing hardware; the second is a hardware assisted solution. These solutions do not (and should not) have to be either/or; if multiple sources of randomness are available, all sources should be gathered up, concatenated together, and hashed to obtain the final random seed.

1.1 Software Solution

Due to the nature of clock circuits in modern electronics, there will be a certain amount of uncorrelation between two clocks in two different pieces of equipment, even if high quality crystals are used (crystal clocks are subject to jitter, noise, drift, and frequency mismatch). This randomness may be as little as the placement of the clock waveform edges. Even if one entity were to attempt to synchronise itself to another entity’s clock, the correlation cannot be perfect, due to noise and uncertainties of the synchronisation.

Two clock circuits in the same piece of equipment may synchronise in frequency, but again the correlation will not be perfect due to the noise and jitter of the circuits.

The randomness between the two clocks may not be much per sample, but enough samples may be collected to gather enough randomness.

The AP can use software methods to take advantage of this unsynchronisation to collect randomness from two possible sources: packet times on the ethernet port, or packet times from the wireless port. In the following algorithm, the AP will obtain randomness from the earliest available sources; if ethernet traffic is available, the AP will use that as a source of randomness; otherwise it will wait for the first association and create traffic that it can obtain randomness from.

The times that are used to time the packets should be the highest resolution that is available, and it must be at least 1ms resolution. It is better if the clock that was doing the timing is not related to the clock that does the packet serialization.

Initialize result to empty array

LoopCounter = 0

Wait until ethernet traffic or association

Repeat until global key counter "random enough" or 32 times {

result = PRF-256(0, "Init Counter",

Local Mac Address || Time || result || LoopCounter)

LoopCounter++

Repeat 32 times {

If ethernet traffic available then

Take lowest byte of time when ethernet packet is seen

Concatenate the seen time onto result

else

Start 4-way handshake, but only to reception of message 2

Take lowest byte of time of when message 1 is sent

Take lowest byte of time of when message 2 is received

Take lowest byte of RSSI from message 2

Take SNonce from message 2

Concatenate the sent time; receive time, RSSI and SNonce onto result

}

}

Global key counter = result = PRF-256(0, "Init Counter",

Local Mac Address || Time || result || LoopCounter)

Note: The Time may be 0 if it is not available.

1.2 Hardware Assisted Solution

[image: image1.png]Ring Oscillators

19 total N~
e i

I: E 23 total l: [

‘: ‘> 29 total ‘: ‘>

Other Source of

Randomness (if

available)

Clock

) >

O
0
O
0
O
0

Q|
Q|
ol

>

CLR Q

8, 16 or 32
LFSR

8, 16 or 32

The above circuit generates randomness. The clock input should be about the same frequency as the ring oscillator’s natural frequencies. The LFSR should be chosen to be one that is maximal length. (http://www-2.cs.cmu.edu/~koopman/lfsr/).

The three ring oscillators should be isolated from each other as much as possible, to avoid harmonic locking between them. In addition, the three ring oscillators should not be near any other clock circuitry within the system, to avoid these ring oscillators locking to system clocks.

The output of the LFSR is read by software and concatenated until enough randomness is collected (as a rule of thumb, reading from the LFSR eight to sixteen times the number of bits as the desired number of random bits is sufficient), and then the resulting concatenation is hashed down to the desired number of random bits.

Initialize result to empty array

Repeat 1024 times {

Read LFSR

result = result | LFSR

Wait a time period

}

Global key counter = PRF-256(0, "Init Counter", result)

� EMBED MSPhotoEd.3 ���

Submission
page 1
C. Chaplin

[image: image2.png]Ring Oscillators

19 total N~
e i

I: E 23 total l: [

‘: ‘> 29 total ‘: ‘>

Other Source of

Randomness (if

available)

Clock

) >

O
0
O
0
O
0

Q|
Q|
ol

>

CLR Q

8, 16 or 32
LFSR

8, 16 or 32

_1092654111.bin

