July 2002

doc.:IEEE 802.11-02/477r0

IEEE P802.11
Wireless LANs

Proposal for Informative Schemes for Generating Randomness

Date:
July 11, 2002

Authors:

Tim Moore

Microsoft

1 Microsoft Way

Redmond, WA 98052

Phone: +1 425-703-9861

e-mail: timmoore@microsoft.com

Doug Whiting

Hifn

5973 Avenida Encinas, Suite 110

Carlsbad, CA 92008

Phone: +1 760-827-4502

e-mail:dwhiting@hifn.com

Clint Chaplin

Symbol Technologies

6480 Via Del Oro

San Jose, CA 95119-1208

Phone: +1 408-528-2766

e-mail: cchaplin@sj.symbol.com

Abstract

The security schemes that TGi are proposing require that stations generate randomness to be used for key generation. Current AP implementation may not have a good method of generating randomness. This submission suggests two solutions: one pure software solution using packet times, and one hardware solution. We recommend that these solutions be included in the draft as an informative appendix.

1 Generate random numbers on an AP

For crypto reasons we need the AP to generate a random number. This is an informational appendix that describes two methods to generate a random number. The first is a software solution that can be done on existing hardware; the second is a hardware solution.

1.1 Software solution

The AP can get randomness from two possible places: packet times on the ethernet port, or packet times from the wireless port. In the following algorithm, the AP will obtain randomness from the earliest available sources; if ethernet traffic is available, the AP will use that as a source of randomness; otherwise it will wait for the first association and create traffic that it can obtain randomness from.

Initialize result to empty array

LoopCounter = 0

Wait until ethernet traffic or association

Repeat until global key counter "random enough" or 32 times {

result = PRF-256(0, "Init Counter",

Local Mac Address || Time || result || LoopCounter)

LoopCounter++

Repeat 32 times {

If ethernet traffic available then

Take lowest byte of time when ethernet packet is seen

Concatenate the seen time onto result

else

Start 4-way handshake, but only to reception of message 2

Take lowest byte of time of when message 1 is sent

Take lowest byte of time of when message 2 is received

Take lowest byte of RSSI from message 2

Take SNonce from message 2

Concatenate the sent time; receive time, RSSI and SNonce onto result

}

}

Global key counter = result = PRF-256(0, "Init Counter",

Local Mac Address || Time || result || LoopCounter)

Note: The Time may be 0 if it is not available.

1.2 Hardware solution

[image: image1.wmf]Q

Q

SET

CLR

S

R

Q

Q

SET

CLR

S

R

Q

Q

SET

CLR

S

R

Q

Q

SET

CLR

S

R

19 total

23 total

29 total

8, 16 or 32

LFSR

8, 16 or 32

Clock

Ring Oscillators

The above circuit generates randomness. The clock input should be about the same frequency as the ring oscillator’s natural frequencies. The output of the LFSR is read by software and concatenated until enough randomness is collected (as a rule of thumb, reading from the LFSR eight to sixteen times the number of bits as the number of random bits is sufficient), and then the resulting concatenation is hashed down to the desired number of random bits.

Initialize result to empty array

Repeat 1024 times {

Read LFSR

result = result | LFSR

Wait a time period

}

Global key counter = PRF-256(0, "Init Counter", result)

Submission
page 1
C. Chaplin

_1087882049.vsd

