May 2002

doc: IEEE 802.11-02/-325r0

IEEE P802.11
Wireless LANs

Dual Precoding for FEC

and

Updated Normative Text for Section 7.5

Date:
May 8, 2002

Author:
Chris Heegard, Lior Ophir, Richard Williams, Sid Schrum

Texas Instruments Inc.

e-Mail: {Heegard, Lior.Ophir, Richard, Sschrum}@ti.com

Abstract

Enclosed below are a description of the dual precoder scheme proposed for use with MAC level FEC and an updated draft of section 7.5 (latest version based on changes accepted up to and including the March meeting) incorporating changes reflecting adoption of this dual precoding scheme for FEC.

1 The Dual precoding Method

A dual pre-coding method, is used to provide systematic encoding for the packet header. This is helpful for maintaining backwards compatibility with existing systems.

From [1], the pre-coding scheme for a given generator polynomial g(D) is depicted in Figure 1. In Figure 2, the moving average and recursive filters for a popular generator, used in IEEE 802.11 wireless local area networks, is shown.

Figure 1: Packet based scrambler and descrambler pair

[image: image1.wmf]PHY

(transmit,

channel,

receive)

Moving

Average

Filter

g(D)

Recursive

Filter

1/g(D)

Figure 2: Filters for
[image: image2.wmf]

g

(

D

)

=

1

+

D

4

+

D

7

[image: image3.wmf]+

D

4

D

3

+

Recursive Filter

1/1+D

4

+D

7

+

D

4

D

3

+

Moving Average Filter

1+D

4

+D

7

One problem with this pre-coding scheme relates to backwards compatibility with existing IEEE 802.11 devices and the scrambling of the “MAC” header. The system depicted in Figures 1 & 2 is “non-systematic” on the entire packet, meaning that the output of the pre-coder is a scrambled version of input. In packet systems, such as those found in IEEE 802.11, the initial portion of the packet contains low-level networking information known as the MAC header. This information is useful to all receivers that can detect the packet, not just the intended receiver. The scrambling of the MAC header could cause networking problems with legacy systems that do not implement the post-coder at the receiver. An elegant solution to this problem is to use a “dual pre-coding” system.

1.1 Dual pre-coding

One important application of the scrambling scheme given in Figure 1 is in conjunction with an Error Control Code (ECC) such as a Reed-Solomon code. A systematic version of such an ECC system is shown in Figure 3. In such an ECC system a number of input symbols, k_ECC, are taken as input to a parity-check calculating device and form the first k_ECC symbols of the output (position 1 in Figure 3). Following the k_ECC input symbols, the r_ECC parity-check symbols are used as the output (position 2 in Figure 3). For an input of length k_ECC sysmbols, an output of n_ECC = k_ECC + r_ECC symbols is produced (the input followed by the parity checks).

Figure 3: Systematic ECC Encoder

[image: image4.wmf]ECC

Encoder

Parity

Check

2

1

In a long packet, the ECC encoder can be used multiple times producing an output sequence of length n_packet from a smaller input sequence of length k_packet. Each instance of ECC encoding may use a possibly different value for k_ECC and r_ECC; this allows the packet encoder the flexibility to encode an input packet of variable length and variable error control capability. The output packet would agree with the input packet until the first parity checks are introduced. When initial information, such as a MAC header, is produced at the output before the first parity checks are inserted, then the initial information could be extracted from the output without knowledge of how the ECC parity checks are computed and inserted in the output packet.

In Figure 4, a dual pre-coding system is shown. In this system, when the ECC encoder is systematic (as previously described), then the output packet will agree with the input packet up to the time when the first parity check symbols are inserted. In addition, the benefits of the pre-coding, as described in [1], are preserved.

Figure 4: Dual pre-coding system

[image: image5.wmf]ECC

Encoder

Moving

Average

Filter

g(D)

Recursive

Filter

1/g(D)

PHY

(transmit,

channel,

receive)

Moving

Average

Filter

g(D)

Recursive

Filter

1/g(D)

ECC

Decoder

k_packet

n_packet

k_packet

n_packet

k_packet

n_packet

k_packet

n_packet

1.2 References

[1] Chris Heegard and Richard Williams, A Precoder for Limiting Scrambler Error Propagation, IEEE 802.11: 11-02-221r0, March, 2002.

2 Proposed Normative Text for Section 7.5

MAC-Level FEC and FEC frame formats

MAC-Level FEC is an option that may be used to reduce both the frequency of retransmissions and the MSDU loss rate for transfers via the WM. The following conditions apply to the use of MAC-Level FEC:

 -
MAC-Level FEC is a separate option from the QoS facility, the support for which is indicated by a separate bit in the Capability Information field. The use of MAC-Level FEC may be negotiated between QSTAs when desired, and may be used for transfers with no QoS delivery requirements. Note that a support for the QoS facility is a prerequisite to support for MAC-Level FEC, because the indication that an MPDU has been FEC-encoded is bit 15 of the Frame Control field and bit 9 of the QoS control field, and the QoS control field is only present in QoS frames and only exchanged by QSTAs in a QBSS. When using the TSPEC, FEC may be enabled using the in the Add TS Request QoS action frame with the FEC bit set to 1 and Ack Policy set to immediate acknowledgement if the requested QSTA can handle FEC decoding of any data frame before sending immediate ack can accept this combination. Otherwise, the requested QSTA can set the FEC bit to zero in the TSPEC of Add TS Response QoS action frame to indicate its inability to do so. Additionally, the requestor may retry the request by sending Add TS request QoS action frame for the traffic stream with FEC set to 0 or with FEC set to 1 and Ack Policy set to burst ack or no ack in the TSPEC.

· The MAC-level FEC operation allows for error detection to take longer than a SIFS interval. FEC-capable QSTAs that are unable to distinguish receptions with uncorrectable errors from receptions with correctable errors or no errors within a SIFS interval may require that all FEC-encoded frames be sent to them using an acknowledgment policy that does not include immediate acknowledgment. The non-use of immediate acknowledgement is negotiated as part of the TSPEC signaling, and is selected by a non-zero value in the Ack Policy field (bits 2-3) of the TS Info field of the TSPEC. Responses to FEC-encoded frames may be made using either the Burst Acknowledgement, or, if the receiver is capable, after a SIFS. The capability to respond to FEC-encoded frames after a SIFS is indicated by a separate bit in the Capability Information field.
Note: in any practical implementation of the FEC, the RxTXTurnaroundTime happens during the decoding process, and so medium sensing can be done even while the FEC frame is being decoded.

 -
A valid FCS check is required in order to forward an MSDU containing error-corrected data to higher layers. When the post-correction FCS check, using the “FEC FCS” as shown in Figure 42.19, fails, the MAC shall not indicate the erroneous MSDU to higher layers at the MAC SAP.
· The FEC bit in the TSPEC for the stream-based negotiation provides the means for determining if receiving stations are capable of accepting FEC encoded frames. It can be also used for the HC to determine the admission of the stream properly.
· The FEC bit in the Frame Control Field together with the FEC bit in the QoS control field should be used by transmitting stations to indicate if a frame is FEC encoded. If a frame is FEC encoded, both bits must be set to 1. If a frame is not FEC encoded, both bits must be set to 0.

· The FEC bit in the Frame Control Field together with the FEC bit in the QoS control field (if the QoS control field is present) should be used exclusively by receiving stations to determine if a frame is FEC encoded.

· The FEC shall not be used for frames containing any polls.

MAC-Level FEC may be performed on a given traffic stream. QSTAs announce their FEC capability by setting bit 9 of the Capability Information Field (7.3.1.4 and Figure 27) to 1. FEC is enabled for MPDUs belonging to a specific TS to/from a FEC-capable QSTA by defining a TSPEC for that TS which has bit 4 of its TS Info field set to 1. This TSPEC may be defined either by the local MLME, using an MLME-ADDTS.request; or by the MLME at the peer QSTA, using an Add TS request QoS Action frame.

The MAC-Level FEC encoder consists of a scrambler postcoder followed by a Reed-Solomon encoder followed by a scrambler precoder. The decoder consists of a scrambler postcoder followed by a Reed-Solomon decoder followed by a scrambler precoder. This dual-precoding scheme provides that the MAC header of FEC-encoded frames is not scrambled and hence can be interpreted by STAs and non-FEC-capable QSTAs. On reception, the FEC-encoded indicator bits are examined prior to passing through the postcoder in order to determine if the frame is FEC encoded. The precoder and postcoder improve the performance of the MAC-Level FEC with certain PHYs by limiting error propogation in the PHY scrambler.

QSTAs that are not capable of FEC decoding will still be able to read the MPDU, since the code is a systematic code and the dual-precoding scheme is used, and, via management frames, the receiving station is made aware of the flow’s encoding. A non-FEC capable QSTA can therefore interpret the MAC header and FCS, and can ignore erroneous frames based on the FCS result Unicast MPDUs directed to a non-FEC-capable QSTA shall not be FEC encoded. It is up to the implementation whether a non-FEC-capable QSTA shall discard or receive FEC-encoded multicast MPDUs directed to it. In the latter case, the QSTA shall interpret the MPDU according to the FEC frame format, receiving the data and ignoring the parity check fields.
The MAC-Level FEC is based on shoterned versions of the (255,239) Reed-Solomon code over GF(256). An (m,m+16) shortened Reed-Solomon code, where 0 < m < 256, is obtained by treating m octets as though they were the last m octets of 239 information octets to be encoded by the (255,239) Reed-Solomon code. The first (239-m) octets are assumed all zeros for the encoding purpose while they are not transmitted. The (255,239) and any shortened version are capable of correcting up to 9 octet errors per block. Figure 42.19’ illustrates how the shortened code is generated.
Note: The codes chosen were made to be variants of the (255, 239) code to facilitate the transmission of MPEG-2 Transport Streams, as defined in IEC 61883-4 . Such streams, assuming payload allocated for overhead, is expected to fit within a single RS block of 208 octets.

[image: image6.wmf]239 octets

16 parity

octets

239 octets

m octets

16 parity

octets

239-m all zero octets

(not transmitted)

(255,239) Reed-Solomon Code

(m+16,m) shortened Reed-Solomon Code

Figure 42.19’ FEC frame format
The format of MAC-Level FEC MPDUs is given in Figure 42.19, where the upper part shows an non-FEC-encoded MPDU while the lower part shows an FEC-encoded MPDU counterpart for the same payload from an MSDU or a fragment of an MSDU for the comparison purpose. The Data portion in the figure represent the frame body of non-FEC-encoded frame, which may include IV and ICV fields as specified in Figure 46 if the WEP option is used. The MAC-Level FEC uses a (48,32) and (224,208) Reed-Solomon codes, which are both shoretened versions of the (255,239) code over GF(256), for the MAC header and the frame body part of the MPDU, respectively. FEC encoding is performed on successive 208-octet blocks of the frame body of the MPDU. The FEC coding adds 16 parity octets per block. If the unencoded frame body is not an integral multiple of 208 octets, then the last block of the frame body with m octets is encoded with a (m+16, m) Reed-Solomon code, which is a shortened version of the (255,239) code over GF(256).

Two FCS fields are used for the FEC-encoded frames. Before the FEC encoding, the FCS is calculated over all the fields of the MAC header and the frame body field. The resulting 4-octet FCS, called “FEC FCS”, is appended to the frame body. The resuling frame should look like the upper part of Figure 42.19. The non-FEC-encoded frame is encoded using the above-desribed FEC. Finally, in order for STAs and non-FEC capable QSTAs to perform validate the received MPDU (in order to use information from fields in the MAC header), the MPDU FCS is calculated on the FEC-encoded frame, including all Reed-Solomon parity octets, resulting in the MPDU format as shown in the lower part of Figure 42.19. The receiving QSTA, which is FEC-capable, can recalculate the FEC FCS on the corrected MPDU, to determine whether the error correction has recovered the original frame contents. If the FEC FCS check is invalid for a received, corrected MPDU, that MPDU is discarded due to an uncorrectable error. Both the FEC FCS and the MPDU FCS are computed, and transmitted in the bit order, specified in 7.1.3.8.

For QoS data frames of types that do not utilize an Address 4 field, in order to facilitate decoding and separation of the header from the frame body, a 6-octet pad of ones is inserted between the Sequence Control field and the QoS Control field. All FCSs are calculated after this padding is added, as it is part of the transmitted frame.
Note: One method for handling the decoding procedure of an FEC frame is as follows: If both FEC bits are received as 0, the frame is handled as a non-FEC encoded frame, if however at least one of the FEC bits (or both FEC bits) are received as 1, the frame is handled as an FEC encoded frame. (If the frame were not FEC encoded, it would fail the FCS in any event.) The inner FCS is used to determine if the RS decoding was successful when used. This method (the implementer is free to use whatever methods fit his design constraints) works under the assumption that at the expected BER of operation when FEC coding is used, the probability of receiving both FEC bits in error is negligible, and allows for a simple implementation.

Alternatively, the outer FCS may be done before any FEC decoding is; if this FCS fails, then FEC decoding is performed as above.

[image: image7.wmf]Header

Header

FEC

Data

1

FEC

Data

2

FEC

Data

N

+ "FEC FCS"

FEC

FCS

MAC Header

Frame Body

(

N

Blocks,

N

=1~12

)

FCS

32

16

208

16

208

16

16

1 ~ 208

4

FCS

4

MAC

Header

32

Frame Body

Data (

N

=1~12)

208*(

N

-1)+1 ~ 208 *

N

Figure 42.19 FEC frame format

All the FEC computations are based on the polynomial operations in GF(2) and GF(256). Both the RS (224, 208) and RS (48, 32) used are shortened versions of the RS (255, 239) code over GF(256). GF(256) is generated by a polynomial f(x) in GF(2). The polynomial f(x) for the GF(256) is:

f(x) = x8 + x4 + x3 + x2 + 1

The field that this polynomial generates is listed in Table 6 of Appendex A of Lin and Costello, Error Control Coding: Fundamentals and Applications, Prentice-Hall, 1983, as well as in other coding books. Each code (a code space with collection of all code words) contains a unique nonzero code word of smallest degree polynomial with the coefficient of highest degree equal to 1. This polynomial is called generator polynomial. All code words can be constructed using generator polynomial for the Reed-Solomon code:
2t 2t

g(x) = ((x - (i) = (g j * xj
 i=1 j= 0

t = the number of correctable errors = 8

(i = roots of g(x) on (primitive elements of) GF(256)

The generator polynomial's coefficiencts are given by the following, with am as primitive roots of f(x):

g15 : a121
g14 : a106
g13 : a110
g12 : a113
g11 : a107
g10 : a167
g9 : a83
g8 : a11
g7 : a100
g6 : a201
g5 : a158
g4 : a181
g3 : a195
g2 : a208
g1 : a240
g0 : a136
The decimal values of the roots of g(x) are given in Table 20.3.

 Table 20.3. Roots of Reed-Solomon Polynomial g(x)

	Coefficients of am represented as a[m]
	Decimal Value

	a[121]
	118

	a[106]
	 52

	a[110]
	103

	a[113]
	 31

	a[107]
	104

	a[167]
	126

	a[83]
	187

	a[11]
	232

	a[100]
	 17

	a[201]
	 56

	a[158]
	183

	a[181]
	 49

	a[195]
	100

	a[208]
	 81

	a[240]
	 44

	a[136]
	 79

To obtain the parity check octets, the MAC header or the message block is represented as a polynomial c(x) over GF(256), with the rightmost octet corresponding to the coefficient of x0 in c(x). The remainder polynomial b(x) is formed by dividing x16c(x) by

the generator polynomial g(x). The 16 parity check octets are the coefficients of the remainder polynomial b(x), with the rightmost parity check octet corresponding to the coefficient of x0 in b(x).

The FEC scrambler precoder is based upon the generator polynomial:

g(D) = 1 + D4 + D7
The transmitter treats FEC-encoded frames using the following 7 steps:
1. Fetch complete non-RS-encoded 802.11 frame.
2. Pad address 4 with ones, if needed, as described above.
3. Calculate 4-byte CRC on output of step #2 above and append. This is refered to as “FEC-FCS” above.

4. Run resulting output of step #3 through the postcoder that is shown below.
5. Run resulting output of step #4 through RS-encoder, which inserts parity bytes, as described above.
6. Run resulting output of step #5 through the precoder that is shown below.
7. Calculate 4-byte CRC on output of step #6 and append. This is refered to as “FCS” above.
[image: image8.wmf]+

D

4

+

D

3

Precoder

Postcoder

+

+

D

4

D

3

Insert after 7.5 the following new subclause, including the table therein, renumber items as appropriate:

Submission
page 1
Lior Ophir, Texas Instruments

_1074517165.vsd

_1074673030.vsd

_948206086.unknown

