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1.1 Introduction

This is an update to TGi with the following changes:

1. Uses 48 bit IV for TKIP

2. Changes 802.1X key state machine so it does not do Pairwise key updates except under error conditions since increasing the IV of TKIP means key updates fro IV exhaustion is not required.

3. Uses 802.1X as an authenticated key management protocol, not as an 802.11 authentication algorithm. IEEE 802.11 authentication uses the existing authentication algorithms in particular open authentication. This allows the 802.11 state machine to be the simple version the the 1999 version had. 

4. Pre-authentication with 802.1X to allow stations to obtain keys before assoication.

5. APs shall advertise what they support (Cipher suite, authentication modes). Stations shall request the cipher suites and authentication mode they want. An information element in the Beacon and probe response messages is used to carry this information. The station uses the same information element in association request message.

This information element is described in Section 1.3 and 1.8.

6. Authentication and Association are required
This is described in Section 1.4.

7. TKIP encryption and Michael integrity check are required.

TKIP and Michael are described in Sections 1.5, 1.6 and 1.7. Including support for 48 bit IV.

8. It does not integrity check management and control messages.

9. Fast handoff can be supported using pre-authentication of key management.

10. MIB support

On the station we need the following:

Need somewhere to configure the pre-shared key. This is implementation dependent and will not be defined here. The pre-shared key shall be a 256 bit key and the implementation will need to be able to enter this value. If a key smaller than 256 bits is entered the key will be padded with zeros in the most significant bits. The implementation shall allow a 104 bit key to be entered and may allow a 256 bit key to be entered. It must be possible to enter all possible 104 bit key combinations. It is recommended that it is possible to enter the key as 26 hex characters though it may be possible to enter the key in a different format.

On the AP we need the following:

Need somewhere to configure the pre-shared key. This is an implementation dependent and will not be defined here. The pre-shared key shall be a 256 bit key and the implementation will need to be able to enter this value. If a key smaller than 256 bits is entered the key will be padded with zeros in the most significant bits. The implementation shall allow a 104 bit key to be entered and may allow a 256 bit key to be entered. It must be possible to enter all possible 104 bit key combinations. It must be able to enter the key as 26 hex characters though it may be possible to enter the key in a different format.

Need somewhere to configure when 802.1X should update the group key. Do we need MIB variables for this?


1.2 Overview

APs advertise their capabilities in RSN information element. If admin doesn’t want particular ciphers to be used then they should not be advertised in the RSN IE for the AP/station. APs/stations should also be capable of being configured to allow non-RSN stations to associate or not to allow them. When configured to allow non-RSN stations then the multicast cipher should be WEP.

The configuration options an AP/station should support are:

· Independentley enable or disable the following options

· RSN

· WEP

· WEP rekeying using the existing 802.1X EAPOL-key message.

· For RSN select the list of available ciphers for unicast

· TKIP

· AES

· Select the RSN multicast cipher

The multicast cipher must always be the lowest unicast cipher enabled. So if WEP is enabled in 1 then the multicast is WEP. If only RSN is enabled in 1 and TKIP is enabled in 2 then the multicast cipher is TKIP. If only RSN is enabled in 1 and only AES is enabled in 2 then the multicast cipher is AES.

· 
· 
· 

· Pre-shared key for RSN

Stations get RSN information element from the beacon or probe response messages. From their encryption/integrity capabilities plus policy configuration of which ciphers they are willing to communicate with the station decides which APs they are willing to use. The policy configuration could include the ciphers the station is willing to do; the authentication the station is willing to do, whether the station is willing to accept the usage of Group keys for unicast, etc.

If the station does not receive an RSN information element in the Beacon or Probe Response the station shall follow the normal 802.11 authentication (This may include the current 802.1X authentication).

If the AP does not receive an RSN information element in the Association Request the AP shall follow the normal 802.11 association processing (This may include the current 802.1X authentication).

Note: The AP should have a way to disable non-RSN clients from associating.

If the AP supports RSN and non-RSN stations there are a couple of cases to consider:

1. The non-RSN station supports an 802.1X supplicant that is non-RSN 802.1X supplicant. In this case the AP can use 802.1X to send WEP key updates to the station. If the supplicant is a non-RSN supplicant only group keys are supported and the AP must either not support unicast keys for some stations or not support unicast keys for any station. 

2. The non-RSN station does not support an 802.1X supplicant, then the WEP key must be pre-configured into the non-RSN station and AP. Since the AP for broadcast/multicast traffic must use the pre-configured key it must use RSN key update exchanges to send the key to the RSN stations. This means that the RSN stations in this configuration will have fixed keys for broadcast/multicast traffic, though they may use different keys for the unicast traffic if supported by the station and AP. The AP shall use RSN Group key exchange to send the fixed WEP key to the RSN stations.

When RSN and non-RSN stations are both enabled, it should be possible to enter a default WEP key and disable group key updating to support case 2. 

By default, group key updating should be enabled and if 802.1X is enabled on the AP then 802.1X should be used to update the group key on non-RSN stations.

The station then associates with the AP using an association request message. The association request message specifies the unicast and multicast ciphers it wants given its cipher capabilities and configuration. When the station receives the association response it authenticates using 802.1X with the AP. The AP sends an 802.11 disassociation message (with Reason code 1) and/or 802.11 deauthenticate message if it didn’t like anything in the RSN information element. When the AP receives the RADIUS accept the AP then sends an EAP-Success to complete the authentication at the station. The AP then does an EAPOL-Key message exchange with the station to setup the encryption/integrity keys with the station and sets the Secure bit in the EAPOL-Key message when the initiate keys are sent to the station. 

Note: In general, when this document talks about sending an 802.11 disassociation and/or 802.11 deauthenticate message it means that the 802.11 MAC should send the necessary messages to get the state between the source and destination stations to state 1 of the state machine diagram in Figure 8 in the IEEE 802.11 1999 standard.
The configuration options a station should support per SSID are:

· RSN or WEP

· TKIP or AES unicast/multicast for RSN

· Separate unicast and multicast required

· Pre-shared key

· 802.1X keying required for WEP

The authentication options should include one or more of the following:

Open

Y/N

Shared
Y/N

1X

Y/N

RSN

Y/N

The Multicast cipher is set to WEP if any of open, shared or 1X authentication options is selected and the multicast cipher cannot be changed. If RSN authentication mode only is selected then TKIP or AES as multicast ciphers are allowed

The Unicast cipher can be to TKIP or AES or both if the authentication option is set to RSN.

For non-RSN authentication a key of 40 or 104 bits needs to be entered.

For RSN a 104 bit or 256 bit key may need to be entered.

When a station or AP fills the RSN information element, the multicast cipher is from multicast cipher selection, the unicast cipher is from unicast cipher selection. If RSN is enabled and there is no pre-configured key then the authentication mode is RSN otherwise the authetnicaton mode is RSNPSK if the station/AP is in ESS mode otherwise it is RSNNone








Open stations will be doing open authentication with wep privacy with pre-configured key

Shared stations will be doing shared authentication with wep privacy with pre-configured key.

802.1X stations would be given pre-configured key via EAPOL-KEY messages if needed.

RSN would be given pre-configured key via EAPOL-Key messages if needed.

If the AP is smart then 802.1X and RSN stations get a generated multicast key and then on receiving an association request from a station that did open authencation without RSN or shared authentication, it would update the current 802.1X and RSN stations with the pre-configured key.

If the AP is supporting open or shared stations then an open or shared station bypasses the 1X port switch. Note: The security of such an AP is reduced and there should be a way to disable non-RSN clients from associating to the AP.
The following table describes the various configuration options and the expected system behavior. The “Key configured before joining network” describes whether a key is required to have been configured or not before joining the network will work.

	Network Type   
	Authentication mode
	Encryption status
	Manual Key required?
	802.1X enabled?
	Key configured before joining network?

	ESS
	Open
	None
	No
	No
	No

	ESS
	Open
	WEP
	Optional
	Optional
	Yes

	ESS
	Shared
	None
	Yes
	No
	Yes

	ESS
	Shared
	WEP
	Optional
	Optional
	Yes

	ESS
	RSN
	WEP
	No
	Yes
	No

	ESS
	RSN
	TKIP
	No
	Yes
	No

	ESS
	RSN
	AES
	No
	Yes
	No

	ESS
	RSN-PSK
	WEP
	Yes
	Yes
	No

	ESS
	RSN-PSK
	TKIP
	Yes
	Yes
	No

	ESS
	RSN-PSK
	AES
	Yes
	Yes
	No

	IBSS
	Open
	None
	No
	No
	No

	IBSS
	Open
	WEP
	Yes
	No
	Yes

	IBSS
	Shared
	None
	Yes
	No
	Yes

	IBSS
	Shared
	WEP
	Yes
	No
	Yes

	IBSS
	RSN-None
	WEP
	Yes
	No
	Yes

	IBSS
	RSN-None
	TKIP
	Yes
	No
	Yes

	IBSS
	RSN-None
	AES
	Yes
	No
	Yes

	IBSS
	RSN
	WEP
	No
	Yes
	No

	IBSS
	RSN
	TKIP
	No
	Yes
	No

	IBSS
	RSN
	AES
	No
	Yes
	No

	IBSS
	RSN-PSK
	WEP
	Yes
	Yes
	No

	IBSS
	RSN-PSK
	TKIP
	Yes
	Yes
	No

	IBSS
	RSN-PSK
	AES
	Yes
	Yes
	No


1.3 Advertisement from AP/Station that RSN is available

This will be done by an information element in the Beacon, probe response, association request and re-association request messages. The beacon and probe response messages contain what the AP is capable of doing; the association request and re-association request messages contains what the station is requesting for its association. The probe response message contains what an IBSS station is capable of doing.

RSN Information Element

The RSN Information Element contains a list of authentication and unicast cipher suite selectors, a single multicast cipher suite selector and whether unicast keys are supported. All STAs implementing RSN support this element.
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Figure 1 RSN Element format

All fields use the bit convention from IEEE 802.11 Section 7.1.1.

Element ID shall be 37 decimal.

Length is the length of the information element following normal IEEE 802.11 information element rules.

Version field is the version number of the RSN. 

· It is expected that the station and AP/station may support a range of versions but they must support a contiguous range of versions. 

· The AP/station shall advertise the highest version it supports. 

· A station shall request for the highest version it supports that is lower or equal to the version the AP/station is advertising.

· If the AP/station is advertising a lower version than the station supports the station shall not attempt to association to the AP/station. 

· If the version from a station is outside the range the AP/station supports, the AP/station shall send a disassociation and/or a deauthenticate message to the station otherwise the AP/station shall adapt to the version specified by the station. 

Version 1 specifies the following requirements:

1. An AP/station and station authenticates using IEEE 802.11 open authentication. The AP and station shall have the Privacy bit set in the same way as used for WEP. The station and AP shall be able to associate without keys installed.

2. RSN information element. An AP/station supporting RSN shall put the RSN information element in Beacons and probe responses. A station supporting RSN shall put the RSN information element in the association request and re-assoication request messages.

3. TKIP encryption cipher. An AP and station shall support TKIP encryption.

4. Michael integrity check. An AP and station shall support the Michael integrity check.

5. Key updates using EAPOL-Key descriptor from this document.

The RSN information element if supplied shall contain upto and including the Version field. The Multicast suite, unicast suite and authentication suites are optional. If the multicast suite is not supplied then the unicast and authentication suites shall not be supplied. If the multicast suite is supplied but not the unicast suite then the authentication suite shall not be supplied.

A suite selector has the following format:
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The order of the OUI field follows the ordering convention for MAC addresses from IEEE 802.11 7.1.1. For example, for an OUI of 010203 then
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Table 1 – Authentication Suite Selectors

	OUI
	Type
	Meaning

	00:00:00
	0
	None

	00:00:00
	1
	Unspecified authentication over 802.1X: default for RSN

	00:00:00
	2
	Pre-shared Key over 802.1X

	00:00:00
	3-255
	Reserved

	Other
	Any
	Vendor Specific


The authentication suite selector value 00:00:00:1 “Unspecified authentication over 802.1X” is the assumed default when this information is not supplied. A station shall ignore any values it does not recognize.

The authentication suite selector value 00:00:00:2 “Pre-shared key over 802.1X” is used when a pre-shared key is used with 802.1X.

In IBSS mode RSN only supports 00:00:00:0 “None”. This means that RSN encryption and integrity is supported but authentication and key management is not supported.

Note: The inclusion of different Authentication types allows the simplification of the User Interface. It allows the pre-shared key UI to be enabled/disabled on stations depending on the configuration of the AP so users are only asked for the information that is required for any particular scenario. Only one of “Unspecified authentication over 802.1X” or “Pre-shared key over 802.1X” is allowed in an RSN information element, i.e. both authentication suit selectors cannot be in an RSN information element at the same time.

Table 2 – Cipher Suite Selectors

	OUI
	Type
	Meaning

	00:00:00
	0
	None

	00:00:00
	1
	WEP

	00:00:00
	2
	TKIP

	00:00:00
	3
	Reserved for AES cipher: default for RSN

	00:00:00
	4-255
	Reserved

	Other
	Other
	Vendor Specific


The cipher suite selector 00:00:00:3 “AES” is the implied default cipher suite value when this information is not supplied.

The cipher suite selector 00:00:00:1 “WEP” is only valid for multicast cipher suite in ESS and should only be used when non-RSN legacy support is enabled at the same time as RSN support due to the reduction in security by using WEP. . See Section Error! Reference source not found. for a discussion on supporting RSN and non-RSN.
	
	Multicast IBSS
	Multicast ESS
	Unicast

	None
	No
	No
	Yes

	WEP
	No
	Yes
	No

	TKIP
	Yes
	Yes
	Yes

	AES
	Yes
	Yes
	Yes


The cipher suite selector combination of unicast cipher “TKIP” and multicast cipher of “AES” is not supported. 

The cipher suite selector 00:00:00:0 “None” is only valid the unicast cipher suite. It shall only be used when the Access Point cannot support a unicast cipher i.e. the multicast cipher and keys are to be used for unicast traffic as well as multicast/broadcast traffic (i.e. when the AP only supports default keys).. A station shall only use “None” in respond to an Access Point that uses “None”. An RSN AP shall use “None” to inform all stations that it will not be using Pairwise keys for unicast traffic and cannot be used in combination with another unicast cipher suite. 

Note: A station shall also support a single Pairwise key, since Group keys shall not use index 0, Pairwise keys can always be implemented as default key 0 on the station.

This means that key indexes 1 to 3 are available to be used as Group keys but in this document Group key 1 and 2 are used as Group Keys and Group Key 3 is not used.

Note: While a station may use Group key 0 to implement a Pairwise key, the behavior of a Pairwise key needs to be retained i.e. that Pairwise keys encrypt IEEE 802.1X messages.

Note: Pairwise key support allows MAC address spoofing to be detected. The Pairwise key that a unicast message is encrypted with is found by a lookup with the Transmitter or Receiver MAC address. If the transmitter MAC address is spoofed then the packet will decrypt incorrectly and fail any integrity checks. When only Group Keys are used any station on an AP may spoof any other transmit MAC address on the AP without being detected. This means that stations cannot do level 2 bridging when Pairwise keys are used.

Note: A station may choose not to associate to APs that does not support a unicast cipher for security policy reasons. 

A station shall ignore any values it does not recognize.

When the information element is used in an association request message or probe response for IBSS stations no authentication suite and only one unicast cipher suite is allowed. 

Non-RSN stations shall not use the RSN information element. 

APs shall not advertise RSN information element unless RSN is supported and enabled.

APs shall not advertise unsupported configurations and stations are disassociated (Reason code 1) and deauthenticated if they request an unsupported configuration.

Example information elements:

1. 802.1X, AES for unicast and multicast, WEP stations are not supported.


25,


02,


01, 00,




// Version 1

2. 802.1X authentication, No unicast cipher suite and WEP for multicast cipher suite, WEP stations are supported.


25,


0C,


01, 00,




// Version 1


00, 00, 00, 01



// Multicast WEP


01, 00


00, 00, 00, 00



// Unicast None

Note: This is the same as a WEP client that supported IEEE 802.1X except that the station ‘knows’ the correct configuration of the Access Point and can simplify the configuration of the station.

1.4 Authentication and Association Overview

Connecting to an AP consists of the following operations:

1. Select a network i.e. specifying a SSID

2. Find APs that are nearby for the selected SSID

3. Associate to an chosen APs

4. Initiate 802.1X authentication

5. Installing the keys obtained from authenticating to the AP

1 is internal to the management entity choosing the SSID for 2.

2 is the management entity calling MLME-Scan.Request

3 is the management entity associating to a BSSID.

4 is the management entity initiating 802.1X authentication by sending an AuthenticationRequest to the Supplicant as described in Section 1.4.6.7.10.1.

5 is the management entity calling MLME-SetKeys.Request

Roaming can be done either by

1. (Re-)Associating and then doing 802.1X authentication. In this case the station repeats the same actions as for an association but the encryption/integrity keys are removed from the encryption/integrity engine when roaming away from the AP that the keys were obtained from. The station shall delete the keys when it disassociates/deauthenticates from all BSSIDs in the ESS.

2. A NIC can request for IEEE 802.1X to authenticate to an AP before associating to the AP. In this case the Mangement entity can send an AuthenticationRequest to the Supplicant for an AP it is not associated with. The Supplicant will authenticate via the AP it is associated with. The Mangement entity may delay re-associating until IEEE 802.1X authentication completes. If IEEE 802.1X authentication has completed to the new AP the new keys should be installed before re-associating otherwise the old keys shall be removed when association occurs.

Connecting to an IBSS station consists of the following operations:

1. Select a network i.e. specifying a SSID

2. Find an RSN IBSS station that are nearby for the selected SSID

3. Installing the pre-shared key

1 is internal to the management entity choosing the SSID for 2.

2 is the management entity calling MLME-Scan.Request

3 is the management entity calling MLME-SetKeys.Request

1.4.1 Pre-Authentication

IEEE 802.1X and the EAPOL-Key message provide an authenticated key management protocol, not an 802.11 authentication algorithm. RSN thus uses 802.11 open authentication; so the 802.11 state diagram are unchanged from the 1999 specification. The IEEE 802.11 MAC data progressing rules have changed to allow IEEE 802.1X protocol through the MAC with and without keys, so key management is supported after association without keys.

1. 802.1X is carried out after association

a. Station can do 802.1X authentication and key management to any AP it can send 802.1X messages to.

i. After initial 802.1X authentication, 802.1X pre-authentication can be done via 802.1X messages sent through the associated AP.

b. 802.11 and key state machines are interlocked because data packets except 802.1X can’t be transmitted or received without a key when privacy is enabled.

2. 802.11 roaming algorithm may take key availability into account when choosing APs.

3. Pre-authentication is not required because if roaming to an AP that station does not have keys for, then the station requests for key exchange on association.

4. If the AP lost the keys then it will send an 802.11 de-authentication message on receiving any encrypted packets from the station.

1.4.1.1 Denial of Service protection

1. The station should ignore 802.1X messages that are not from the associated AP or from an AP that it initiated 802.1X authentication to; otherwise an attacker can force pre-authentications to be done.

2. Station and AP must rate limit 802.1X to stop flood attacks.

3. APs should ignore 802.1X messages on DS network from MAC addresses that are associated on the wireless side.

1.4.1.2 Key Handling

1.4.1.2.1 802.1X without pre-authentication

Associate with no keys

1X plumbs Pairwise key to hardware

1X plumbs group keys to hardware

Re-associate to another AP

1X sent in clear since Pairwise not to AP

1X plumbs Pairwise key (if only 1 Pairwise key supported delete old Pairwise key since it is not in use)

1X plumbs new group keys

1.4.1.2.2 802.1X using pre-authentication

Associate to AP1

Do 1X to AP1, plumb Pairwise key

Then plumb group keys

…

Want to roam to AP2

Do 1X to AP2, plumb Pairwise key

Then plumb group keys for AP2 which are saved

Re-associate to AP2; saved group keys are configured to hardware overwriting previous group keys and delete saved keys

…

Want to roam to AP3

Do 1X to AP3, plumb Pairwise key (Pairwise key to AP1 is deleted if only 2 Pairwise keys are supported)

Then plumb group keys for AP3 which are saved

Re-associate to AP3; saved group keys are configured to hardware overwriting previous group keys and delete saved keys

1.4.1.2.3 Association and key management

1. Choose the AP to associate with (AP1)

2. If already associated

a. Initiate 802.1X to get keys for AP1

3. Associate with AP1

4. If do not have keys for AP1

a. Initiate 802.1X to get keys for AP1

1.4.2 Validation of 802.11 Disassociate and Deauthenticate Management messages

The current 802.11 state machine looks like:
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802.11 1999 state diagram

Since key management is independent of the 802.11 state; keys may or may not be available in each of these states, so Deauthenticate and Disassociate messages may or may not be sent when keys are available.

There are a number of abnormal situations that can cause the station or AP to lose its state. For example the station is in state 3 and the AP is in state 1, so the station will send an encrypted data message to the AP. The AP cannot decrypt the message. The AP needs to send a Deauthenticate message to the station to force it into State 1 so it 802.11 authenticates and associates to the AP, followed by doing 802.1X to get the keys. This deauthenticate message will not be able to be validated since the AP does not have any state for the station.

Under normal circumstances the stations do not send a Disassociate or Deauthenticate message since they are either just powered off or are moved out of range. In which case, the AP will commonly timeout association state and a common case will be the station in state 1 from a new connection attempt and the AP in state 3 still timing out a previous association. In this case, the station authenticate attempt needs to clear the keys from the AP’s association state.

The following cases occur:

1. The AP needs to accept authenticate messages without being able to validate them to handle stations moving out of range.

2. The AP needs to accept associate messages without being able to validate them to handle the first time associate.

3. The station needs to accept deauthenticate messages without being able to validate them to handle an AP restarting or otherwise losing the stations association. The APs also timeout an association state when no traffic is received from the station in case the station moved out of range.

If the messages are not validated then:

1. A station can 802.11 authenticate and associate without permission to communicate to the network. This wastes resources on the AP.

2. A station can be disassociated or deauthenticated from an AP by another station sending disassociate or deauthenticate messages. This results in stations disconnecting from the network and needing to rejoin the network. 

Since disassociate and deauthenticate messages are not often used by stations, the AP could respond to these messages by forcing an IEEE 802.1X re-authentication, when the station is already 802.1X authenticated. If this is a valid disassociate or deauthenticate the station will not reply and the AP will delete the station state in 60 seconds. If this is not a valid disassociate or deauthenticate the station will respond by re-authenticating via 802.1X and the network connection will not be terminated.

The APs response to Disassoicate and Deauthenticate messages are in the following table:

	AP state
	802.1X VirtualSecure
	AP response to Disassociate or Deauthenticate messages
	AP response to other messages

	1
	N
	Process message
	Process message

	1
	Y
	Process message
	Process message

	2
	N
	Process message
	Process message

	2
	Y
	1X indicate to MLME
	Process message

	3
	N
	Process message
	Process message

	3
	Y
	1X indicate to MLME
	Process message


This changes the handling of received Deauthenticate and Disassociate messages when keys are available. This does not affect the proceedures for the MLME-Deauthenticate and MLME-Disassoicate interfaces. In the received message case, an 802.1X re-authentication is requested rather than the behavour described in Section 5.5. If the 802.1X authentication fails will put the AP into state 1 and send a deauthentication message by calling the MLME-Deauthenticate.Request interface.

The MLME SAP interface shall still indicate disassociate or deauthenticate indications but the MLME should not change the station state. The MLME may initiate an 802.1X re-authentication depending on its knowledge of the 802.1X authentication state.

Advantages:

1. The state for a station is not removed by a disassociate or deauthenticate message as long as they respond to the 802.1X authentication once an 802.1X authentication has completed and the station obtained keys.

Disadvantages:

1. Deleting a stations state will take 60 seconds for 802.1X to fail.

2. An attacker can force 802.1X authentications.

	Station state
	802.1X VirtualSecure
	Station response to Disassociate or Deauthenticate messages
	Station response to other messages

	1
	N
	Process message
	Process message

	1
	Y
	Process message
	Process message

	2
	N
	Process message
	Process message

	2
	Y
	1X indicate to MLME
	Process Message

	3
	N
	Process message
	Process message

	3
	Y
	1X indicate to MLME
	Process message


This changes the handling of receiving Deauthenticate and Disassociate messages when keys are available. In this case, an 802.1X re-authentication is requested rather than the behavour described in IEEE 802.11 Section 5.5. 802.1X if the authentication fails will put the station into state 1 and send a deauthentication message.

The MLME SAP interface shall still indicate disassociate or deauthenticate indications but the MLME should not change the station state. The MLME may initiate an 802.1X re-authentication depending on its knowledge of the 802.1X authentication state.

Advantages:

1. The state for a station is not removed by a disassociate or deauthenticate message as long as they respond to the 802.1X authentication once an 802.1X authentication has completed and the station obtained keys.

Disadvantages:

1. Deleting an AP state will take 60 seconds for 802.1X to fail.

2. An attacker can force 802.1X authentications.

The new 802.11 state machine now looks like:
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1.4.3 Associate/Re-Associate

The following rules should be applied:

1. A station must use IEEE 802.11 open authentication.

2. A station must complete 802.1X, obtain and install keys before attempting to send class 3 data packets other than 802.1X

3. An AP must complete 802.1X, obtain and install keys before attempting to send class 3 data packets on or off the DS for a station.  

4. If the IEEE 802.1X authentication fails a station may try again or attempt to authentication to another AP. 

5. If the AP does not have the station authenticated it shall send a deauthenticate message to the station on receiving any message from a station. 

6. If the AP fails during authentication it sends a deauthenticate message.

7. An AP can delete a station’s state if it requires to because of inactivity timeout, resource shortages, etc. This is if the AP wants to recover the resources used by a stations’ association. The AP should attempt to inform the station be sending a deauthentication message.

8. IEEE 802.1X messages are sent in the clear if a Pairwise key for the station is not installed and encrypted if a Pairwise key is installed, IEEE 802.1X messages are not encrypted using Group keys.

Note: The use of Pairwise keys is more secure than the use of only Group keys, since stations cannot spoof each others MAC address and IEEE 802.1X messages will be encrypted and protected against spoofing.

9. If the AP cannot send the EAPOL-Key message containing a Group key update to a station the AP may queue the message. If the AP deletes the message the AP should send a deauthenticate message and delete the association state. The AP may not be able to send the message because the station is out of range, the station is asleep, etc.

1.4.4 Authentication and key management overview

There are two models of authentication and key management is supported. An Authentication Server and key management system and an IBSS global pre-shared key system.

1.4.4.1 IBSS Global pre-shared key system

This system is meant for a very simple IBSS usage. A pre-shared key is configured as a Group key and no authentication is carried out (even though IEEE 802.11 authentication frames are exchanged). 

Note: This does not provide the level of security that the Authentication Server system provides. A data integrity failure can only be logged; it cannot cause a key change.
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Figure 1—Global Pre-shared State Machine

Note: A station when using pre-shared keys in IBSS mode must remember the last IV it used with a particular pre-shared key and continue from that point when using the key again.
Note: Saving the IV to non-volatile storage every N packets and when loading the IV out of the non-volatile storage adding N to the IV can be used to reduce how often the IV needs to be saved. A value of N of 1,000,000 means that if the system is restarted once per minute and the system is transmitting packets as fast as possible over an 802.11a MAC the IV will last over 100 years.

Note: The IV shall be initialized to a random 48 bit value when a stored IV is not available.

Note: While a different IV can be used for each pre-shared key, it is possible to share the IV across the different pre-shared keys, so for example it is possible to store a single IV for use with all the IBSS pre-shared keys. This reduces the information needed to be stored in non-volatile storage at the expense of the time each pre-shared key can be used for. Since the time for a single IV is over 800 years (or 100 years with N = 1,000,000) sharing the IV doesn’t cause a problem.

1.4.4.2 Authentication Server and Key management system

There are three logical entities in the authentication and key management system, the Supplicant, Authenticator and Authentication Server. All three entities must always be able to communicate with each other. 
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The following operations are carried out as part of Authentication and key management are:

1. The Authenticator and Authentication Server authenticate each other and create a secure channel between them (possibilities include RADIUS, IPSec, TLS). RADIUS is recommended for RADIUS and RADIUS over IPSec if required.

2. The Supplicant and Authentication Server authenticate to each other (possibilities include EAP-TLS) and must generate a Master Key. The authentication must be carried over the Authenticator/Authentication Server secure channel. In addition, there must be crypto-separation over the Authenticator/Authentication Server secure channel for each Supplicant. RADIUS supports this separation by the use of the Message-Authenticator and Request-Authenticator attributes.

3. A Pairwise master key (PMK) is generated for use between the Supplicant and Authenticator. The PMK is generated from the EAP master key that is obtained from the Supplicant/Authentication Server authentication. The Authentication Server sends the PMK to the Authenticator over the Authenticator/Authentication Server secure channel. When IEEE 802.1X is used with a pre-shared key, the pre-shared key is used directly as the PMK and the PMK is not generated from the pre-shared key.

Note: This is different from IBSS Global pre-shared key.

4. A 4-way handshake occurs between the Supplicant and Authenticator to confirm the existence of the PMK, confirm that the knowledge of PMK is current, to derive the Pairwise transient key from the PMK, install the encryption and integrity keys into the encryption/integrity engine if required and confirm the installation of the keys. EAPOL-Key messages are used to carry out this exchange.

5. The Group Transient key is sent from the Authenticator to the Supplicant to allow the Supplicants to transmit (for IBSS stations) and receive broadcast messages and optionally to be used to send unicast packets to the Authenticator. EAPOL-Key messages are used to carry out this exchange.

Since the Supplicant/Authentication Server authentication is carried over the Authenticator/Authentication Server secure channel the Authentication Server can guarantee that the Authenticator it is communicating with is the same Authenticator that the Supplicant is communicating with.

There are two obvious implementations of this architecture:

1. The Authentication Server is a Radius Server, and the Supplicant and Authenticator are IEEE 802.1X Supplicants and Authenticators. One scenario for this implementation is an ESS with the Access Points using a RADIUS server for authentication.

2. The Authentication Server and Authenticator are implemented on one of the stations. One scenario for this would be an IBSS network where more security than the Global pre-shared system provides is required but note the requirement for all Supplicants to be able to communicate to the Authenticator/Authentication Server at all times and a means for the user to specify the Authentication Server is required. In addition, unless all supplicants also support an Authenticator and a protocol to communicate to the Authenticator Server (such as Radius); Pairwise keys cannot be used for data encryption/integrity.

a. One implementation is a single Authenticator/Authentication Server and only Group key data encryption/integrity is done.

b. Another implementation is a single Authentication Server but all stations support a Supplicant and Authenticator. 
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Authentication Server and Key Management in an IBSS

A single Authenticator is designated the Group Key Authenticator (GTKAuthenticator). All stations authenticate to all other stations and the Authenticator in each station uses the single Authentication Server for authentication and key management. The GTKAuthenticator always initiates the 4-way handshake to all Supplicants. Other Authenticators initiates the 4-way handshake if they are the lower MAC address Authenticator and the other station is not the GTKAuthenticator. 

Note: If RADIUS is used for the Authenticator/Authentication Server communication, a key that is derived from the stations PMK can be used as the RADIUS key.

IEEE 802.1X is used for the Supplicant/Authentication Server authentication with an EAP authentication method that provides the following:

1. Mutual authentication of the Supplicant and Authentication Server

2. Provide secure authentication over an insecure channel that is subject to easy sniffing of the authentication exchange.

3. Key generation of a 256 bit key at the Supplicant and Authentication Server for use by the Supplicant and Authenticator. This key shall not be the master key obtained from the Supplicant/Authentication Server authentication.

The Authenticator/Authentication Server authentication protocol is not specified here but the protocol must meet the following requirements:

1. Authenticate the Authenticator and Authentication Server

2. Provide a secure channel for the Supplicant/Authentication Server authentication and provide separation of different Supplicant to Authentication Server exchanges.

3. Pass the generated key from the Authentication Server to the Authenticator for use by the Authenticator to communicate to the Supplicant.

Suitable protocols include RADIUS and Diameter. RADIUS is recommended for RSN.

The Authentication Server and Key Management system does not need to rekey for IV exhaustion. The IV space for TKIP is 248 and 247 for AES. This is considered large enough that 802.1X authentication will occur before the IV space is exhausted. 

1.4.5 EAPOL-Key messages

EAPOL-Key messages are used for two different exchanges:

· 4-way handshake to confirm the PMK at the Supplicant and Authenticator are the same and is live.

· Updating the Group Transient key at the Supplicant.

1.4.5.1 EAPOL-Key Descriptor

The key descriptor described in this section is different from TGi so implementations can separate TGi key descriptors from RSN key descriptors. The key descriptor is also different from that described in IEEE 802.1X since different information needs to be sent using this message. The Key descriptor in IEEE 802.1X Section 7.6 is replaced with the contents of this section with the Descriptor type set to RSN Key Descriptor which has a value of 254. It is assumed that when a Key Descriptor packet is received, the client can derive the appropriate set of keys.
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EAPOL-Key descriptor

EAPOL-Key Information

This field is two octets and carries the information about the key.
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The bit convention used is from IEEE 802.11 Section 7.1.1.

· Bits 0-2 contain a Key descriptor version number.

1. This shall contain 1 when the EAPOL-Key MIC is HMAC-MD5 using the EAPOL-Key MIC Key and the encryption of the Group Key is RC4 using the EAPOL-Key Encryption Key.

2. This shall contain 2 when the EAPOL-Key MIC is AES-CBC-MAC using the EAPOL-Key MIC Key and the encryption uses AES-CBC using the EAPOL-Key Encryption Key.

· Bit 3 is key type flag. The key is a Pairwise key if the flag is 1 and a Group key if the flag is set to 0.

· Bits 4 and 5 contain the key index for the temporal key to be calculated from the message.

· Bit 6 is Tx/Rx flag. If the key is a Pairwise key and the flag is 1 then the Pairwise key is set in the encryption/integrity engine otherwise the key is calculated but not set in the encryption/integrity engine. If the key is a Group key, the flag is 1 if the key is to be used for transmit and receive and the flag is 0 if the key is to be used for receive only.

· Bit 7 is set in messages from the Authenticator if an EAPOL-Key message is required in response to this message. The response shall use the same replay counter as in the outgoing message.

· Bit 8 is set if a MIC is in this EAPOL-Key message.

· Bit 9 is set once the initial key exchange is complete.

· Bit 10 is set in messages from the Supplicant if a data integrity error occurred. It should never be set in the message except if Bit 11 is set.
· Bit 11 is set in messages from the Supplicant if the Supplicant wants the Authenticator to initiate a 4-way handshake.

· Bits 12-15 are reserved, the sender should set them to 0 and the receiver should ignore these bits.

Note: There is no case in this document where the Request bit and the Ack bit as set in the same message.

Note: There is no case in this document where Key Type can be Group (0) and Key Index can be 0.

Note: There is no case in this document where Key Type can be Pairwise (1) and Key Index can be anything except 0.

EAPOL-Key Length

This field is two octets in length, taken to represent an unsigned binary number. The value defines the length of the key to be configured into the encryption/integrity engine in octets. For example, a value of 32 in this field indicates a 256 bit key. 

Note: The length should be set even if the Pairwise Key will not be configured to the encryption/integrity engine at the end of the 4-way handshake.

EAPOL-Key Replay Counter

This field is eight octets in length, taken to represent an unsigned binary number and is initialized to 0. The Supplicant should use the replay counter in the received EAPOL-Key message when responding to an EAPOL-Key message. It carries a sequence number, used to detect and prevent replay of key messages. It is also used by the Authenticator to detect replays of EAPOL-Key acknowledge messages.

EAPOL-Key Key Nonce

This field is thirty two octets in length. It contains the ANonce or GNonce from the Authenticator or the SNonce from the Supplicant. It may contain 0 when a Nonce is not required to be sent.

EAPOL-Key Key IV

This field is thirty two octets in length. It contains the IV used for generating the encryption key for encrypting the Group Key material. It may contain 0 when an IV is not required to be sent. It should be initialized from the global key Counter on association or re-association.

EAPOL-Key MIC

This field is sixteen octets in length when the Key Descriptor Version field is 1 or 2. The EAPOL-Key MIC is a MIC of the EAPOL packet, from and including the EAPOL protocol version field, to and including the EAPOL-Key Data field with the EAPOL-Key MIC field set to 0 after any key material field is encrypted. If the key data field contains a Group Key it is encrypted before the MIC is calculated.
Key Descriptor Version 1: HMAC-MD5 using EAPOL-Key MIC Key.

Key Descriptor Version 2: AES-CBC-MAC using EAPOL-Key MIC Key.

EAPOL-Key Data Length

This field is two octets in length, taken to represent an unsigned binary number. This two octet value defines the length of the Key Data field in octets.

For EAPOL-Key messages specifying Group Keys this will be the same as the EAPOL-Key Length. 

For EAPOL-Key messages specifying Pairwise Keys the Key Data field will contain the RSN information element in message 2 and 3 of the 4-way handshake and nothing for message 1 and 4. The Key Data Length will be the length of the RSN information element including the RSN element id and RSN information element length when the Key Data field contains the RSN information element and set to 0 otherwise



EAPOL-Key Data
For EAPOL-Key messages specifying Pairwise Keys the Key Data field will contain the RSN information element in message 2 and 3 of the 4-way handshake and nothing for message 1 and 4. 

For Pairwise keys this field contains the RSN information element contents (from and including the RSN element id) and the Key Data Length is set to the length of the information element contents for message 2 and 3 in the 4-way handshake. In message 1 and 4 this field is empty and the Key Data Length is 0. The RSN information element will not be encrypted when it is sent in the EAPOL-Key message. 

For Group TKs this field contains the encrypted Group TK. 

Key Descriptor Version 1: RC4 is used to encrypt the Key Data field using the EAPOL-Key encryption key. No padding shall be used. The encryption key is generated by concatenating the EAPOL-Key IV field and the EAPOL-Key encryption key. The first 256 bytes of the RC4 stream encryption shall be discarded following RC4 stream cipher initialization with the EAPOL-Key encryption key. The RC4 initialization will occur per EAPOL-Key message that contains a Group Key material. 


memcpy(encryptkey, EAPOL-Key IV, 32);


memcpy(&encryptkey[32], EAPOL-Key Encryption key, 16);


rc4_key(&rc4key, 48, encryptkey,);


rc4(&rc4key, 256, data);

The key material can then be decrypted by


rc4(&rc4key, EAPOL-Key Data Length, EAPOL-Key Data);

Key Descriptor Version 2: AES-CBC is used to encrypt the key data field with the EAPOL-Key Encryption key. The key material is padded with 0’s to a length that is an integral number of 16 byte blocks if required.

1.4.6 802.1X authentication

802.1X authentication performs authentication in a layer above the IEEE 802.11 MAC layer. It removes all of authentication processing from the IEEE 802.11 MAC, instead delegating this function to IEEE 802.1X. A Station that requests authentication with this algorithm may become authenticated if dot11AuthenticationType at the recipient station is set to Upper Layer Authentication. IEEE 802.1X authentication is not required to be successful, as a Station may decline to authenticate with any other Station.

If the Association or Re-associate completes successfully with the selection of IEEE 802.1X Authentication, the IEEE 802.11 MAC passes all data packets it receives from higher layers, delegating the filtering of any unauthorized traffic to IEEE 802.1X. This filtering and the steps of the IEEE 802.1X authentication are opaque to the IEEE 802.11 MAC itself. IEEE 802.1X messages are sent unencrypted if no Pairwise Key (key mapping key) exists otherwise they are encrypted using the Pairwise Key (key mapping key).

Note: See Figure 2—Complete TKIP Pairwise Key Hierarchy and Error! Reference source not found. for which parts of the Pairwise key is used for encryption and integrity.

Note: IEEE 802.1X messages are only encrypted using the Pairwise key because if Group keys are used to encrypt 802.1X messages there would be an initialization problem with stations after the first association; i.e. the 802.1X message containing the Group key would be encrypted with the Group key when it is first sent to a station after the first station and the station would not have the Group key to decrypt the message.

1.4.6.1 Key hierarchy

There are two key hierarchies:

1. Pairwise key hierarchy

2. Group key hierarchy

The Pairwise key hierarchy takes a Pairwise Master Key and generates a Pairwise transient key which is used to obtain the EAPOL-Key MIC and Encryption keys and a Pairwise data MIC and encryption key. Pairwise keys are used between a single Supplicant and a single Authenticator.

The Group key hierarchy takes a Group Master Key and generates a Group Transient key which is used to obtain a Group data MIC and encryption key. Group Keys are used between a single Authenticator and all Supplicants authenticated to that Authenticator.

The following functions are used in the following section:

PRF
Pseudo-random function defined in Section 0.

L (I, F, L)
Take from I starting from the left, bit F for L bits moving to the right using 7.1.1 bit convention from IEEE 802.11.

The terms AA (Authenticator Address) and SA (Supplicant Address) are used.  In an ESS network the AA is the AP wireless MAC address and SA is the station MAC address. In an IBSS the AA is the station (who has been chosen as the Authenticator) MAC address, and other stations MAC address will be the SA.

1.4.6.1.1 TKIP key hierarchies
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Figure 2—Complete TKIP Pairwise Key Hierarchy
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Figure 3—Complete TKIP Group Key Hierarchy

The use of the EAPOL-Key MIC Key is described in 1.4.5.1 in the section EAPOL-Key MIC.

The use of the EAPOL-Key Encryption Key is described in 1.4.5.1 in the section EAPOL-Key Key Material.

The use of the Temporal Encryption Key is described in 1.5.4.1. The Temporal Encryption Key derived from the Pairwise Key Hierarchy is used for TKIP Encryption keys for Pairwise (key mapping) keys. The Temporal Encryption Key derived from the Group Key Hierarchy is used for TKIP Encryption keys for Group (Default) keys.

The use of the Temporal Authenticator Tx and Rx keys is described in Error! Reference source not found.. The Temporal Authenticator Tx key is used to Michael integrity check data packets transmitted in the direction from the lower MAC address to the higher MAC address. For Group Keys in an IBSS network only the Temporal Authenticator Tx key is used. The Temporal Authenticator Rx key is used to Michael integrity check data packets received in the direction from the higher MAC address to the lower MAC address. The Temporal Authenticator Tx and Rx keys which are derived from the Pairwise Key Hierarchy are used for integrity checking packets decrypted with the Pairwise Temporial Encryption key. The Temporal Authenticator Tx and Rx keys which are derived from the Group Key Hierarchy are used for integrity checking packets decrypted with the Group Temporal Encryption key.

1.4.6.2 Pairwise master key (PMK)

The Pairwise Master Key is generated as a result of authentication between the Supplicant and Authentication Server involved. The authentication method shall generate a 256 bit key that is used for the PMK. An EAP authentication method normally has a Master Key generated by the authentication and the PMK should be derived from the Master Key. This key generation is normally carried out independently and simultaneously on the authentication server and the Supplicant, based on information that was communicated between the authentication server and the Supplicant during authentication. Each EAP method may derive the PMK from the Master Key in a different way.

If the protocol between the Authenticator or AP and Authentication Server is RADIUS then the MS-MPPE-Recv-Key (vendor-id = 17) attribute (See RFC2548 Section 2.4.3) shall be used as the Pairwise Master Key (PMK). The PMK and any derived keys shall not be used any longer than the Session-Timeout attribute + the IEEE 802.1X reAuthMax*dot1xAuthTxPeriod values.

Note: reAuthMax is not defined as a MIB variable by IEEE 802.1X, it is defined in Section 8.5.4.1.2.

Note: If the Radius Session-Timeout attribute is not in the Radius Accept message the PMK lifetime is infinite.

1.4.6.3 Group master key (GMK)

The Group Master Key (GMK) for the Group key hierarchy should be initialized using a cryptographically secure random number. If this is not possible it shall be initialized to the first PMK the Group key master receives (since there is no need to send broadcast traffic unless there is at least one station associated), but the following rules shall then be applied:

1. The GMK should be updated periodically from another current PMK.

2. The GMK shall be changed when the AP deletes the association state for the station whose PMK is being used as the GMK. 

1.4.6.4 Nonce Generation

All stations contain a global Key Counter which is 256 bits in size. It should be initialized at system boot up time to

PRF-256(Random number, “Init Counter”, Local Mac Address || Time)

The Local Mac Address should be AA on the Authenticator and SA on the Supplicant.

Random number should be the best possible random number possible and 256 bits in size. Time should be the current time (from NTP or another time in NTP format) where possible. This initialization is to ensure that different initial Key Counter values occur across system restarts whether a real-time clock is available or not. The Key Counter must be incremented (all 256 bits) each time a value is used as a nonce or IV. The Key Counter must not be allowed to wrap to the initialization value and should be re-initialized if it ever happens. Note: The size of the Key Counter and the unlikelyhood of wrapping occurring.

The Key Counter is used to initialize the EAPOL-Key IV, it is used when a 4-way handshake takes place and when a GTK is being derived.

1.4.6.5 Pairwise transient keys

Pairwise TKs are derived from the Pairwise MK using a PRF with AA, SA, SNonce and ANonce as inputs. The size of the PRF computation shall be taken as the size specified by EAPOL-Key Key Length plus the size of the EAPOL-Key MIC Key and the size of the EAPOL-Key Encryption Key, i.e. 32+16+16 bytes for TKIP and 16+16+16 bytes for AES.

PTK = PRF-384/512 (PMK, “Pairwise key expansion”, Min(AA, SA)

           || Max(AA, SA) || Min(SNonce, ANonce) || Max(SNonce, ANonce))

AA and SA are concatenated in integer order i.e. the lower MAC address is concatenated first, followed by the higher MAC address. SNonce is a nonce sent by the Supplicant and ANonce is a nonce sent by the Authenticator to the Supplicant. They are concatenated in integer order i.e. the smaller nonce is concatenated first, followed by the larger nonce. The Min/Max of the MAC addresses and Nonces are done so the PRF is independent on whether it is run on the Authenticator or Supplicant. AA and DA are part of the PRF input so that the inputs are unique to each station pair.

ANonce is a nonce taken from the Key Counter on the Authenticator whenever a new Pairwise TK is derived. ANonce is used so the inputs to PRF are different for each TK set. If a station re-associates to the same AP, a different ANonce value is used for the derivation of a new TK set.

SNonce is a nonce taken from the Key Counter on the Supplicant; its value is taken when a PTK is instantiated and is sent to the PTK Authenticator.

A PTK is normally derived once for an authentication session. A Supplicant or an Authenticator may use the 4-way handshake to change the PTK. The only time this is specified in this document is when a data integrity failure occurs. 

Note: A different ANonce shall be used for every 4-way handshake.

1.4.6.6 Group transient keys

The Authenticator may derive new Group Transient Keys when it wants to update the Group encryption/integrity keys. The Key Counter is used whenever a Group Transient Key (GTK) is derived. GTKs are derived from the GMK using a PRF with AA and GNonce as inputs. The size of the PRF computation shall be taken as the size specified by the cipher suite, i.e. 32 bytes for TKIP and 16 bytes for AES.

GTK = PRF-128/256 (GMK, “Group key expansion”, AA || GNonce)

GNonce is a value taken from the Key Counter on the Authenticator; its value is taken when a GTK is instantiated and is sent by the GTK Authenticator.

A Group key update may occur for a number of reasons:

1. A station disassociating or deauthenticating may trigger a Group key update otherwise the disassociated/deauthenticated station can still read broadcast traffic from the network.

2. A data integrity failure shall trigger a Group key update.

3. A management event can trigger a Group key update.

1.4.6.7 Coordination of Authentication Process

1.4.6.7.1 ESS Authentication

The association/authentication process is driven by the station. In the ESS case the station Mangement entity will chose APs that it may want to associate to and send an IEEE 802.11 association request message to the AP. The AP will send an IEEE 802.11 association response message back to the station. The station Mangement entity will then request the 802.11 Supplicant to authenticate to the 802.11 Authenticator or AP. The 802.11 Supplicant starts the authentication process by sending an eapStart message to the Authenticator. The Mangement entity in the AP on receiving a RSN MLME-Association.Indication from the stations association request will request the Authenticator to start the authentication process by sending an EAP-Request/Identity message to the Supplicant. The 802.1X messages are sent as 802.11 data messages to the Authenticator. During the 802.1X authentication process, the Supplicant obtains keys. When the Supplicant completes authentication, it installs the keys into the encryption/integrity engine for use by the supplicant.

If the 802.11 Supplicant does an 802.1X re-authentication after initial 802.1X authentication the 802.1X messages are sent as encrypted data messages if key mapping keys are used.

The EAPOL-Key message is used to exchange information between the Supplicant and the Authenticator for the keying process. There is a single Pairwise key between the Supplicant and Authenticator produced by the 4-way handshake. The Pairwise key is used to generate keys used to transfer Group key updates and may be used to generate keys used as a Pairwise transient key. Group key updates use two key indexes (indexes 1 and 2) to mitigate the loss in the ongoing data transmissions while keys are being distributed and applied at the Supplicants. 

1.4.6.7.1.1 Pre-Authentication

The MLME on the supplicant needs to install Pairwise keys before association because 802.1X messages are encrypted using the Pairwise Keys. Group key should be installed on association or re-association for an ESS.

If a station supports Pairwise keys using key mapping keys then it can support pre-authentication before roaming. If it supports one Pairwise key using default key index 0 then it must delay pre-authentication until a roaming decision has been made.

MLME must know if key mapping keys supported, if supported:

1. Authentication is independent of roaming.

2. MLME may authenticate with multiple APs at a time.

3. MLME will manage Group keys per AP and configure the Group keys into the encryption/integrity engine on association or re-association.

If not supported:

1. A roaming decision must be made before authentication.

2. When the Pairwise Key is updated with the key from authenticating with the new AP, data transfer will stop until Authentication and association completes.

If the 802.11 Supplicant does an 802.1X re-authentication after initial 802.1X authentication the 802.1X messages are sent as encrypted data messages if key mapping keys are used.

1.4.6.7.2 IBSS Authentication

The authentication process is driven by the Supplicant. In the IBSS case the Mangement entity will chose stations that it may want to authenticate to and send an 802.11 authentication message to the station. The station will send an 802.11 authentication message back to the station. The station Mangement entity will then request the 802.11 Supplicant to authenticate to the 802.11 Authenticator or station. The 802.11 Supplicant starts the authentication process by sending an eapStart message to the Authenticator. The Mangement entity in the station on receiving a RSN MLME-Authentication.Indication will request the Authenticator to start the authentication process by sending an EAP-Request/Identity message to the Supplicant. The 802.1X messages are sent as 802.11 data messages to the Authenticator. The data messages are sent with the FromDS and ToDS bits set to 0 and they are sent unencrypted since no keys are available. During the authentication process, the Supplicant obtains keys. 

The EAPOL-Key message is used to exchange information between the Supplicant and the Authenticator for the keying process. There is a single Pairwise key between the Supplicant and Authenticator produced by the 4-way handshake. The Pairwise key is used to transfer Group key updates and may be used as a Pairwise transient key. 

1.4.6.7.3 4-way handshake

The 4-way handshake is used to confirm that the Authenticator and Supplicant have the same PMK, that the PMK is live and to derive a fresh PTK. It is also used to tell the Supplicant whether to install the encryption/integrity into the data encryption/integrity engine. The handshake is initiated as part of authenticating a Supplicant and an Authenticator but it shall be initiated if a data integrity failure occurs. The handshake is

Authenticator -> Supplicant: ANonce

Supplicant -> Authenticator: SNonce, RSN IE,
MIC(EAPOL-Key MIC Key(PTK(ANonce, SNonce)), EAPOL-Key message)

Authenticator -> Supplicant: Install, ANonce, RSN IE,
MIC(EAPOL-Key MIC Key(PTK(ANonce, SNonce)), EAPOL-Key message)

Supplicant -> Authenticator: 

MIC(EAPOL-Key MIC Key(PTK(ANonce, SNonce)), EAPOL-Key message)

MIC(X, Y) where X is the key and Y is the data that is MICed. Y is the EAPOL-Key as defined in 1.4.5.1 in the section on EAPOL-Key MIC. X is the EAPOL-Key MIC key which is taken from the PTK as defined in Figure 2—Complete TKIP Pairwise Key Hierarchy.

ANonce is a nonce from the Authenticator and is the same in both messages from the Authenticator since the Supplicant cannot check the ANonce is valid until it receives the third message.

SNonce is a nonce from the Supplicant.

Install is true if the Pairwise data encryption and integrity key should be installed in the encryption/integrity engine.

The above messages are sent as EAPOL-Key messages.

The Supplicant can trigger a 4-way handshake by sending an EAPOL-Key message with the Request bit set to 1.

Note: While the MIC calculation is the same in each direction the Ack bit is different in each direction (It is set in messages from the Authenticator and not set in messages from the Supplicant). 4-way handshake requests from the Supplicant have the Request bit set. The Authenticator and Supplicant must check these bits to stop reflection attacks.

The first message is from the Authenticator, contains a nonce and does not contain an integrity check. The Supplicant on receiving the message generates a nonce and then derives a PTK. The Supplicant then sends a message to the Authenticator containing its nonce, with an integrity check using the EAPOL-Key MIC Key from the PTK.
The Authenticator takes the Supplicant nonce and derives the PTK and then checks the integrity check. The Authenticator then sends the third message to the Supplicant containing information whether to install a PTK into the encryption/integrity engine and an integrity check from the EAPOL-Key MIC Key. The Supplicant then sends the last message to confirm to the Authenticator that the key has been installed if required.

If the Authenticator does not receive a reply to its messages, it should retry three times at one seconds intervals and then disassociate/deauthenticate the station. If the station does not receive the initial message when it expects to, it should disassociate and deauthenticate and try another AP/station. 

Note: The timeout should be larger than the short retry timeout.

Note: The Authenticator should ignore EAPOL-Key messages it is not expecting in reply to messages it has sent or EAPOL-Key messages with the Ack bit set. This stops an attacker from sending the first message to the supplicant who responds to the Authenticator. The Supplicant on calculating a new PTK should hold it in temporary storage until the 3rd message is received, after validating the ANonce is the same and after validating the EAPOL-Key MIC using the EAPOL-Key MIC Key from temporary storage, the EAPOL-Key Encryption key can be used to initialized the RC4 engine used to decrypt the Group key EAPOL-Key messages, the EAPOL-Key MIC key must be saved to validate EAPOL-Key messages received in the future. If a variable is used to hold the EAPOL-Key MIC key, either it should be initialized to a random number or note taken when an EAPOL-Key MIC key is first generated from a 4-way handshake so attackers cannot send EAPOL-Key messages before the first 4-way handshake is completed and have them accepted by ‘guessing’ the correct initialized value of the EAPOL-Key MIC key variable. The encryption/integrity keys are configured into the encryption/integrity engine once the reply to the 3rd message is sent. So only the EAPOL-Key MIC key needs to be saved per association. The keeping of the new PTK in temporary storage is so an attacker cannot interfere with normal communication between the Supplicant and Authenticator. An attacker can interfere with a 4-way handshake during the processing of a 4-way handshake. The Authenticator should use the replay counter and Key information field to filter most re-transmit and invalid messages but it is possible for an attacker to mimic an Authenticator that reset during a 4-way handshake. In this case the Authenticator can spot that it is receiving messages that it did not initiate but the 4-way handshake state is incorrect. In this situation the Authenticator will disassociate the station but it should detect and log these occurrences.
Note: The Authenticator should check the RSN IE received in the 2nd message of the 4-way handshake against the RSN IE received in the associate request. The Supplicant should check the RSN IE received in the 3rd message of the 4-way handshake against the RSN IE received in the Beacon or Probe Request. If the RSN IE is different in either case an error should be logged and the station disconnected.

Note: The Supplicant should check that if the RSN information element specifies a unicast cipher is used then the 4-way handshake did specify that the Pairwise key is configured to the encryption/integrity engine.

1.4.6.7.4 Group key update

The Group key update sends a new Group Transient key to the Supplicant. It cannot be initiated if the first 4-way handshake is not completed successfully. After that it may be initiated if the Authenticator is the GTK Authenticator, and if the last 4-way handshake completed successfully. It may be initiated when a Supplicant disassociates or deauthenticates; on a data integrity error or on a management event.

Authenticator -> Supplicant: Key Index, Enc(GTK), 

MIC(EAPOL-Key MIC Key(PTK(ANonce, SNonce)), EAPOL-Key message)

Supplicant -> Authenticator: 

MIC(EAPOL-Key MIC Key(PTK(ANonce, SNonce)), EAPOL-Key message)


Key Index is the index in the encryption/integrity engine that the Authenticator wants the key installed

Enc(GTK): The Group transient key is encrypted using the EAPOL-Key encryption key obtained from the PTK which is derived in the 4-way handshake.

MIC(X, Y) where X is the key and Y is the data that is MICed. Y is the EAPOL-Key as defined in 1.4.5.1 in the section on EAPOL-Key MIC. X is the EAPOL-Key MIC key which is taken from the PTK as defined in Figure 2—Complete TKIP Pairwise Key Hierarchy
A Group key update can be triggered by the Supplicant by sending an EAPOL-Key message with the Request bit set.

An Authenticator shall do a 4-way handshake before a Group key update if both are required to be done.

Note: The Supplicant does not require the GNonce but the Authenticator should send the Nonce it used to derive the GTK to help with interoperable issues.

Note: The Supplicant should check that a Group key is configured before the secure bit in the EAPOL-Key Key information field is set (this may happen in the same message) and that no data transfer is allowed before the secure bit is set.

1.4.6.7.5 Supplicant Request for key update

The Supplicant can request for a key update by sending an EAPOL-Key message with the Request bit set. This is used when the MAC detects a data integrity attack.
If the EAPOL-Key message has a key type of Pairwise key the authenticator shall do a 4-way handshake with the Supplicant and then send a Group key update of the current Group key to the Supplicant.

If the EAPOL-Key message has a key type of Group key the authenticator shall change the Group key, do a 4-way handshake with the Supplicant and do a Group key update to all Supplicants.

1.4.6.7.6 Use of the secure bit

The secure bit in the EAPOL-Key message is used to inform each side when the key exchange is complete for the link to be considered secure. It should be initialized to 0 or not secure. The Authenticator will set this bit to 1 or secure in the EAPOL-Key message that gives the Supplicant the last key the Supplicant needs to complete its initialization. The Authenticator will continue to set the bit in all EAPOL-Key messages it sends until it no longer considers the link secure. The Supplicant will set the secure bit when it considers the link secure which is when it has accepted enough keys to complete its initialization. The number of keys should match the negotiated ciphers e.g. if a unicast and multicast cipher is negotiated then a Pairwise and Group key must be sent before the link is considered secure. Note the secure bit can be set in the message from the Authenticator that supplies the last required key. The Supplicant will reset the secure bit when it considers the link no-longer secure.

The Supplicant and Authenticator should consider the link no longer secure when an integrity error is detected.

Note: The Supplicant and Authenticator initialize the secure bit to zero. The Authenticator sets the secure bit when it sends the first Group key message to the Supplicant and the Supplicant sets the secure bit on receiving the first Group key message. The Supplicant resets the secure bit on receiving an integrity error from the MAC or on receiving an EAPOL-Key message with the secure bit reset. The Authenticator resets the secure bit on receiving an integrity error from the Supplicant or its MAC.
1.4.6.7.7 Use of the EAPOL-Key Replay Counter

The EAPOL-Key Replay Counter is to help the Supplicant and Authenticator discard invalid messages. The Supplicant and Authenticator should track the replay counter per association. The replay counter should be initialized to 0 on association or re-association. The Supplicant when replying to a message from the Authenticator should use the replay counter in the message from the Authenticator. The Authenticator should use this to ignore invalid messages such as late messages from the Supplicant. The Supplicant should also keep track of the replay counter for messages from the Authenticator and ignore messages with an invalid replay counter. A local replay counter that is used to check incoming messages and should not be updated until the EAPOL-Key MIC is checked and is valid. This means that the Supplicant does not update the replay counter from the first message in the 4-way handshake where no MIC exists in the message, so the Supplicant must allow for the re-transmission of the first message when checking for the replay counter of the third message,. The Supplicant has a separate replay counter for when it sends request EAPOL-Key messages to the Authenticator and the Authenticator should also have a separate replay counter for checking the replay counter on receiving Request messages.  
1.4.6.7.8 Use of the EAPOL-Key Key Data for Pairwise keys

The Key Data field contains the contents of the RSN information for EAPOL-Key messages in the 4-way handshake.
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The Supplicant should insert in the 2nd message in the 4-way handshake the RSN information element it sent in the associate request. The Authenticator should insert in the 3rd message in the 4-way handshake the RSN information element it sent in the Beacon or probe response. The Authenticator on receiving the 2nd message should check it against the RSN information element received in the association request. The Supplicant on receiving the 3rd message should check it against the RSN information element received in the Beacon or Probe Response. If the values do not match then it should be assumed that an attacker modified the RSN information element from the Beacon/Probe response and association request messages and the association should be broken and the security error should be logged. 

1.4.6.7.9 EAPOL-Key encoding

The various exchanges described above are encoded using the EAPOL-Key as follows:

EAPOL-Key (S, M, A, T, N, K, ANonce/SNonce, GNonce, MIC, GTK)

Parameters are:

S: Initial Key exchange is complete. This is the EAPOL-Key Information Secure bit.

M: MIC is available in message. This should be set in all messages except the first 4-way handshake message. This is the EAPOL-Key Information Key MIC bit.

A: Response is required to this message. Used when the receiver should respond to this message. This is the EAPOL-Key Information Key Ack bit.

T: Tx/Rx for Group key and Install/Not install for Pairwise key. This is the EAPOL-Key Information Tx/Rx Flag bit.

N: Key Index. Specifies which index should be used for this Group Key. Index 0 shall not be used for Group keys. This is the EAPOL-Key Information key index bits.

K: Key type - P (Pairwise), G (Group). This is the EAPOL-Key Information Key Type bit.

ANonce/SNonce/GNonce: Authenticator/Supplicant/Group Nonce. This is the EAPOL-Key Key Nonce field.

MIC: Integrity check which is generated using the EAPOL-Key MIC Key. This is the EAPOL-Key MIC field. 

GTK: Group temporal key which is encrypted using the EAPOL-Key Encryption Key. This is the EAPOL-Key Data field.

1.4.6.7.10 State diagrams

1.4.6.7.10.1 Station state diagram

There is one state machine for stations. The station state machine initializes on system initialization, receiving disassociate messages. The AUTHENICATION state is entered on an event from the MAC that requests for an AP to be authenticated. Then the STAKEYSTART state is entered on receiving EAPOL-Key messages from the Authenticator. If the MIC on any of the EAPOL-Key messages fails the DISCONNECTED state is entered. 
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Figure 4—Supplicant state machine

Note: UCT means the event will be triggered immendiately.

Note: The Supplicant EAPOL-Key state machine does not handle timeouts, etc. The IEEE 802.1X state machine has timeouts that recover from Authentication failures, etc.

The Mangement entity will send an AuthenticationRequest event when it wants an Authenticator authenticated, this can be before or after the station associates to the AP. In an IBSS environment the event will be generated when the probe response is received.

DISCONNECTED: This state is entered when an IEEE 802.1X authentication failed. It executes StaDisconnect and enters the INITIALIZE state.

INITIALIZE: This state is entered from the DISCONNECTED state, when disassociate or deauthenticate messages are received, or when the station initializes. The state initializes the key state variables.

AUTHENTICATION: This state is entered when an AuthentiationRequest is sent from the Mangement entity to authenticate a BSSID.

STAKEYSTART: This state is entered when an EAPOL-Key message is received. All the information to process the EAPOL-Key message is in the message and is described in procedure StaProcessEAPOL-Key.

KEYUPDATE: This state is entered when a key update from the Authenticator is required. This may be because of a management event or because of a data integrity failure occurs. It sends an EAPOL-Key message to the Authenticator to update the transient keys. The Request bit must be set.

1.4.6.7.10.1.1 Supplicant state machine variables

DeauthenticationRequest – This variable is set True if disassociate or deauthenticate messages is received.

AuthenticationRequest. – This variable is set TRUE if the Mangement entity wants a BSSID to be authenticated. This is set when the Mangement entity wants to initiate authentication, this can be on an association or at other times.

AuthenticationFailed – This variable is set TRUE if the IEEE 802.1X authentication failed. The Supplicant should disassociate from the Authenticator.

EAPOLKeyReceived – This variable is set True when an EAPOL-Key message is received.

IntegrityFailed. - This is set to True when a data integrity error (i.e. Michael failure) occurs.

Note: This is not the same as MICVerified since IntegrityFailed is generated if the MAC integrity check fails, MICVerified is generated from validating the EAPOL-Key MIC.

MICVerified.  This variable is set to TRUE if the MIC on the received EAPOL Key packet is verified. Any EAPOL-Key messages will an invalid MIC will be dropped and ignored.

Counter. This variable is the global station Key Counter used for generating Nonces.

SNonce.  This variable holds the stations Nonce.

PTK. This variable is the current Pairwise transient key.

TPTK. Buffer for holding the current Pairwise Transient Key until the 3rd message in the 4-way handshake.

GTK[]. This variable is the current Group transient keys for each Group key index.

PMK.  PMK is the buffer holding the current Pairwise Master Key.

802.1X::XXX are the 802.1X XXX state variables

1.4.6.7.10.1.2 Procedures

STADisconnect.  Execution of this procedure disassociates and deauthenticates the station from the AP. 

RemoveGTK(x) – Removes the GTK from the encryption/integrity engine

MIC(x). – Computes a Message Integrity Code over the plaintext data.

CheckMIC(). – Verifies the MIC computed by MIC() function.

StaProcessEAPOL-Key - This procedure processes a received EAPOL-Key message. The pseudo code for this procedure is given below.

StaProcessEAPOL-Key (S, M, A, T, N, K, ANonce, GNonce, MIC, GTK)

{


TPTK = PTK


TSNonce = 0


UpdatePTK = 0

State = Unknown

if M == 1 

if Check MIC(PTK, EAPOL-Key message) fails

State = Failed

else

State = MICOK

if K == P

if State != Failed  {


if PSK



PMK = PSK

else

PMK = Master Session Key from 1X


TSNonce = SNonce

TPTK = Calc PTK(ANonce, TSNonce)

}

if State == MICOK {


PTK = TPTK

UpdatePTK = T

}

else if State == MICOK  // K==G

if (GTK[N] = Decrypt GTK) succeeds

if Set GTK(N, T, GTK[N]) fails

Send Deauthenticate message

else

State = Failed

else


State = Failed

if A == 1 && State != Failed {

Send EAPOL(0, 1, 0, 0, 0, K, TSNonce, 0, MIC(TPTK), 0)

}

if UpdatePTK == 1 {

if Set PTK(N, TRUE, PTK) fails

Send Deauthenticate message

}

If State == MICOK && S == 1



802.1X::VirtualSecure = True

}

Note: A Supplicant shall only use Key Descripter of type 254 and version 0 to and from RSN Access Points; it shall ignore other Key Descriptor types and Versions.

Note: EAPOL-Key messages with Key Type of Pairwise and a non-zero key index should be ignored.

Note: EAPOL-Key messages with Key Type of Group and an invalid key index should be ignored.

Note: The Replay Counter used by the Supplicant for EAPOL-Key messages that are sent in response to a received EAPOL-Key message must be the received Replay Counter.

Note: TPTK is used to stop attackers changing the PTK on the supplicant by sending the first message of the 4-way handshake. An attacker can still affect the 4-way handshake while the 4-way handshake is being carried out.

Note: The PMK will be supplied by the authentication method used with IEEE 802.1X if Pre-shared mode is not used.

Note: Invalid EAPOL-Key messages such as invalid MIC, Group Key without a MIC, etc. are ignored.

Note: A PTK is configured into the encryption/integrity engine depending on the Tx/Rx bit but if configured is always a transmit key. A GTK is configured into the encryption/integrity engine independent of the state of the Tx/Rx bit but whether the GTK is used as a transmit key is dependent on the state of the Tx/Rx bit.

CalcGTK(x). – Calculates the Group Transient Key (GTK) using GNonce as the nonce input to the PRF.

DecryptGTK – Decrypt the GTK from the EAPOL-Key message

SetPTK/GTK(x) – Sets the PTK/GTK into the encryption/integrity engine

Note: On receiving the 802.1X EAP_Success message a Supplicant should compare the received keys and the ciphers specified in the RSN information element for consistency problems. E.g. the RSN information element specifies a unicast cipher but no Pairwise Key was configured into the encryption/integrity engine.

1.4.6.7.10.2 Authenticator state diagram

There is one state diagram for the GTK Authenticator. The GTK Authenticator will always be the Access Point in an ESS environment and in an IBSS environment will be a designated machine.

The state diagram in Figure 5 consists of three state machines:

1. The first state machine (PTK state machine) consists of DISCONNECT, DISCONNECTED, INITIALIZE, AUTHENTICATION, INITPMK, INITPSK, PTKSTART, PTKINITNEGOTIATING, PTKINITDONE, UPDATEKEYS, INTEGRITYFAILURE and KEYUPDATE. This state machine exists for each association and handles the initialization, 4-way handshake and general tidy up on errors.

2. The second state machine (PTK Group Key state machine) consists of REKEYNEGOTIATING, KEYERROR and REKEYESTABLISHED. This state machine exists for each association and handles sending the Group key to the associated client.

3. The third state machine (Group Key state machine) consists of SETKEYS and SETKEYSDONE. A single instance of this state machine exists on the Authenticator. It changes the Group key when required, triggers all the PTK Group Key state machines and updates the encryption/integrity engine in the AP when all stations have the updated Group key.

Since there are two Group Keys the Group Key state machine owns the update of the values of the Keys, which key is in actual use and any time. When the first station associates the Group Key state machine has not been started and is started by GInitAKeys variable when the 4-way handshake is complete with the first station. The Group Key state machine initializes the value of the Group Key and then triggers the PTK Group Key state machine which actually sends the Group Key to the associated station.

When a second station associates the Group Key state machine is already initialized and a Group Key is already available and in use. The PTK Group Key state machine is immediately triggered from the PTKINITDONE state and sends the current Group Key to the new station.

When the Group Key is to be updated the GTKReKey variable is set. The SETKEYS state updates the Group Key and triggers all the PTK Group Key state machines that current exist (one per associated station). Each PTK Group Key state machine sends the Group Key to its station.  When all the stations have received the Group Key (or failed to receive the key), the SETKEYSDONE state is executed which updates the APs encryption/integrity engine with the new key.

Both the PTK state machine and the PTK Group Key state machine both use received EAPOL-Key messages as an event to change states. The PTK state machine only uses EAPOL-Key messages with the key type set to Pairwise key and the PTK Group Key state machine only uses EAPOL-Key messages with the key type set to Group key.
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Figure 5—Authenticator state machine

1.4.6.7.10.2.1 Authenticator state machine variables

AuthenticationRequest. – This variable is set TRUE if the Mangement entity wants a BSSID to be authenticated. This can be set when a station associates or at other times.

ReAuthenticationRequest. – This variable is set TRUE if the IEEE 802.1X Authetnicator received an eapStart or 802.1X::reAuthenticate is set.

DeauthenticationRequest – This variable is set True if a disassociation or deauthenticate message is received.

Disconnect – This variable is set True when a management event to disassociate/deauthenticate a station occurs.

EAPOLKeyReceived – This variable is set True when an EAPOL-Key message is received. EAPOL-Key messages that are received in respond to an EAPOL-Key message sent by the Authenticator must contain the same Replay Counter as the Replay Counter in the transmitted message. EAPOL-Key messages that contain different Replay Counters should be discarded. An EAPOL-Key message that is sent by the Supplicant in response to an EAPOL-Key message from the Authenticator must not have the Ack bit set. EAPOL-Key messages sent by the Supplicant not in response to an EAPOL-Key message from the Authenticator must have the Request bit set.

Note: When an EAPOL-Key message with the Ack bit not set is received then it is expected as a reply to a message that the Authenticator sent and the replay counter is checked against the replay counter used in the sent EAPOL-Key message. When an EAPOL-Key message with the Request bit set is received then a replay counter for these messages is used, which is a different replay counter than the replay counter used for sending messages to the Suplicant.
Note: An Authenticator shall only use Key Descripter of type 254 and Version 0 to and from RSN Supplicants; it shall ignore other Key Descriptor types and Versions.

Note: EAPOL-Key messages with Key Type of Pairwise and a non-zero key index should be ignored.

Note: EAPOL-Key messages with Key Type of Group and an invalid key index should be ignored.
TimeoutEvt. - This variable is set TRUE if the EAPOL_Key packet sent out fails to obtain a response from the Supplicant. The variable may be set by management action, or by the operation of a timeout while in the PTKSTART and REKEYNEGOTIATING states.  
TimeoutCtr. – This variable maintains the count of EAPOL-Key receive timeouts.  It is incremented each time a timeout occurs on EAPOLKeyRcvd event and is initialized to 0. Section 1.4.6.7.3 contains details of the timeout values. The Replay Counter for the EAPOL-Key message shall be incremented on each transmission of the EAPOL-Key message.

MICVerified.  - This variable is set to TRUE if the MIC on the received EAPOL Key packet is verified and is correct. Any EAPOL-Key messages will an invalid MIC will be dropped and ignored.

GTKAuthenticator. - This is True if the Authenticator is on an AP or it is the designated Authenticator for an IBSS.

IntegrityFailed. - This is set to True when a data integrity error (i.e. Michael failure) occurs.

Note: This is not the same as MICVerified since IntegrityFailed is generated if the MAC integrity check fails, MICVerified is generated from validating the EAPOL-Key MIC.

GKeyDoneStations. - Count of number of stations left to have their Group key updated.

GTKRekey – This variable is set to True when a Group key update is required.

GInitAKeys – This variable is set to True when the Group key update state machine is required.

GInitDone – This variable is set to True when the Group key update state machine has been initialized.

GUpdateStationKeys – This variable is set to True when a new Group key is available to be sent to Supplicants.

GNoStations – This variable counts the number of Authenticators so it is known how many Supplicants need to be sent the Group key.

GKeyReady – This variable is set to True when a Group key has been sent to all current Supplicants. This is used by new Authenticator state machines to decide whether a Group key is available to immediately send to its Supplicant.

PInitAKeys – This variable is set to True when the Authenticator is ready to send a Group key to its Supplicant after initialization.

Counter. This variable is the global station Key Counter used for generating Nonces.

ANonce.  This variable holds the current Nonce to be used if the station is an Authenticator.

GNonce. This variable holds the current Nonce to be used if the station is a Group key Authenticator.

GN, GM. These are the current key indexes for Group keys. Swap(GM, GN) means that the global key index in GN is swapped with the global key index in GM, so now GM and GN are reversed.

PTK. This variable is the current Pairwise transient key.

GTK[]. This variable is the current Group transient keys for each Group key index.

PMK.  PMK is the buffer holding the current Pairwise Master Key.

802.1X::XXX are the 802.1X XXX state variables

1.4.6.7.10.2.2 Procedures

STADisconnect().  Execution of this procedure disassociates and deauthenticates the station.

CalcGTK(x). – Calculates the Group Transient Key(GTK) using GNonce as the nonce input to the PRF.

RemoveGTK(x)/Remove PTK – Deletes GTK or PTK from encryption/integrity engine.

MIC(x). – Computes a Message Integrity Code over the plaintext data.

CheckMIC(). – Verifies the MIC computed by MIC() function.

Waitupto60() – This procedure should stop the Authenticator state machines for all stations at this point if the state machines enter this procedure until 60 seconds have gone by from the last exit from this procedure; i.e. the first time this state machine is entered, it can return immediately. The next time it must stop here until at least 60 seconds from the last time someone has left has gone by. If multiple state machines enter this procedure at the same time then 60 seconds must go by for each state machine to leave this procedure.

1.4.6.7.10.2.3 States

DISCONNECT: This state is entered is an EAPOL-Key message is received and fails its MIC check. It sends a deauthenticate message to the Access Point and enters the INITIALIZE state.

DISCONNECTED: This state is entered when disassociate or deauthenticate messages is received.

INITIALIZE: This state is entered from the DISCONNECTED state, when a DeauthenticationRequest event occurs or when the station initializes. The state initializes the key state variables.
AUTHENTICATION: This state is entered when an AuthentiationRequest is sent from the Mangement entity to authentication a BSSID.
AUTHENTICATION2: This state is entered from the AUTHENTICATION state or from the PTKINITDONE state.
INITPMK: This state is entered when the 802.1X backend authentication server completes successfully.

INITPSK: This state is entered when a pre-shared key is configured.
PTKSTART: This state is entered from INITPMK or INITPSK to start the 4-way handshake, or if no response to the 4-way handshake occurs.
PTKINITNEGOTIATING: This state is entered when the second EAPOL-Key message for the 4-way handshake is received with the key type of Pairwise key.

PTKINITDONE: This state is entered when the last EAPOL-Key message for the 4-way handshake is received with the key type of Pairwise key. This state may call SetPTK; if this call fails the AP should detect and recover from the situation, for example by doing a Disconnect event for this association.
UPDATEKEYS: This state is entered when an EAPOL-Key message is received from the Supplicant to initiate the 4-way handshake from the Supplicant. The key type in the EAPOL-Key message must be set to Pairwise key and the Request bit must be set.

INTEGRITYFAILURE: This state is entered when a data integrity failure occurs either locally or from a remote station by receiving an EAPOL-Key message with the key type set to Pairwise key and the Request and Error bits must be set.
KEYUPDATE: This state is entered from INTEGRITYFAILURE. 
REKEYNEGOTIATING: This state is entered when the Group key is to be sent to the Supplicant.
Note: The TxRx flag for sending a Group Key is always the oppersite of whether the Pairwise Key is used for data encryption/integrity or not. If a Pairwise key is used for encryption/integrity then the station never transmits with the Group Key otherwise the station uses the Group Key for transmit.
REKEYESTABLISHED: This state is entered when an EAPOL-Key message is received from the supplicant with the key type set to Group key.
KEYERROR: This state is entered if the EAPOL-Key acknowledgement for the Group key update is not received.
SETKEYS: This state is entered if the Group key is to be updated on all Supplicants.
SETKEYSDONE: This state is entered if the Group key has been updated on all Supplicants.
Note: SETKEYSDONE calls SetGTK to set the Group key for all associated stations if this fails all communication via this key will fail and the AP needs to detect and recover from this situation.
1.4.6.8 Example key exchanges

This section gives several examples of key exchanges using the state diagrams in the previous section. The examples include:

1. Initialization of keys

This occurs whenever a Supplicant authenticates to an Authenticator.

2. Updating the Group key

This occurs on a management event, when the current Group key needs to be changed. When this event occurs will depend on the environment the network will be in, possible times are:

1. Whenever a supplicant logoffs an Authenticator. So no supplicant after leaving the network can decrypt any traffic. This is especially important for networks that do not use the Pairwise key for unicast traffic protection.

2. Several times a day to reduce the leakage of information without taking the overhead of updating the Group key every logoff.

1.4.6.8.1 Key Initialization (4-way handshake + Group key update)
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Figure 6—Key Initialization

After IEEE 802.1X authentication completes by the AP sending an EAP-Success, the AP initiates two Key exchanges: the 4-way handshake and the Group key update. The 4-way handshake consists of:

1. The Authenticator sending an EAPOL-Key message containing an ANonce.

2. The Supplicant derives a PTK from ANonce and SNonce.

3. The Supplicant sends an EAPOL-Key message containing SNonce and a MIC.

4. The Authenticator derives PTK from ANonce and SNonce and validates the MIC in the EAPOL-Key message.

5. The Authenticator sends an EAPOL-Key message containing ANonce, MIC and whether to install the encryption/integrity keys or not.

6. The Supplicant sends an EAPOL-Key message to confirm that the key is installed if required.

This is followed by the initial Group key update.

Note: Step 6 is not required if Pairwise keys are not being used for encryption/integrity but for consistency the same 4-way handshake is used in all cases.

Note: The “Initial exchange complete” bit is set in the last message from the Authenticator to the Supplicant to inform the Supplicant that the last key required to initialize the Supplicant has been sent. Once set the “Initial exchange complete” bit should be set in any EAPOL-Key messages from the Authenticator until a 4-way handshake is initiated.

1.4.6.8.2 Group key update
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Figure 7—Group key update

The Group key update state machine changes the Group key in use by the network. The following steps occur:

1. The Authenticator generates a new GTK. It encrypts the GTK and sends an EAPOL-Key message containing the GTK.

2. The Supplicant on receiving the EAPOL-Key message validates the MIC, decrypts the GTK and installs it into the encryption/integrity engine.

3. The Supplicant then sends an EAPOL-Key message in acknowledgement to the Authenticator.

4. The Authenticator on receiving the EAPOL-Key message validates the MIC and then sets the GTK into its encryption/integrity engine.

1.4.6.9 Temporal keys processing rules

IEEE 802.1X has a controlled and an uncontrolled port. The rules for processing in the various conditions of temporal keys are as follows:

1. Data packets are encrypted when temporal keys are configured and not encrypted when temporal keys not configured. IEEE 802.1X messages are only encrypted with the key mapping key, they shall not be encrypted with default keys. RSN shall have dot11PrivacyInvoked set to True.

2. Only IEEE 802.1X data messages are allowed to be transmitted unencrypted.

3. An AP should disassociate and/or deauthenticate a station on receiving an IEEE 802.1X authFail event for the station.

1.4.6.9.1 Tx pseudo-code

if dot11PrivacyInvoked is “false” 

the MPDU is transmitted without encryption

else

if (the MPDU has an individual RA and there is an entry in dot11WEPKeyMappings for that RA)

if that entry has WEPOn set to “false”

the MPDU is transmitted without encryption

else

if that entry contains a key that is null

discard the entire MSDU and generate an

MA-UNITDATA-STATUS.indication primitive to

notify LLC that the MSDU was undeliverable due to

a null WEP key

else

encrypt the MPDU using that entry’s key, setting the KeyID

subfield of the IV field to zero

else

if (the MPDU has a group RA and the Privacy subfield of the Capability Information field in this BSS is set to 0)

the MPDU is transmitted without encryption

else

if dot11WEPDefaultKeys[dot11WEPDefaultKeyID] is null

if Ethertype is 802.1X

the MPDU is transmitted without encryption

else

discard the MSDU and generate an

MA-UNITDATA-STATUS.indication primitive to

notify LLC that the entire MSDU was undeliverable

due to a null WEP key

else

encrypt the MPDU using

dot11WEPDefaultKeys[dot11WEPDefaultKeyID],

setting the KeyID subfield of the IV field to dot11WEPDefaultKeyID

endif

1.4.6.9.2 Rx pseudo-code

if the WEP subfield of the Frame Control Field is zero

if aExcludeUnencrypted is “false” or (there is not an entry in

 dot11WEPKeyMappings matching the MPDU’s TA and Ethertype is 802.1X)

receive the frame without decryption 

else

discard the frame body without indication to LLC and

increment dot11WEPExcludedCount

else

if dot11PrivacyOptionImplemented is “true”

if (the MPDU has individual RA and there is an entry in

 dot11WEPKeyMappings matching the MPDU’s TA)

if that entry has WEPOn set to “false”

discard the frame body and increment dot11WEPUndecryptableCount

else

if that entry contains a key that is null

discard the frame body and increment

dot11WEPUndecryptableCount

else

attempt to decrypt with that key, incrementing

dot11WEPICVErrorCount if the ICV check fails

else

if dot11WEPDefaultKeys[KeyID] is null

discard the frame body and increment

dot11WEPUndecryptableCount

else

attempt to decrypt with dot11WEPDefaultKeys[KeyID],

incrementing dot11WEPICVErrorCount if the ICV check fails

else

discard the frame body and increment dot11WEPUndecryptableCount

endif

1.4.6.10 PRF

The PRF is used in a number of places in this document. Depending on its use it may need to output 128bits, 256bits, 384bits or 512bits. This section defines four functions: PRF-128 which outputs 128bits, PRF-256 which outputs 256bits, PRF-384 which outputs 384bits and PRF-512 which outputs 512 bits.

A shall be a unique label for each different purpose of the PRF; Y is a single octet contain 0 and X is a single octet containing the parameter.

H-SHA-1(K, A, B, X) = HMAC-SHA-1(K, A | Y | B | X)

PRF-128(K, A, B) = PRF(K, A, B, 128)

PRF-256(K, A, B) = PRF(K, A, B, 256)

PRF-384(K, A, B) = PRF(K, A, B, 384)

PRF-512(K, A, B) = PRF(K, A, B, 512)

PRF(K, A, B, Len)

{

octet i;

for (i = 0; i < (Len+159)/160; i++) {

R = R | H-SHA-1(K, A, B, i)
}

L(R, 0, Len)

}

1.4.7 Side Channel Keys

802.11e has defined side channels where a station may send unicast messages directly to another station. The transmitting station requests the AP for the side channel and then requests directly of the receiving station. The side channel should be encrypted but since the usage of side channels is for A/V communication in home environments, it is not necessary to provide crypto-separation for each side channel but to stop Packet Sequence Counter collisions separate Pairwise keys are required for each side channel. Since crypto-separation is not required Pairwise keys are derived from the current GTK by

SCK = PRF-128/256 (GTK, “Side Channel key expansion”, TA || RA)

Note: Is this secure enough? Or do we need crypto-separate keys for each side channel. 

We can do this by separating out the 4-way handshake and allowing the handshake to be done for each side channel using the GTK.

Another option is to add a new key type of side channel. When Side channel is requested from the AP, the AP generates a new master key and sends it to the two stations. The stations then execute a 4-way handshake.

1.5 Temporal Key Integrity Protocol (TKIP)

1.5.1 TKIP overview

The Temporal Key Integrity Protocol (TKIP) is a suite of algorithms enhancing the WEP protocol on pre-RSN hardware. This protocol uses WEP. TKIP surrounds WEP with new algorithms:

1. A transmitter calculates a keyed cryptographic message integrity code, or MIC, over the MSDU source and destination addresses and the MSDU plaintext data. TKIP appends the computed MIC to the data prior to fragmentation into MPDUs. The receiver verifies the MIC after decryption, ICV checking, and reassembly of the MPDUs into an MSDU, and discards any received MSDUs with invalid MICs. This protects against forgery attacks, and allows the MIC to be computed by software on the host.

2. Because an adversary can compromise the TKIP MIC with relatively few messages, TKIP also implements countermeasures which force key updates to be rate limited, to limit the probability of a successful forgery and the amount of information an attacker can learn about a key.

3. TKIP uses a packet sequence counter, or TSC, to sequence the MPDUs it sends. The receiver drops MPDUs received out of order. This provides a weak form of replay protection. TKIP encodes the packet sequence counter as a WEP IV, to communicate the TSC value from the sender to the receiver.

4. TKIP uses a cryptographic mixing function to combine a temporal key and the TSC into the WEP seed, which includes the WEP IV. The receiver recovers the TSC from a received MPDU and utilizes the mixing function to compute the same WEP seed needed to correctly decrypt the MPDU. The key mixing function is designed to defeat weak-key attacks against the WEP key.

When transmitting a MSDU the following is carried out:

1. The Michael integrity MIC is calculated and added to the data field (so it is encrypted)

2. 802.11 fragmentation takes place as specified in the IEEE 802.11 1999 spec

3. WEP encryption takes place as specified in the IEEE 802.11 1999 spec but with the phase 2 key from this spec and the IV field is the set according to this spec

4. The EIV according to this spec is added to the MPDU

Note: That the MIC is added to all data messages meaning that data packets are 8 octets longer so packets may be fragmented because of the increased data payload.

When receiving a sequence of MPDU’s making up a MSDU the following is carried out:

1. The EIV and IV are read from the packet and the EIV is checked to see if phase 1 needed to be re-calculated

2. WEP decryption as specified in the IEEE 802.11 1999 spec but using the phase 2 key. The ICV field is checked.

3. 802.11 defragmentation takes place as specified in the IEEE 802.11 1999 spec

4. Michael MIC is calculated and checked

1.5.1.1 TKIP encapsulation

TKIP enhances the WEP encapsulation with several additional functions, as depicted in Figure 8 below.

1. TKIP computes the MIC over the MSDU source address, destination address, and data, and appends the computed MIC to the MSDU; TKIP discards any MIC padding prior to appending the MIC.

2. TKIP fragments the MSDU into one or more MPDUs; TKIP assigns a monotonically incrementing TSC value to each MPDU it generates, taking care that all the MPDUs generated from the same MSDU use counter values from the same 48-bit counter space.

3. For each MPDU, TKIP uses the key mixing function to compute the WEP seed.

4. TKIP represents the WEP seed as a WEP IV and RC4 key, and passes these with each MPDU to WEP for encapsulation. WEP uses the WEP seed as a WEP default key, identified by a key id associated with the temporal key.
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Figure 8—TKIP Encapsulation Block Diagram

1.5.1.2 TKIP decapsulation

TKIP enhances the WEP decapsulation process with the following additional steps.

1. Before WEP decapsulating a received MPDU, TKIP extracts the TSC sequence number, WEP IV and key id from the packet. TKIP discards a received MPDU that violates the sequencing rules, and otherwise uses the mixing function to construct the WEP seed.

2. TKIP represents the WEP seed as a WEP IV and RC4 key and passes these with the MPDU to WEP for decapsulation.

3. If WEP indicates the ICV check succeeded, the implementation reassembles the MPDU into an MSDU. If the MSDU reassembly succeeds, the receiver verifies the MIC.

4. The MIC verification step recomputes the MIC over the MSDU source address, destination address, and MSDU data (but not the MIC field), and bit-wise compares the result against the received MIC.

5. If the two are identical, the verification succeeds, and TKIP shall deliver the MSDU to the upper layer. If the two differ in any bit position, then the verification fails, the receiver discards the packet, and engages in appropriate countermeasures.
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Figure 9—TKIP Decapsulation Block Diagram

1.5.2 TKIP MPDU formats

TKIP reuses pre-RSN WEP. It extends the MPDU by 4 octets to accommodate the new Extended IV field and extends the MSDU format by 8 octets, to accommodate the new MIC field. TKIP inserts the Extended IV field after the IV field and before the encrypted data. TKIP appends the MIC to the MSDU Data field.

Once the MIC is inserted in the MSDU, the TKIP data encapsulation can proceed in one of two ways.

· If the MSDU-with-MIC can be encoded within a single WEP-encapsulated MPDU, TKIP encapsulates the MSDU in a single MPDU.

· If the MSDU-with-MIC cannot be encoded within a single WEP-encapsulated MDPU, the MSDU-with-MIC is fragmented into appropriately sized MPDUs. WEP encapsulates each MPDU. Note that the MIC may span the second to last and last MPDUs.

Figure 10 below shows the layout of the encrypted MPDU when using TKIP-based privacy and the Extended IV field.
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Figure 10—Construction of Expanded TKIP MPDU

The ExtIV bit in the KeyId byte indicates the presence or absence of an extended IV. If the ExtIV bit is ‘0’ only the old-style non-extended IV is transferred. If the ExtIV bit is ‘1’ an extended IV of 4 octets follows the original IV. The ExtIV bit must be set and the Extended IV field must be supplied for TKIP. The ExtIV bit must be 0 for WEP packets.

RC4KEY is the output of the TKIP phase 2 key hashing. Octets TSC3 – TSC5 (IV32) are used in the TKIP phase 1 key hashing and are the 4 most significant octets of the TSC. As soon as an IV sequence number roll-over occurs (0xFFFF --> 0x0000) the extended IV must be incremented. 


1.5.2.1.1 Frame Construction Rationale and Issues 

· Align on word boundaries to allow ease of implementation on legacy devices

· Add 4 bytes of extended IV, an additional 32 bits after the existing IV/KeyID Field. This removes IV exhaustion as a reason to re-key.

· Retain IV/Key-ID of 4 octets in the form as defined with basic WEP, the ‘old style’ IV bytes now contain RC4KEY[0-2]. The receiving station directly can feed these octets into the decryption hardware. 

· 
· Key ID Byte changes – Use one bit (bit 5) to indicate that an extended IV is present. This allows the receiver/transmitter to know that the extended mode is present. The receiver/transmitter processes the following 4 bytes as the extended IV. The receiving/transmitting station also uses the value of WEP IV to detect that a key rollover has occurred.  When a key rollover has occurred, a new Phase 1 value with an incremented IV32 is calculated, and used to decrypt the received/transmitted frame.

· The extended IV field is not encrypted
TKIP shall encrypt all the MPDUs generated from one MSDU under the same temporal key.

1.5.3 TKIP state

TKIP augments the dot11WEPKeyMappingsTable and dot11WEPDefaultKeyTable MIB array with two new variables each, dot11DefaultKeyValue, dot11DefaultKeySize and dot11KeyMappingValue, dot11KeyMappingSize. The variables dot11DefaultKeySize and dot11KeyMappingSize are Integers and contain the length of the key in octets in the dot11DefaultKeyValue and dot11KeyMappingValue variables. The variables dot11DefaultKeyValue and dot11KeyMappingValue are 32 octet strings in size and contain the encryption key for TKIP and the send and receive integrity keys concatenated as described in Section 1.4.6.1.1.

1.5.4 TKIP procedures

1.5.4.1 TKIP mixing function

Section 1.6 defines the TKIP S-box, a “C” language reference implementation of the TKIP mixing function. It also provides test vectors for the mixing function.

The mixing function has two phases. The first phase mixes part (See Section 1.4.6.1.1) of the dot11DefaultKeyValue or dot11KeyMappingValue (TK) with the transmitter address (TA) and TSC. A STA may cache the output of this phase to reuse with subsequent MPDUs associated with the same TK and the same TA. The second phase mixes the output of the first phase with TSC and TK to produce the WEP seed, also called the per-packet key. The WEP seed may be computed well before it is used.  The two-phase process may be summarized as:

P1K ( Phase1(TA, TK, TSC)

WEP seed ( Phase2(P1K, TK, TSC)

Phase 1 is somewhat simpler than Phase 2. This simplicity is possible because the output of Phase 1 is not used directly as an RC4 key.

Both Phase 1 and Phase 2 rely on an S-box, defined in Section 1.6. The S-box substitutes one 16-bit value with another 16-bit value. This function is a non-linear substitution, and may be implemented as a table look up. 
1.5.4.1.1 Phase 1 definition

The inputs to the first phase of the temporal key mixing function shall be part (See Section 1.4.6.1.1) of dot11DefaultKeyValue or dot11KeyMappingValue (TK), the transmitter address (TA) and the TSC. The TK shall be 128 bits in length. Only the most significant 32 bits of the TSC and the first 80 bits of TK are used in Phase 1.  The output of Phase 1, called P1K, is 80 bits and is represented by an array of 16-bit values, P1K[0..4]. The TK and TA inputs are represented as arrays of 8-bit values: TA[0..5], TK[0..12].  The first three octets of TA (TA[0..2]) contain the OUI.

The exclusive-or operation ((), the bit-wise and operation (&), and the addition operation (+)are used in the specification of Phase 1 below. A loop counter, called i, and an array index temporary variable, called j, are also employed. 

One function is used in the definition of Phase 1.  The function, Mk16, constructs a 16-bit value from two 8-bit inputs, such that Mk16(X,Y) = 256*X+Y.

The first phase is comprised of two steps.  The first step initialises P1K from TSC and TA.  The second step is an iterated 80-bit bijective mixing, employing an S-box and mixing in key material from TK.

The 80-bit P1K array is computed in two steps.  The PHASE1_LOOP_COUNT in the second step is set to 8.  The P1K array values are computed as follows:

Input: transmit address TA0…TA5, temporal key TK0..TK12 and TSC0..TSC2
Output: intermediate key P1K0..P1K4

PHASE1-KEY-MIXING(TA0…TA5, TK0..TK12, TSC0..TSC2)


PHASE1_STEP1:



P1K[0] = TSC0


P1K[1] = TSC1


P1K[2] = Mk16(TA[1],TA[0])



P1K[3] = Mk16(TA[3],TA[2])



P1K[4] = Mk16(TA[5],TA[4])


PHASE1_STEP2:



FOR i = 0 to PHASE1_LOOP_COUNT-1



BEGIN



   j = 2*(i & 1)



   P1K[0] = P1K[0] + S[P1K[4] ( Mk16(TK[1+j],TK[0+j])]



   P1K[1] = P1K[1] + S[P1K[0] ( Mk16(TK[5+j],TK[4+j])]



   P1K[2] = P1K[2] + S[P1K[1] ( Mk16(TK[9+j],TK[8+j])]



   P1K[3] = P1K[3] + S[P1K[2] ( Mk16(TK[13+j],TK[12+j])]



   P1K[4] = P1K[4] + S[P1K[3] ( Mk16(TK[1+j],TK[0+j])] + i



END

Figure 11—Phase 1 key mixing

Note. Since these computations involve only exclusive-or and addition operations, by appropriate organization of the S-box lookup table, Phase 1 may be implemented in software with minimal performance impact due to the Endian architecture of the underlying processor.

1.5.4.1.2 Phase 2 definition

The inputs to the second phase of the temporal key mixing function shall be the output of the first phase (P1K) together with the TK and the TKIP sequence counter TSC. The P1K is 80-bits in length. The TSC shall be 48 bits. Only the last 24 bits of TK are used in Phase 2.  The output is the WEP seed which is a 128-bit per-packet key, called RC4KEY.  RC4KEY has an internal structure to conform to the WEP specification.  That is, the first 24 bits will be transmitted in plaintext.  As such, these 24 bits are used to convey lower 16 bits of the TSC from the encryptor to the decryptor.  The rest of the TSC shall be conveyed in the EIV field, in big-endian order.  The TK and P1K values are represented as in Phase 1. The RC4KEY is represented as an array of 8-bit values: RC4KEY[0..15]. The upper 4 octets of the TSC shall be transmitted as the EIV and the lower 3 octets of WEP seed shall be transmitted as the WEP IV. The TSC shall be treated as an array of 16-bit values: TSC0…TSC2.

One variable is employed: PPK.  The PPK is 128 bits, and it is represented as an array of 16-bit values: PPK[0..7].  A loop counter, called i, is also employed.  As detailed below, the mapping from the 16-bit PPK values to the 8-bit RC4KEY values is explicitly little-endian to match the endian architecture of the most common processors used for this application.

The exclusive-or operation ((), the addition operation (+), the and operation (&), the or operation (|), and the right bit shift operation (>>) are used the specification of Phase 2 below.

Four functions are used in the definition of Phase 2.  The first function, Lo8, references the least significant 8 bits of a 16-bit input value.  The second function, Hi8, references the most significant 8 bits of a 16-bit value. The third function, RotR1, rotates a 16-bit one bit to the right. The fourth function, Mk16, as in Phase 1, constructs a 16-bit value from two 8-bit inputs, such that Mk16(X, Y) = 256*X+Y.

The second phase is comprised of three steps:  

· STEP1 makes a copy of P1K and brings in TSC.  

· STEP2 is a 96-bit bijective mixing, employing an S-box.  

· STEP3 brings in the last of the TK bits and assigns the 24-bit WEP IV value.

The RC4KEY array values are computed as follows:

Input: intermediate key TTAK0…TTAK7, temporal key TK0..TK12 and TKIP TSC0…TSC2
Output: WEP Seed Seed0…Seed15
PHASE2-KEY-MIXING(TTAK0…TTAK7, TK, TSC0..TSC2)


PHASE2_STEP1:




PPK[0] = P1K[0]




PPK[1] = P1K[1]




PPK[2] = P1K[2]




PPK[3] = P1K[3]




PPK[4] = P1K[4]




PPK[5] = P1K[4] + TSC0

PHASE2_STEP2:




PPK[0] = PPK[0] +    S[PPK[5] ( Mk16(TK[ 1],TK[ 0])]




PPK[1] = PPK[1] +    S[PPK[0] ( Mk16(TK[ 3],TK[ 2])]




PPK[2] = PPK[2] +    S[PPK[1] ( Mk16(TK[ 5],TK[ 4])]




PPK[3] = PPK[3] +    S[PPK[2] ( Mk16(TK[ 7],TK[ 6])]




PPK[4] = PPK[4] +    S[PPK[3] ( Mk16(TK[ 9],TK[ 8])]




PPK[5] = PPK[5] +    S[PPK[4] ( Mk16(TK[11],TK[10])]




PPK[0] = PPK[0] + RotR1(PPK[5] ( Mk16(TK[13],TK[12]))




PPK[1] = PPK[1] + RotR1(PPK[0] ( Mk16(TK[15],TK[14]))




PPK[2] = PPK[2] + RotR1(PPK[1])




PPK[3] = PPK[3] + RotR1(PPK[2])




PPK[4] = PPK[4] + RotR1(PPK[3])




PPK[5] = PPK[5] + RotR1(PPK[4])


PHASE2_STEP3:




RC4KEY[0] =  Hi8(TSC0)




RC4KEY[1] = (Hi8(TSC0) | 0x20) & 0x7F




RC4KEY[2] =  Lo8(TSC0)




RC4KEY[3] =  Lo8((PPK[5] ( Mk16(TK[1],TK[0])) >> 1)




FOR i = 0 to 5




BEGIN





RC4KEY[4+(2*i)] = Lo8(PPK[i])





RC4KEY[5+(2*i)] = Hi8(PPK[i])




END

return Seed0…Seed15
Figure 12—Phase 2 key mixing

The WEP IV format carries three octets.  Step 3 of Phase 2 determines the value of each of these three octets.  The construction was selected to preclude the use of weak keys.  The recipient can reconstruct the least significant 16 bits of the TSC used by the originator by concatenating the first and third octets, ignoring the second octet.  The remaining 32 bits of the TSC are obtained from the EIV.
1.5.4.1.3 S-box

The algorithm S-box utilized by the Phase 1 and Phase 2 functions are defined in Section 1.6. The S-box substitutes one 16-bit value with another 16-bit value. This is a non-linear substitution. The reference implementation in Section 1.6 implements as a table look-up. The table look-up can be organized as either a single table with 65,536 entries and a 16-bit index (128 Kbytes of table) or two tables with 256 entries and an 8-bit index (1024 bytes for both tables). When the two smaller tables are used, the high-order byte is used to obtain a 16-bit value from one table and the low-order byte is used to obtain a 16-bit value from the other table; the S-box output is the exclusive-or (() of the two 16-bit values. The second S-box table is a byte-swapped replica of the first.

The sample code in Section 1.6 uses the two smaller tables approach. The S-box tables can be extracted from the AES reference implementation.

1.5.4.1.4 Key caching

The transmitter address (TA) is mixed into the temporal key (TK) in the first phase of the hash function.  Implementations can achieve a significant performance improvement by caching the output of the first phase. The Phase 1 output is the same for 65,536 consecutive packets from the same TK and TA. Consider the simple case where a station communicates only with an access point (AP). The station will perform the first phase using its own address, and it will be used to encrypt traffic sent to the access point. The station will perform the first phase using the access point address, and it will be used to decrypt traffic received from the access point.

In some situations more than two parties use a particular TK; therefore implementations must be prepared to mix more than two TAs with the TK.

Note: With TSC 48 bits in size the key caches will need to be updated when the lower 16 bits of the TSC wrap and the upper 32 bits need to be updated.

1.5.4.2 TKIP replay protection

TKIP implementations shall reuse the WEP IV field to provide protection against replay attacks by implementing the following rules.

1. As with WEP IVs, TKIP TSC values shall correspond to MPDUs.

2. TKIP sequence counter (48 bit counters) shall be selected from a single pool by each transmitter for each temporal key—i.e., each transmitter has its own unique counter for each directional temporal key established.

3. The TKIP sequence counter shall be implemented as a 48-bit monotonically incrementing counter, initialized to zero when the corresponding TKIP temporal key is initialized or refreshed.

4. The WEP IV format carries part of the 48-bit TKIP sequence counter; the remainder of the TSC is in the EIV.

5. The recipient shall use the TKIP sequence counter to detect replayed frames. A replayed frame occurs when the extracted TKIP sequence counter is repeated or not greater than the current TKIP replay window for the same traffic class. The replay window accommodates frames that may be delayed due to traffic class priority values.

6. A receiver shall maintain a separate TKIP replay window for each MAC address it receives TKIP traffic from. The receiver initializes the replay window whenever it resets the temporal key for a peer.

Note: The per-MAC address condition in 6 is needed to accommodate multicast/broadcast keys in the IBSS case.

7. A receiver should delay advancing a TKIP replay window until an MSDU passes the MIC check, to prevent attackers from injecting MPDUs with valid ICVs and IVs but invalid MICs.

8. In order to accommodate burst ACK, the TKIP receiver shall check that the received TKIP sequence counter (48 bit counter) is no smaller than 15 less than the greatest TKIP replay window value for the MPDU’s temporal key. When combined with the prohibition on correctly decrypting more than one MPDU under a given <temporal key, IV> pair, this provides replay protection and accommodates frames that may be delayed due to message class priority values, with a window size of 16.

Note: This works because if an attacker modifies the IV, then this alters the encryption key and hence both the ICV and MIC will ordinarily decrypt incorrectly, causing the received MPDU to be dropped.

The Sequence and Frame numbers should be checked after the MPDU ICV has been verified, i.e., the MPDU is decrypted and ICV is acceptable.  

1.5.5 The TKIP MIC

Flaws in the original 802.11 WEP design failed to meet its goal of protecting data traffic content from casual eavesdroppers. Among the most significant flaws is it lack of a mechanism to defeat message forgeries and other active attacks against the key.

In order to defeat active attacks against the privacy key, TKIP requires the use of a MIC, called Michael.  The MIC defined herein offers only extremely weak protection from message forgeries, but it constitutes the best that can be achieved with the majority of legacy hardware.

1.5.5.1 Context

Before discussing the details of the Michael MIC, it is useful to discuss the context in which this mechanism must work. Some of the active attacks enabled by the original WEP design include the following:

· Bit-flipping attacks;

· Data (payload) truncation and concatenation;

· Fragmentation attacks;

· Iterative guessing attacks against the key;

· Redirection by modifying the MPDU DA or SA fields;

· Impersonation attacks by modifying the MPDU SA or TA fields.

A MIC algorithm must make it more difficult for any of these attacks to succeed.

With the design specified herein, all of these attacks remain at the MPDU level, but the MIC applies to the MSDU, thus blocking the successes with MPDU level attacks. In this architecture, the MIC is applied to the MSDU at the transmitter and verified at the MSDU level at the receiver. If an MIC check fails at the MSDU level, the implementation shall discard the MSDU and invoke counter-measures.

The following diagram depicts different peer layers communicating:






The figure depicts an architecture whereby the MIC is logically appended to the raw MSDU in response to the MA-UNITDATA.request primitive. That is, the TKIP MIC is computed over

· the MSDU destination address (DA);

· the MSDU source address (SA); and

· the entire unencrypted MSDU data (payload).

The MIC is added at the end of the MSDU payload, reducing the maximum allowed MSDU payload size by the size of the MIC field, which is 8 bytes for Michael. The IEEE 802.11 MAC then applies its normal processing to transmit this MSDU-with-MIC as a sequence of one or more MPDUs. In TKIP this means the MSDU plus MIC shall be partitioned into one or more MPDUs, the WEP ICV is calculated over the MDPU data and MIC of the final PDU and the MIC encrypted with the data and ICV of the last MPDU. TKIP protects the MIC with encryption, because it is a weak construction; the encryption then makes MIC forgeries somewhat more difficult. If an MSDU is not to be encrypted, then implementations shall not append the TKIP MIC to the MSDU data.

The receiver reverses this procedure to reassemble the MSDU, and, after the MSDU has been logically reassembled, the MAC verifies the MIC prior to delivery of the MSDU to upper layers. If the MIC validation succeeds, the MAC delivers the MSDU to the appropriate 802 SAP via the MA-UNITDATA.indication primitive. If the MIC validation fails, the MAC discards the MSDU, increments a counter, and invokes counter-measures.

TKIP calculates the MIC over the MSDU rather than the MPDU for two reasons. First, it enables detection of attacks at the MPDU layer that can be detected at that layer only with difficult, e.g., fragmentation attacks. Second, it increases the implementation flexibility, allowing the MIC to be implemented either within the STA hardware or in a software driver running on either the STA or the STA’s host.

It should be noted that a MIC does not provide complete forgery protection. An “insider” STA can masquerade as any other STA with which it shares a master key. Hence, the protection afforded by the TKIP MIC is directly affected by the local keying policy; group keys should be avoided. Also note the MIC does not protect against replay attacks. TKIP replay detection is provided through IV sequencing, ICV validation, and rekeying, as described in Section 1.5.4.2.

1.5.5.1.1 MIC MSDU expansion

The following figure depicts the expansion of an MSDU to MSDU+MIC. The TKIP implementation computes the MIC over the MSDU and then appended it to the original MSDU payload:

	DA
	SA
	Data
	MIC


Once this is accomplished, the TKIP data encapsulation can proceed in one of two ways. If the MSDU+MIC can be encoded within a single WEP encapsulated MPDU, then it is:
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IV0

b4

b5

b6

b7

b3

b0

IV1

Rsvd

IV5

IV4

IV3

IV2

Rsvd

Key

ID

Rsvd

Ext

IV

IV / KeyID

4 octets

Data

>= 0 octets

MIC

8 octets

Encrypted (note)

Extended IV

4 octets

ICV

4 octets

Sequence number


Otherwise, the MSDU+MIC is fragmented into appropriately sized MPDUs and then WEP encapsulated; the following figure depicts the expansion of the MSDU+MIC to two MPDU fragments as an example of this procedure:
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Note that the MIC field is present only in the last or only MPDU. Note also that the MIC may span the end of the second last MPDU.

1.5.5.2 Michael specification

Section 1.7 contains a “C++” language reference implementation of the TKIP MIC. It also provides test vectors for the MIC.

Michael is a 64-bit MIC with 20 bit design strength. The key is an 8-byte value k0,..., k7. This is converted to two key words K0 and K1 of 32 bits each. Throughout the Michael design, all conversions between bytes and 32-bit words shall use the least-significant-byte-first convention.

The message consists of the bytes m0,..., mn–1 where n is the number of bytes in the message. The message is first padded at the end with a single byte with the value 0x5a and then between 4 and 7 zero bytes. The number of zero bytes is chosen so that the overall length of the message plus the padding is a multiple of 4. The message is then converted to a sequence of 32-bit words M0, ..., MN-1 where N := ((n+5)/4(. Astute readers will have noticed that MN-1 = 0 (( MN-2 ( 0.

The MIC value is computed iteratively by starting with the key value and applying the block function b for every message word as shown in algorithm 1. Note that the loop runs a total of N times (i takes on the values 0 to N-1 inclusive). The resulting two words are converted to a sequence of eight bytes using the least-significant-byte-first convention. It is then appended to the message to be sent.

Input: Key (K0, K1) and padded MPDU (represented as 32-bit words) M0...MN
Output: MIC value (V0, V1)

MICHAEL((K0, K1) , (M0,...,MN))

(l,r) ( (K0, K1)

for i = 0 to N–1 do
l ( l ( Mi
(l, r) ( b(l, r)

return (l,r)

Figure 13—Michael message processing

Figure 14 defines the Michael block function b. It is a Feistel-type construction with alternating additions and XOR operations. It uses <<< to denote the rotate-left operator on 32-bit values, >>> for the rotate-right operator, and XSWAP for a function that swaps the position of the two least significant bytes and the position of the two most significant bytes in a word.

Input: (l,r)

Output: (l,r)

b(L,R)

r ( r ( (l <<< 17)

l ( (l + r) mod 232
r ( r ( XSWAP(l)

l ( (l + r) mod 232
r ( r ( (l <<< 3)

l ( (l + r) mod 232

r ( r ( (l >>> 2)

l ( (l + r) mod 232
return (l, r)

Figure 14—Michael block function

1.5.5.3 Active countermeasures

Michael has been designed to trade off security strength in favor of implementability on equipment built to the 1999 issue of the standard. Michael by itself thus provides only weak protection against active attack. If a conformant TKIP implementation detects a suspected active attack, it shall take countermeasures to compensate for this weakness. These countermeasures should achieve the following goals:

· The current authentication key and encryption key must be deleted and not used again. This prevents the attacker from learning anything about those keys from the MIC failure.

· Significant effort should be made to log the event as a security-relevant matter. A MIC failure is an almost certain indication of an active attack, and warrants a follow-up by the system administrator.

· The rate of MIC failures must be kept below one per minute. This implies that new keys must not be generated if devices frequently receive packets with forged MICs. The slowdown makes it impossible for the attacker to make a large number of attempts in a short time.

Before verifying the MIC, the receiver should check the CRC, ICV, and IV. MPDUs with invalid CRCs, ICVs, or with whose MPDUs’ IVs falling before the IV window shall be discarded before checking the MIC. This avoids unnecessary MIC failure events. Checking the IV before the MIC makes countermeasure-based Denial of Service attacks harder to perform.

1.5.5.3.1 BSS case

If an Authenticator detects a MIC failure on a MSDU it receives, it shall take the following steps:

1. Delete the Group encryption and integrity keys in question.

2. Drop any received data messages except 802.1X messages until the Pairwise Key is deleted or changed.

3. Wait until 60 seconds have occurred from the last EAPOL-Key message with a MIC failure or an MIC failure occurred

4. Force a key update of the transient key in question

5. Log details of the MIC failure.

If a Supplicant detects a MIC failure, it shall take the following steps:

1. Delete the Group encryption and integrity keys in question.

2. Drop any received data messages except 802.1X messages until the Pairwise Key is deleted or changed.

3. Send an EAPOL-Key message requesting for a new key.

4. Log details of the MIC failure at the station and AP.

An EAPOL-Key message from supplicant to Authenticator with Ack bit set means the Authenticator will do a 4-way handshake to change the PTK and update the GTK.

1.5.5.3.2 IBSS case

If an Authenticator detects a MIC failure on a MSDU it receives, it shall take the following steps:

1. Delete the Group encryption and integrity keys in question.

2. Drop any received data messages except 802.1X messages until the Pairwise Key is deleted or changed.

3. Wait until 60 seconds have occurred from the last EAPOL-Key message with a MIC failure or an MIC failure occurred

4. Force a key update of the transient key in question

5. Log details of the MIC failure.

If a supplicant detects a MIC failure, it shall take the following steps:

1. Delete the Group encryption and integrity keys in question.

2. Drop any received data messages except 802.1X messages until the Pairwise Key is deleted or changed.

3. Send an EAPOL-Key message requesting for a new key.

4. Log details of the MIC failure at the station and AP.

An EAPOL-Key message from supplicant to Authenticator with the Request bit set means the Authenticator will do a 4-way handshake to change the PTK and update the GTK.

1.5.5.3.3 Multicast/Broadcast data packets to AP

An AP should drop any data MSDU packets whether multicast/broadcast receiver addresses it receives from stations.

1.6 Appendix B: TKIP algorithm reference implementations and test vectors

This clause provides a “C” language reference implementation of the temporal key mixing function.

/***********************************************************************

   Contents:    Generate 802.11 per-packet RC4 key hash test vectors

   Date:        April 19, 2002

   Authors:     Doug Whiting,   Hifn

                Russ Housley,   RSA Labs

                Niels Ferguson, MacFergus

                Doug Smith,     Cisco

   Notes:

   This code is released to the public domain use, built solely out of

   the goodness of our hearts for the benefit of all mankind. As such,

   there are no warranties of any kind given on the correctness or

   usefulness of this code.

   This code is written for pedagogical purposes, NOT for performance.

************************************************************************/

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <assert.h>

#include <time.h>

typedef unsigned char  byte;   /*  8-bit byte (octet)  */

typedef unsigned short u16b;   /* 16-bit unsigned word */

typedef unsigned long  u32b;   /* 32-bit unsigned word */

/* macros for extraction/creation of byte/u16b values  */

#define RotR1(v16)   ((((v16) >> 1) & 0x7FFF) ^ (((v16) & 1) << 15))

#define   Lo8(v16)   ((byte)( (v16)       & 0x00FF))

#define   Hi8(v16)   ((byte)(((v16) >> 8) & 0x00FF))

#define  Lo16(v32)   ((u16b)( (v32)       & 0xFFFF))

#define  Hi16(v32)   ((u16b)(((v32) >>16) & 0xFFFF))

#define  Mk16(hi,lo) ((lo) ^ (((u16b)(hi)) << 8))

/* select the Nth 16-bit word of the temporal key byte array TK[]   */

#define  TK16(N)     Mk16(TK[2*(N)+1],TK[2*(N)])

/* S-box lookup: 16 bits --> 16 bits */

#define _S_(v16)     (Sbox[0][Lo8(v16)] ^ Sbox[1][Hi8(v16)])

/* fixed algorithm "parameters" */

#define PHASE1_LOOP_CNT   8    /* this needs to be "big enough"     */

#define TA_SIZE           6    /*  48-bit transmitter address       */

#define TK_SIZE          16    /* 128-bit temporal key              */

#define P1K_SIZE         10    /*  80-bit Phase1 key                */

#define RC4_KEY_SIZE     16    /* 128-bit RC4KEY (104 bits unknown) */

/* configuration settings */

#define DO_SANITY_CHECK   1    /* validate properties of S-box?     */

/* 2-byte by 2-byte subset of the full AES S-box table */

const u16b Sbox[2][256]=       /* Sbox for hash (can be in ROM)     */

{ {

   0xC6A5,0xF884,0xEE99,0xF68D,0xFF0D,0xD6BD,0xDEB1,0x9154,

   0x6050,0x0203,0xCEA9,0x567D,0xE719,0xB562,0x4DE6,0xEC9A,

   0x8F45,0x1F9D,0x8940,0xFA87,0xEF15,0xB2EB,0x8EC9,0xFB0B,

   0x41EC,0xB367,0x5FFD,0x45EA,0x23BF,0x53F7,0xE496,0x9B5B,

   0x75C2,0xE11C,0x3DAE,0x4C6A,0x6C5A,0x7E41,0xF502,0x834F,

   0x685C,0x51F4,0xD134,0xF908,0xE293,0xAB73,0x6253,0x2A3F,

   0x080C,0x9552,0x4665,0x9D5E,0x3028,0x37A1,0x0A0F,0x2FB5,

   0x0E09,0x2436,0x1B9B,0xDF3D,0xCD26,0x4E69,0x7FCD,0xEA9F,

   0x121B,0x1D9E,0x5874,0x342E,0x362D,0xDCB2,0xB4EE,0x5BFB,

   0xA4F6,0x764D,0xB761,0x7DCE,0x527B,0xDD3E,0x5E71,0x1397,

   0xA6F5,0xB968,0x0000,0xC12C,0x4060,0xE31F,0x79C8,0xB6ED,

   0xD4BE,0x8D46,0x67D9,0x724B,0x94DE,0x98D4,0xB0E8,0x854A,

   0xBB6B,0xC52A,0x4FE5,0xED16,0x86C5,0x9AD7,0x6655,0x1194,

   0x8ACF,0xE910,0x0406,0xFE81,0xA0F0,0x7844,0x25BA,0x4BE3,

   0xA2F3,0x5DFE,0x80C0,0x058A,0x3FAD,0x21BC,0x7048,0xF104,

   0x63DF,0x77C1,0xAF75,0x4263,0x2030,0xE51A,0xFD0E,0xBF6D,

   0x814C,0x1814,0x2635,0xC32F,0xBEE1,0x35A2,0x88CC,0x2E39,

   0x9357,0x55F2,0xFC82,0x7A47,0xC8AC,0xBAE7,0x322B,0xE695,

   0xC0A0,0x1998,0x9ED1,0xA37F,0x4466,0x547E,0x3BAB,0x0B83,

   0x8CCA,0xC729,0x6BD3,0x283C,0xA779,0xBCE2,0x161D,0xAD76,

   0xDB3B,0x6456,0x744E,0x141E,0x92DB,0x0C0A,0x486C,0xB8E4,

   0x9F5D,0xBD6E,0x43EF,0xC4A6,0x39A8,0x31A4,0xD337,0xF28B,

   0xD532,0x8B43,0x6E59,0xDAB7,0x018C,0xB164,0x9CD2,0x49E0,

   0xD8B4,0xACFA,0xF307,0xCF25,0xCAAF,0xF48E,0x47E9,0x1018,

   0x6FD5,0xF088,0x4A6F,0x5C72,0x3824,0x57F1,0x73C7,0x9751,

   0xCB23,0xA17C,0xE89C,0x3E21,0x96DD,0x61DC,0x0D86,0x0F85,

   0xE090,0x7C42,0x71C4,0xCCAA,0x90D8,0x0605,0xF701,0x1C12,

   0xC2A3,0x6A5F,0xAEF9,0x69D0,0x1791,0x9958,0x3A27,0x27B9,

   0xD938,0xEB13,0x2BB3,0x2233,0xD2BB,0xA970,0x0789,0x33A7,

   0x2DB6,0x3C22,0x1592,0xC920,0x8749,0xAAFF,0x5078,0xA57A,

   0x038F,0x59F8,0x0980,0x1A17,0x65DA,0xD731,0x84C6,0xD0B8,

   0x82C3,0x29B0,0x5A77,0x1E11,0x7BCB,0xA8FC,0x6DD6,0x2C3A,

  },

  {  /* second half of table is byte-reversed version of first! */

   0xA5C6,0x84F8,0x99EE,0x8DF6,0x0DFF,0xBDD6,0xB1DE,0x5491,

   0x5060,0x0302,0xA9CE,0x7D56,0x19E7,0x62B5,0xE64D,0x9AEC,

   0x458F,0x9D1F,0x4089,0x87FA,0x15EF,0xEBB2,0xC98E,0x0BFB,

   0xEC41,0x67B3,0xFD5F,0xEA45,0xBF23,0xF753,0x96E4,0x5B9B,

   0xC275,0x1CE1,0xAE3D,0x6A4C,0x5A6C,0x417E,0x02F5,0x4F83,

   0x5C68,0xF451,0x34D1,0x08F9,0x93E2,0x73AB,0x5362,0x3F2A,

   0x0C08,0x5295,0x6546,0x5E9D,0x2830,0xA137,0x0F0A,0xB52F,

   0x090E,0x3624,0x9B1B,0x3DDF,0x26CD,0x694E,0xCD7F,0x9FEA,

   0x1B12,0x9E1D,0x7458,0x2E34,0x2D36,0xB2DC,0xEEB4,0xFB5B,

   0xF6A4,0x4D76,0x61B7,0xCE7D,0x7B52,0x3EDD,0x715E,0x9713,

   0xF5A6,0x68B9,0x0000,0x2CC1,0x6040,0x1FE3,0xC879,0xEDB6,

   0xBED4,0x468D,0xD967,0x4B72,0xDE94,0xD498,0xE8B0,0x4A85,

   0x6BBB,0x2AC5,0xE54F,0x16ED,0xC586,0xD79A,0x5566,0x9411,

   0xCF8A,0x10E9,0x0604,0x81FE,0xF0A0,0x4478,0xBA25,0xE34B,

   0xF3A2,0xFE5D,0xC080,0x8A05,0xAD3F,0xBC21,0x4870,0x04F1,

   0xDF63,0xC177,0x75AF,0x6342,0x3020,0x1AE5,0x0EFD,0x6DBF,

   0x4C81,0x1418,0x3526,0x2FC3,0xE1BE,0xA235,0xCC88,0x392E,

   0x5793,0xF255,0x82FC,0x477A,0xACC8,0xE7BA,0x2B32,0x95E6,

   0xA0C0,0x9819,0xD19E,0x7FA3,0x6644,0x7E54,0xAB3B,0x830B,

   0xCA8C,0x29C7,0xD36B,0x3C28,0x79A7,0xE2BC,0x1D16,0x76AD,

   0x3BDB,0x5664,0x4E74,0x1E14,0xDB92,0x0A0C,0x6C48,0xE4B8,

   0x5D9F,0x6EBD,0xEF43,0xA6C4,0xA839,0xA431,0x37D3,0x8BF2,

   0x32D5,0x438B,0x596E,0xB7DA,0x8C01,0x64B1,0xD29C,0xE049,

   0xB4D8,0xFAAC,0x07F3,0x25CF,0xAFCA,0x8EF4,0xE947,0x1810,

   0xD56F,0x88F0,0x6F4A,0x725C,0x2438,0xF157,0xC773,0x5197,

   0x23CB,0x7CA1,0x9CE8,0x213E,0xDD96,0xDC61,0x860D,0x850F,

   0x90E0,0x427C,0xC471,0xAACC,0xD890,0x0506,0x01F7,0x121C,

   0xA3C2,0x5F6A,0xF9AE,0xD069,0x9117,0x5899,0x273A,0xB927,

   0x38D9,0x13EB,0xB32B,0x3322,0xBBD2,0x70A9,0x8907,0xA733,

   0xB62D,0x223C,0x9215,0x20C9,0x4987,0xFFAA,0x7850,0x7AA5,

   0x8F03,0xF859,0x8009,0x171A,0xDA65,0x31D7,0xC684,0xB8D0,

   0xC382,0xB029,0x775A,0x111E,0xCB7B,0xFCA8,0xD66D,0x3A2C,

  }

};

#if DO_SANITY_CHECK

/*

**********************************************************************

* Routine: SanityCheckTable -- verify Sbox properties

*

* Inputs:  Sbox

* Output:  None, but an assertion fails if the tables are wrong

* Notes:

*   The purpose of this routine is solely to illustrate and

*   verify the following properties of the Sbox table:

*      - the Sbox is a "2x2" subset of the AES table:

*            Sbox + affine transform + MDS.

*      - the Sbox table can be easily designed to fit in a

*            512-byte table, using a byte swap

*      - the Sbox table can be easily designed to fit in a

*            256-byte table, using some shifts and a byte swap

**********************************************************************

*/

void SanityCheckTable(void)

    {

    const static int  M_x = 0x11B;   /* AES irreducible polynomial */

    const static byte Sbox8[256] = { /* AES 8-bit Sbox */

        0x63,0x7c,0x77,0x7b,0xf2,0x6b,0x6f,0xc5,

        0x30,0x01,0x67,0x2b,0xfe,0xd7,0xab,0x76,

        0xca,0x82,0xc9,0x7d,0xfa,0x59,0x47,0xf0,

        0xad,0xd4,0xa2,0xaf,0x9c,0xa4,0x72,0xc0,

        0xb7,0xfd,0x93,0x26,0x36,0x3f,0xf7,0xcc,

        0x34,0xa5,0xe5,0xf1,0x71,0xd8,0x31,0x15,

        0x04,0xc7,0x23,0xc3,0x18,0x96,0x05,0x9a,

        0x07,0x12,0x80,0xe2,0xeb,0x27,0xb2,0x75,

        0x09,0x83,0x2c,0x1a,0x1b,0x6e,0x5a,0xa0,

        0x52,0x3b,0xd6,0xb3,0x29,0xe3,0x2f,0x84,

        0x53,0xd1,0x00,0xed,0x20,0xfc,0xb1,0x5b,

        0x6a,0xcb,0xbe,0x39,0x4a,0x4c,0x58,0xcf,

        0xd0,0xef,0xaa,0xfb,0x43,0x4d,0x33,0x85,

        0x45,0xf9,0x02,0x7f,0x50,0x3c,0x9f,0xa8,

        0x51,0xa3,0x40,0x8f,0x92,0x9d,0x38,0xf5,

        0xbc,0xb6,0xda,0x21,0x10,0xff,0xf3,0xd2,

        0xcd,0x0c,0x13,0xec,0x5f,0x97,0x44,0x17,

        0xc4,0xa7,0x7e,0x3d,0x64,0x5d,0x19,0x73,

        0x60,0x81,0x4f,0xdc,0x22,0x2a,0x90,0x88,

        0x46,0xee,0xb8,0x14,0xde,0x5e,0x0b,0xdb,

        0xe0,0x32,0x3a,0x0a,0x49,0x06,0x24,0x5c,

        0xc2,0xd3,0xac,0x62,0x91,0x95,0xe4,0x79,

        0xe7,0xc8,0x37,0x6d,0x8d,0xd5,0x4e,0xa9,

        0x6c,0x56,0xf4,0xea,0x65,0x7a,0xae,0x08,

        0xba,0x78,0x25,0x2e,0x1c,0xa6,0xb4,0xc6,

        0xe8,0xdd,0x74,0x1f,0x4b,0xbd,0x8b,0x8a,

        0x70,0x3e,0xb5,0x66,0x48,0x03,0xf6,0x0e,

        0x61,0x35,0x57,0xb9,0x86,0xc1,0x1d,0x9e,

        0xe1,0xf8,0x98,0x11,0x69,0xd9,0x8e,0x94,

        0x9b,0x1e,0x87,0xe9,0xce,0x55,0x28,0xdf,

        0x8c,0xa1,0x89,0x0d,0xbf,0xe6,0x42,0x68,

        0x41,0x99,0x2d,0x0f,0xb0,0x54,0xbb,0x16 };

    int i,k,k2,k3;

    byte bitmap[0x2000];

    /* show that smaller tables can be used, if desired */

    for (i=0;i<256;i++)

        {

        k  = Sbox8[i];

        k2 = (k << 1) ^ ((k & 0x80) ? M_x : 0);

        k3 =  k ^ k2;

        assert(Sbox[0][i] == ((k2 << 8) ^ k3));

        assert(Sbox[1][i] == ((k3 << 8) ^ k2));

        }

    /* now make sure that it's a 16-bit permutation */

    memset(bitmap,0,sizeof(bitmap));

    for (i=0;i<0x10000;i++)

        {

        k = _S_(i); /* do an S-box lookup: 16 --> 16 bits */

        assert(k < (1 << 16));

        assert((bitmap[k >> 3] & (1 << (k & 7))) == 0);

        bitmap[k >> 3] |= 1 << (k & 7);

        }

    for (i=0;i<sizeof(bitmap);i++)

        assert(bitmap[i] == 0xFF);

    /* if we reach here, the 16-bit Sbox is ok */

    printf("Table sanity check successful\n");

    }

#endif

/*

**********************************************************************

* Routine: Phase 1 -- generate P1K, given TA, TK, IV32

*

* Inputs:

*     TK[]      = temporal key                         [128 bits]

*     TA[]      = transmitter's MAC address            [ 48 bits]

*     IV32      = upper 32 bits of IV                  [ 32 bits]

* Output:

*     P1K[]     = Phase 1 key                          [ 80 bits]

*

* Note:

*     This function only needs to be called every 2**16 packets,

*     although in theory it could be called every packet.

*

**********************************************************************

*/

void Phase1(u16b *P1K,const byte *TK,const byte *TA,u32b IV32)

    {

    int  i;

    /* Initialize the 80 bits of P1K[] from IV32 and TA[0..5]     */

    P1K[0]      = Lo16(IV32);

    P1K[1]      = Hi16(IV32);

    P1K[2]      = Mk16(TA[1],TA[0]); /* use TA[] as little-endian */

    P1K[3]      = Mk16(TA[3],TA[2]);

    P1K[4]      = Mk16(TA[5],TA[4]);

    /* Now compute an unbalanced Feistel cipher with 80-bit block */

    /* size on the 80-bit block P1K[], using the 128-bit key TK[] */

    for (i=0; i < PHASE1_LOOP_CNT ;i++)

        {                 /* Each add operation here is mod 2**16 */

        P1K[0] += _S_(P1K[4] ^ TK16((i&1)+0));

        P1K[1] += _S_(P1K[0] ^ TK16((i&1)+2));

        P1K[2] += _S_(P1K[1] ^ TK16((i&1)+4));

        P1K[3] += _S_(P1K[2] ^ TK16((i&1)+6));

        P1K[4] += _S_(P1K[3] ^ TK16((i&1)+0));

        P1K[4] +=  i;                    /* avoid "slide attacks" */

        }

    }

/*

**********************************************************************

* Routine: Phase 2 -- generate RC4KEY, given TK, P1K, IV16

*

* Inputs:

*     TK[]      = Temporal key                         [128 bits]

*     P1K[]     = Phase 1 output key                   [ 80 bits]

*     IV16      = low 16 bits of IV counter            [ 16 bits]

* Output:

*     RC4KEY[]  = the key used to encrypt the packet   [128 bits]

*

* Note:

*     The value {TA,IV32,IV16} for Phase1/Phase2 must be unique

*     across all packets using the same key TK value. Then, for a

*     given value of TK[], this TKIP48 construction guarantees that

*     the final RC4KEY value is unique across all packets.

*

* Suggested implementation optimization: if PPK[] is "overlaid"

*     appropriately on RC4KEY[], there is no need for the final

*     for loop below that copies the PPK[] result into RC4KEY[].

*

**********************************************************************

*/

void Phase2(byte *RC4KEY,const byte *TK,const u16b *P1K,u16b IV16)

    {

    int  i;

    u16b PPK[6];                          /* temporary key for mixing    */

    /* Note: all adds in the PPK[] equations below are mod 2**16         */

    for (i=0;i<5;i++) PPK[i]=P1K[i];      /* first, copy P1K to PPK      */

    PPK[5]  =  P1K[4] + IV16;             /* next,  add in IV16          */

    /* Bijective non-linear mixing of the 96 bits of PPK[0..5]           */

    PPK[0] +=    _S_(PPK[5] ^ TK16(0));   /* Mix key in each "round"     */

    PPK[1] +=    _S_(PPK[0] ^ TK16(1));

    PPK[2] +=    _S_(PPK[1] ^ TK16(2));

    PPK[3] +=    _S_(PPK[2] ^ TK16(3));

    PPK[4] +=    _S_(PPK[3] ^ TK16(4));

    PPK[5] +=    _S_(PPK[4] ^ TK16(5));   /* Total # S-box lookups == 6  */

    /* Final sweep: bijective, "linear". Rotates kill LSB correlations   */

    PPK[0] +=  RotR1(PPK[5] ^ TK16(6));

    PPK[1] +=  RotR1(PPK[0] ^ TK16(7));   /* Use all of TK[] in Phase2   */

    PPK[2] +=  RotR1(PPK[1]);

    PPK[3] +=  RotR1(PPK[2]);

    PPK[4] +=  RotR1(PPK[3]);

    PPK[5] +=  RotR1(PPK[4]);

    /* Note: At this point, for a given key TK[0..15], the 96-bit output */

    /*       value PPK[0..5] is guaranteed to be unique, as a function   */

    /*       of the 96-bit "input" value   {TA,IV32,IV16}. That is, P1K  */

    /*       is now a keyed permutation of {TA,IV32,IV16}.               */

    /* Set RC4KEY[0..3], which includes "cleartext" portion of RC4 key   */

    RC4KEY[0] = Hi8(IV16);                /* RC4KEY[0..2] is the WEP IV  */

    RC4KEY[1] =(Hi8(IV16) | 0x20) & 0x7F; /* Help avoid weak (FMS) keys  */

    RC4KEY[2] = Lo8(IV16);

    RC4KEY[3] = Lo8((PPK[5] ^ TK16(0)) >> 1);

    /* Copy 96 bits of PPK[0..5] to RC4KEY[4..15]  (little-endian)       */

    for (i=0;i<6;i++)

        {

        RC4KEY[4+2*i] = Lo8(PPK[i]);

        RC4KEY[5+2*i] = Hi8(PPK[i]);

        }

    }

/*

**********************************************************************

* Routine: doTestCase -- execute a test case, and print results

**********************************************************************

*/

void DoTestCase(byte *RC4KEY,u32b IV32,u16b IV16,const byte *TA,const byte *TK)

    {

    int  i;

    u16b P1K[P1K_SIZE/2];  /* "temp" copy of phase1 key */

    printf("\nTK    =");

    for (i=0;i<TK_SIZE;i++) printf(" %02X",TK[i]);

    printf("\nTA    =");

    for (i=0;i<TA_SIZE;i++) printf(" %02X",TA[i]);

    printf("\nIV32  = %08X   [transmitted as",IV32);  /* show byte order */

    for (i=0;i<4;i++) printf(" %02X",(IV32 >> (24-8*i)) & 0xFF);

    printf("]");

    printf("\nIV16  = %04X",IV16);

    Phase1(P1K,TK,TA,IV32);

    printf("\nP1K   =");

    for (i=0;i<P1K_SIZE/2;i++) printf(" %04X ",P1K[i] & 0xFFFF);

    Phase2(RC4KEY,TK,P1K,IV16);

    printf("\nRC4KEY= ");

    for (i=0;i<RC4_KEY_SIZE;i++) printf("%02X ",RC4KEY[i]);

    }

/*

**********************************************************************

* Static (Repeatable) Test Cases

**********************************************************************

*/

void DoStaticTestCases(int testCnt)

    {

    int  i,j;

    byte TA[TA_SIZE],TK[TK_SIZE],RC4KEY[RC4_KEY_SIZE];

    u16b IV16=0;

    u32b IV32=0;

    /* set a fixed starting point */

    for (i=0;i<TK_SIZE;i++) TK[i]=i;

    for (i=0;i<TA_SIZE;i++) TA[i]=(i+1)*17;

    TA[0] = TA[0] & 0xFC;               /* Clear I/G and U/L bits in OUI */

    /* now generate tests, feeding results back into new tests */

    for (i=0; i<testCnt/2; i++)

        {

        printf("\n\nTest vector #%d:",2*i+1);

        DoTestCase(RC4KEY,IV32,IV16,TA,TK);

        IV16++;                        /* emulate per-packet "increment" */

        if (IV16 == 0) IV32++;

        printf("\n\nTest vector #%d:",2*i+2);

        DoTestCase(RC4KEY,IV32,IV16,TA,TK);

        /* feed these results back to seed the next test input values    */

        IV16 = (i) ? Mk16(RC4KEY[15],RC4KEY[4]) : 0xFFFF;  /* force wrap */

        IV32 =       Mk16(RC4KEY[14],RC4KEY[5]);

        IV32 =       Mk16(RC4KEY[13],RC4KEY[7]) + (IV32 << 16);

        for (j=0;j<TA_SIZE;j++) TA[j]^=RC4KEY[12-j];

        for (j=0;j<TK_SIZE;j++) TK[j]^=RC4KEY[(j+i+1) % RC4_KEY_SIZE] ^

                                       RC4KEY[(j+i+7) % RC4_KEY_SIZE] ;

        TA[0] = TA[0] & 0xFC;           /* Clear I/G and U/L bits in OUI */

        }

    /* note: comparing the final output is a good check of correctness   */

    printf("\n");

    }

/*

**********************************************************************

* Test Cases Generated at Random

**********************************************************************

*/

void DoRandomTestCases(int testCnt)

    {

    int  i,j;

    u16b IV16;

    u32b IV32;

    byte TA[TA_SIZE],RC4KEY[RC4_KEY_SIZE],TK[TK_SIZE];

    printf("Random tests:\n");

    /* now generate tests "recursively" */

    for (i=0; i<testCnt; i++)

        {

        IV16 = rand() & 0xFFFF;

        IV32 = rand() + (rand() << 16);

        for (j=0;j<TK_SIZE;j++) TK[j]=rand() & 0xFF;

        for (j=0;j<TA_SIZE;j++) TA[j]=rand() & 0xFF;

        TA[0] = TA[0] & 0xFC;         /* Clear I/G and U/L bits in OUI */

        printf("\n\nRandom test vector #%d:",i+1);

        DoTestCase(RC4KEY,IV32,IV16,TA,TK);

        }

    printf("\n");

    }

/*

**********************************************************************

* Usage text

**********************************************************************

*/

#define NUM_TEST_CNT  8

void Usage(void)

    {

    printf(

        "Usage:   TKIP48 [options]\n"

        "Purpose: Generate test vectors for 802.11 TKIP48\n"

        "Options  -?   -- output this usage text\n"

        "         -r   -- generate test vectors at random\n"

        "         -sN  -- init random seed to N\n"

        "         -tN  -- generate N tests (default = %d)\n",

        NUM_TEST_CNT

        );

    exit(0);

    }

/*

**********************************************************************

* Main

**********************************************************************

*/

int main(int argc, char **argv)

    {

    char *parg;

    int   i,doRand = 0;

    int   testCnt  = NUM_TEST_CNT;

    u32b  seed     = (u32b) time(NULL);

#if DO_SANITY_CHECK

    SanityCheckTable();

#endif

    for (i=1; i<argc; i++)

        {

        parg = argv[i];

        switch (parg[0])

            {

            case '-':

                switch (parg[1])

                    {

                    case '?':

                    case 'H':

                    case 'h':

                        Usage();

                        return 0;

                    case 'R':

                    case 'r':  /* generate some random test vectors */

                        doRand  = 1;

                        break;

                    case 'S':

                    case 's':

                        seed    = atoi(parg+2);

                        break;

                    case 'T':

                    case 't':

                        testCnt = atoi(parg+2);

                        break;

                    default:

                        break;

                    }

                break;

            case '?':

                Usage();

                return 0;

            default:

                printf("Invalid argument: \"%s\"\n", parg);

                return 1;

            }

        }

    srand(seed);

    if (doRand) printf("Seed = %u\n",seed);

    /* generate some test vectors */

    if (doRand) DoRandomTestCases(testCnt);

    else        DoStaticTestCases(testCnt);

    return 0;

    }
1.6.1 Test Vectors

The following output is provided to test implementations of the temporal key hash algorithm. All input and output values are shown in hexadecimal.

Test vector #1:

TK    = 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

TA    = 10 22 33 44 55 66

IV32  = 00000000   [transmitted as 00 00 00 00]

IV16  = 0000

P1K   = 3DD2  016E  76F4  8697  B2E8 

RC4KEY= 00 20 00 33 EA 8D 2F 60 CA 6D 13 74 23 4A 66 0B 

Test vector #2:

TK    = 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

TA    = 10 22 33 44 55 66

IV32  = 00000000   [transmitted as 00 00 00 00]

IV16  = 0001

P1K   = 3DD2  016E  76F4  8697  B2E8 

RC4KEY= 00 20 01 90 FF DC 31 43 89 A9 D9 D0 74 FD 20 AA 

Test vector #3:

TK    = 63 89 3B 25 08 40 B8 AE 0B D0 FA 7E 61 D2 78 3E

TA    = 64 F2 EA ED DC 25

IV32  = 20DCFD43   [transmitted as 20 DC FD 43]

IV16  = FFFF

P1K   = 7C67  49D7  9724  B5E9  B4F1 

RC4KEY= FF 7F FF 93 81 0F C6 E5 8F 5D D3 26 25 15 44 CE 

Test vector #4:

TK    = 63 89 3B 25 08 40 B8 AE 0B D0 FA 7E 61 D2 78 3E

TA    = 64 F2 EA ED DC 25

IV32  = 20DCFD44   [transmitted as 20 DC FD 44]

IV16  = 0000

P1K   = 5A5D  73A8  A859  2EC1  DC8B 

RC4KEY= 00 20 00 49 8C A4 71 FC FB FA A1 6E 36 10 F0 05 

Test vector #5:

TK    = 98 3A 16 EF 4F AC B3 51 AA 9E CC 27 1D 73 09 E2

TA    = 50 9C 4B 17 27 D9

IV32  = F0A410FC   [transmitted as F0 A4 10 FC]

IV16  = 058C

P1K   = F2DF  EBB1  88D3  5923  A07C 

RC4KEY= 05 25 8C F4 D8 51 52 F4 D9 AF 1A 64 F1 D0 70 21 

Test vector #6:

TK    = 98 3A 16 EF 4F AC B3 51 AA 9E CC 27 1D 73 09 E2

TA    = 50 9C 4B 17 27 D9

IV32  = F0A410FC   [transmitted as F0 A4 10 FC]

IV16  = 058D

P1K   = F2DF  EBB1  88D3  5923  A07C 

RC4KEY= 05 25 8D 09 F8 15 43 B7 6A 59 6F C2 C6 73 8B 30 

Test vector #7:

TK    = C8 AD C1 6A 8B 4D DA 3B 4D D5 B6 54 38 35 9B 05

TA    = 94 5E 24 4E 4D 6E

IV32  = 8B1573B7   [transmitted as 8B 15 73 B7]

IV16  = 30F8

P1K   = EFF1  3F38  A364  60A9  76F3 

RC4KEY= 30 30 F8 65 0D A0 73 EA 61 4E A8 F4 74 EE 03 19 

Test vector #8:

TK    = C8 AD C1 6A 8B 4D DA 3B 4D D5 B6 54 38 35 9B 05

TA    = 94 5E 24 4E 4D 6E

IV32  = 8B1573B7   [transmitted as 8B 15 73 B7]

IV16  = 30F9

P1K   = EFF1  3F38  A364  60A9  76F3 

RC4KEY= 30 30 F9 31 55 CE 29 34 37 CC 76 71 27 16 AB 8F 
1.7 Appendix C: Michael reference implementation and test vectors

1.7.1 Michael test vectors

To ensure correct implementation of Michael, here are some test vectors. These test vectors still have to be confirmed by an independent implementation.

1.7.1.1 Block function

Here are some test vectors for the block function.

	Input
	# times
	Output

	(00000000, 00000000)
	1
	(00000000, 00000000)

	(00000000, 00000001)
	1
	(c00015a8, c0000b95)

	(00000001, 00000000)
	1 
	(6b519593, 572b8b8a)

	(01234567, 83659326)
	1 
	(441492c2, 1d8427ed) 

	(00000001, 00000000)
	1000 
	(9f04c4ad, 2ec6c2bf)


The first four rows give test vectors for a single application of the block function b. The last row gives a test vector for 1000 repeated applications of the block function. Together these should provide adequate test coverage.

1.7.1.2 Michael

Here are some test vectors for Michael.

	key
	message
	output

	0000000000000000
	""
	82925c1ca1d130b8

	82925c1ca1d130b8
	"M”
	434721ca40639b3f

	434721ca40639b3f
	"Mi “
	E8f9becae97e5d29

	e8f9becae97e5d29
	"Mic"
	90038fc6cf13c1db

	90038fc6cf13c1db
	"Mich"
	d55e100510128986

	d55e100510128986
	"Michael"
	0a942b124ecaa546


Note that each key is the result of the previous line, which makes it easy to construct a single test out of all of these test cases.

1.7.2 Example code

//

// Michael.h    Reference implementation for Michael

//

// Copyright (c) 2001 by MacFergus BV

// All rights reserved,

//

// A Michael object implements the computation of the Michael MIC.

//

// Conceptually, the object stores the message to be authenticated.

// At construction the message is empty. 

// The append() method appends bytes to the message.

// The getMic() method computes the MIC over the message and returns the result.

// As a side-effect it also resets the stored message 

// to the empty message so that the object can be re-used 

// for another MIC computation.

class Michael 

{

public:

// Constructor requires a pointer to 8 bytes of key

Michael( Byte * key );

// Destructor

~Michael();

// Clear the internal message, 

// resets the object to the state just after construction.

void clear();

// Set the key to a new value

void setKey( Byte * key );

// Append bytes to the message to be MICed

void append( Byte * src, int nBytes );

// Get the MIC result. Destination should accept 8 bytes of result.

// This also resets the message to empty.

void getMIC( Byte * dst );

// Run the test plan to verify proper operations

static void runTestPlan();

private:

// Copy constructor declared but not defined, 

//avoids compiler-generated version.

Michael( const Michael & );

// Assignment operator declared but not defined, 

//avoids compiler-generated version.

void operator=( const Michael & );

// A bunch of internal functions 

// Get UInt32 from 4 bytes LSByte first

static UInt32 getUInt32( Byte * p );

// Put UInt32 into 4 bytes LSByte first

static void putUInt32( Byte * p, UInt32 val );

// Add a single byte to the internal message

void appendByte( Byte b );

// Conversion of hex string to binary string

static void hexToBin( char *src, Byte * dst );

// More conversion of hex string to binary string

static void hexToBin( char *src, int nChars, Byte * dst );

// Helper function for hex conversion

static Byte hexToBinNibble( char c );

// Run a single test case 

static void runSingleTest( char * cKey, char * cMsg, char * cResult );

UInt32  K0, K1;         // Key 

UInt32  L, R;           // Current state

UInt32  M;              // Message accumulator (single word)

int     nBytesInM;      // # bytes in M

};

//

// Michael.cpp  Reference implementation for Michael

//

// Copyright (c) 2001 by MacFergus BV

// All rights reserved,

//

// Adapt these typedefs to your local platform

typedef unsigned long UInt32;

typedef unsigned char Byte;

#include <assert.h>

#include <stdio.h>

#include <stdlib.h> 

#include <string.h>

#include "Michael.h"

// Rotation functions on 32 bit values

#define ROL32( A, n ) \

 ( ((A) << (n)) | ( ((A)>>(32-(n)))  & ( (1UL << (n)) - 1 ) ) )

#define ROR32( A, n ) ROL32( (A), 32-(n) )

UInt32 Michael::getUInt32( Byte * p )

// Convert from Byte[] to UInt32 in a portable way

{

UInt32 res = 0;

for( int i=0; i<4; i++ )

{

res |= (*p++) << (8*i);

}

return res;

}

void Michael::putUInt32( Byte * p, UInt32 val )

// Convert from UInt32 to Byte[] in a portable way

{

for( int i=0; i<4; i++ )

{

*p++ = (Byte) (val & 0xff);

val >>= 8;

}

}

void Michael::clear()

{

// Reset the state to the empty message.

L = K0;

R = K1;

nBytesInM = 0;

M = 0;

}

void Michael::setKey( Byte * key )

{

// Set the key

K0 = getUInt32( key );

K1 = getUInt32( key + 4 );

// and reset the message

clear();

}

Michael::Michael( Byte * key )

{

setKey( key );

}

Michael::~Michael()

{

// Wipe the key material

K0 = 0;

K1 = 0;

// And the other fields as well. 

//Note that this sets (L,R) to (K0,K1) which is just fine.

clear();

}

void Michael::appendByte( Byte b )

{

// Append the byte to our word-sized buffer

M |= b << (8*nBytesInM);

nBytesInM++;

// Process the word if it is full.

if( nBytesInM >= 4 )

{

L ^= M;

R ^= ROL32( L, 17 );

L += R;

R ^= ((L & 0xff00ff00) >> 8) | ((L & 0x00ff00ff) << 8);

L += R;

R ^= ROL32( L, 3 );

L += R;

R ^= ROR32( L, 2 );

L += R;

// Clear the buffer

M = 0;

nBytesInM = 0;

}

}

void Michael::append( Byte * src, int nBytes )

{

// This is simple

while( nBytes > 0 )

{

appendByte( *src++ );

nBytes--;

}

}

void Michael::getMIC( Byte * dst )

{

// Append the minimum padding

appendByte( 0x5a );

appendByte( 0 );

appendByte( 0 );

appendByte( 0 );

appendByte( 0 );

// and then zeroes until the length is a multiple of 4

while( nBytesInM != 0 )

{

appendByte( 0 );

}

// The appendByte function has already computed the result.

putUInt32( dst, L );

putUInt32( dst+4, R );

// Reset to the empty message.

clear();

}

void Michael::hexToBin( char *src, Byte * dst ) 

{

// Simple wrapper

hexToBin( src, strlen( src ), dst );

}

void Michael::hexToBin( char *src, int nChars, Byte * dst )

{

assert( (nChars & 1) == 0 );

int nBytes = nChars/2;

// Straightforward conversion

for( int i=0; i<nBytes; i++ ) 

{

dst[i] = (Byte)((hexToBinNibble( src[0] ) << 4) 

| hexToBinNibble( src[1] ));

src += 2;

}

}

Byte Michael::hexToBinNibble( char c ) 

{

if( '0' <= c && c <= '9' ) 

{

return (Byte)(c - '0');

}

// Make it upper case

c &= ~('a'-'A');

assert( 'A' <= c && c <= 'F' );

return (Byte)(c - 'A' + 10);

}

void Michael::runSingleTest( char * cKey, char * cMsg, char * cResult )

{

Byte key[ 8 ];

Byte result[ 8 ];

Byte res[ 8 ];

// Convert key and result to binary form

hexToBin( cKey, key );

hexToBin( cResult, result );

// Compute the MIC value

Michael mic( key );

mic.append( (Byte *)cMsg, strlen( cMsg) );

mic.getMIC( res );

// Check that it matches

assert( memcmp( res, result, 8 ) == 0 );

}

void Michael::runTestPlan()

// As usual, test plans can be quite tedious but this should

// ensure that the implementation runs as expected.

{

Byte key[8] ;

Byte msg[12];

int i;

// First we test the test vectors for the block function 

// The case (0,0)

putUInt32( key, 0 );

putUInt32( key+4, 0 );

putUInt32( msg, 0 );

Michael mic( key );

mic.append( msg, 4 );

assert( mic.L == 0 && mic.R == 0 );

// The case (0,1)

putUInt32( key, 0 );

putUInt32( key+4, 1 );

mic.setKey( key );

mic.append( msg, 4 );

assert( mic.L == 0xc00015a8 && mic.R == 0xc0000b95 );

// The case (1,0)

putUInt32( key, 1 );

putUInt32( key+4, 0 );

mic.setKey( key );

mic.append( msg, 4 );

assert( mic.L == 0x6b519593 && mic.R == 0x572b8b8a );

// The case (01234567, 83659326)

putUInt32( key, 0x01234567 );

putUInt32( key+4, 0x83659326 );

mic.setKey( key );

mic.append( msg, 4 );

assert( mic.L == 0x441492c2 && mic.R == 0x1d8427ed );

// The repeated case

putUInt32( key, 1 );

putUInt32( key+4,0 );

mic.setKey( key );

for( i=0; i<1000; i++ )

{

mic.append( msg, 4 );

}

assert( mic.L == 0x9f04c4ad && mic.R == 0x2ec6c2bf );

// And now for the real test cases

runSingleTest( "0000000000000000", ""         , "82925c1ca1d130b8" );

runSingleTest( "82925c1ca1d130b8", "M"        , "434721ca40639b3f" );

runSingleTest( "434721ca40639b3f", "Mi"       , "e8f9becae97e5d29" );

runSingleTest( "e8f9becae97e5d29", "Mic"      , "90038fc6cf13c1db" );

runSingleTest( "90038fc6cf13c1db", "Mich"     , "d55e100510128986" );

runSingleTest( "d55e100510128986", "Michael"  , "0a942b124ecaa546" );

}

1.8 Appendix D: RSN information element reference implementation

#include "stdafx.h"

#include <stdio.h>

#define uchar


unsigned char

#define ushort


unsigned short

#define NONE


-1

#define WEP



0

#define TKIP


1

#define AES



2

#define IEEE802_1X

0

#define ELEMENTID


37

struct _IE {


uchar Elementid;


uchar length;


ushort version;


uchar multicast[4];


ushort ucount;


struct {



uchar oui[4];


} unicast[1]; // the rest is variable so need to 




  // overlay ieauth structure 

}; 

struct _ieauth {


ushort acount;


struct {



uchar oui[4];


} auth[1];

};

int multicast;

int unicast[4];

ushort ucount;

int auth[4];

ushort acount;

void test(struct _IE *IE, int length)

{


uchar oui00[4] = { 0x00, 0x00, 0x00, 0x00 };


uchar oui01[4] = { 0x00, 0x00, 0x00, 0x01 };


uchar oui02[4] = { 0x00, 0x00, 0x00, 0x02 };


uchar oui03[4] = { 0x00, 0x00, 0x00, 0x03 };


int i = 0, j, m;


struct _ieauth *ieauth;


// Default values


multicast = AES;


unicast[0] = AES;


ucount = 1;


auth[0] = IEEE802_1X;


acount = 1;


// information element header makes sense


if ( (IE->length+2 == length) && (IE->length >= 2) 

  && (IE->Elementid == ELEMENTID)


  && (IE->version == 1)) {


    // update each variable if IE is long enough to contain

    // the variable



if (IE->length >= 6) {




if (!memcmp(IE->multicast, oui01, 4))





multicast = WEP;




else if (!memcmp(IE->multicast, oui02, 4))





multicast = TKIP;




else if (!memcmp(IE->multicast, oui03, 4))





multicast = AES;




else





// any vendor checks here





multicast = -1;



}



if (IE->length >= 8) {




j = 0;




for(i = 0; (i < IE->ucount) 

&& (j < sizeof(unicast)/sizeof(int)); i++) {





if(IE->length >= 8+i*4+4) {






if (!memcmp(IE->unicast[i].oui, 

  oui00, 4))







unicast[j++] = NONE;






else if (!memcmp(IE->unicast[i].oui, 

  oui02, 4))







unicast[j++] = TKIP;






else if (!memcmp(IE->unicast[i].oui,






  oui03, 4))







unicast[j++] = AES;






else







// any vendor checks here







;





}





else






break;




}




ucount = j;






}



m = i;



if (IE->length >= 10+m*4) {




// overlay ieauth structure into correct place




ieauth = (struct _ieauth *)IE->unicast[m].oui;




j = 0;




for(i = 0; (i < ieauth->acount) 

  && (j < sizeof(auth)/sizeof(int)); i++) {





if(IE->length >= 10+4+(m+i)*4) {






if (!memcmp(ieauth->auth[i].oui, 

  oui00, 4))







auth[j++] = IEEE802_1X;






else







// any vendor checks here







;





}





else






break;




}




if(j > 0)





acount = j;



}


}

}

char *cip[] = { "", " WEP", " TKIP", " AES" };

char *cip1[] = { " NONE"," WEP", " TKIP", " AES" };

char *aip[] = { "", " 802.1X" };

// Various IEs to try above with

uchar test1[] = {
0x25, 0x02, 0x01, 0x00 };

uchar test2[] = {
0x25, 0x06, 0x01, 0x00, 


0x00, 0x00, 0x00, 0x01};

uchar test3[] = {
0x25, 0x0c, 0x01, 0x00, 


0x00, 0x00, 0x00, 0x01,


0x01, 0x00, 0x00, 0x00, 0x00, 0x00};

uchar test4[] = {
0x25, 0x0c, 0x01, 0x00, 


0x00, 0x00, 0x00, 0x01,


0x01, 0x00, 0x00, 0x00, 0x00, 0x02};

uchar test5[] = {
0x25, 0x12, 0x01, 0x00,


0x00, 0x00, 0x00, 0x01, 


0x01, 0x00, 0x00, 0x00, 0x00, 0x02, 


0x01, 0x00, 0x00, 0x00, 0x00, 0x00};

uchar test6[] = {
0x25, 0x16, 0x01, 0x00,


0x00, 0x00, 0x00, 0x02,


0x02, 0x00, 0x00, 0x00, 0x00, 0x02, 0x00, 0x00, 0x00, 0x03, 


0x01, 0x00, 0x00, 0x00, 0x00, 0x00};

// too small - ignored

uchar test7[] = {
0x25, 0x01, 0x01, 0x00 };

// unicast count too high, 2nd unicast ignored and default auth

uchar test8[] = {
0x25, 0x12, 0x01, 0x00,


0x00, 0x00, 0x00, 0x01, 


0x02, 0x00, 0x00, 0x00, 0x00, 0x02, 


0x01, 0x00, 0x00, 0x00, 0x00, 0x00};

// unicast count past end of IE

uchar test9[] = {
0x25, 0x12, 0x01, 0x00,


0x00, 0x00, 0x00, 0x01, 


0x10, 0x00, 0x00, 0x00, 0x00, 0x02, 


0x01, 0x00, 0x00, 0x00, 0x00, 0x00};

uchar *tests[] = { test1, test2, test3, test4, test5, test6, test7, test8, test9, NULL };

int testsize[] = { sizeof(test1), sizeof(test2), sizeof(test3),

sizeof(test4), sizeof(test5), sizeof(test6), sizeof(test7),

sizeof(test8), sizeof(test9), 0 };

int _tmain(int argc, _TCHAR* argv[])

{


for(int i = 0; tests[i] != NULL; i++) {



test(( struct _IE *)tests[i], testsize[i]);



printf("IE %d Multicast%s Unicast%s%s%s%s Auth%s%s%s%s\n",




i, cip1[(multicast+1)],




cip1[(ucount>0?unicast[0]:-1)+1],




cip[(ucount>1?unicast[1]:-1)+1], 

cip[(ucount>2?unicast[2]:-1)+1], cip[(ucount>3?unicast[3]:-1)+1],




aip[(acount>0?auth[0]:-1)+1], 

aip[(acount>1?auth[1]:-1)+1], 

aip[(acount>2?auth[2]:-1)+1], 

aip[(acount>3?auth[3]:-1)+1]);


}


return 0;

}

1.9 Appendix E: HMAC_MD5, HMAC_SHA1 and PRF reference

#include "stdafx.h"

#define ULONG unsigned long

#include <md5.h>

#include <sha.h>

/*

** Function: hmac_md5

** From rfc2104

** Uses a MD5 library

*/

void

hmac_md5(unsigned char *text, int text_len, unsigned char *key, 



 int key_len, void * digest)

{

        MD5_CTX context;

        unsigned char k_ipad[65];    /* inner padding -

                                      * key XORd with ipad

                                      */

        unsigned char k_opad[65];    /* outer padding -

                                      * key XORd with opad

                                      */

        int i;

        /* if key is longer than 64 bytes reset it to key=MD5(key) */

        if (key_len > 64) {

                MD5_CTX      tctx;

                MD5Init(&tctx);

                MD5Update(&tctx, key, key_len);

                MD5Final(&tctx);

                key = tctx.digest;

                key_len = 16;

        }

        /*

         * the HMAC_MD5 transform looks like:

         *

         * MD5(K XOR opad, MD5(K XOR ipad, text))

         *

         * where K is an n byte key

         * ipad is the byte 0x36 repeated 64 times

         * opad is the byte 0x5c repeated 64 times

         * and text is the data being protected

         */

        /* start out by storing key in pads */

        memset( k_ipad, 0, sizeof k_ipad);

        memset( k_opad, 0, sizeof k_opad);

        memcpy( k_ipad, key, key_len);

        memcpy( k_opad, key, key_len);

        /* XOR key with ipad and opad values */

        for (i=0; i<64; i++) {

                k_ipad[i] ^= 0x36;

                k_opad[i] ^= 0x5c;

        }

        /*

         * perform inner MD5

         */

        MD5Init(&context);                   /* init context for 1st

                                              * pass */

        MD5Update(&context, k_ipad, 64);      /* start with inner pad

    */

        MD5Update(&context, text, text_len); /* then text of datagram

   */

        MD5Final(&context);




/* finish up 1st
 pass */



memcpy(digest, context.digest, 16);

        /*

         * perform outer MD5

         */

        MD5Init(&context);                   /* init context for 2nd

                                              * pass */

        MD5Update(&context, (const unsigned char*)k_opad, 64);     

/* start with outer pad */

        MD5Update(&context, (const unsigned char*)digest, 16);     

/* then results of 1st

                                              * hash */

        MD5Final(&context);          /* finish up 2nd pass */



memcpy(digest, context.digest, 16);

}

// Conversion of hmac_md5 to hmac_sha1

// using a sha1 library

//

void

hmac_sha1(unsigned char *text, int text_len, unsigned char *key, 



 int key_len, unsigned char *digest)

{

        A_SHA_CTX context;

        unsigned char k_ipad[65];    /* inner padding -

                                      * key XORd with ipad

                                      */

        unsigned char k_opad[65];    /* outer padding -

                                      * key XORd with opad

                                      */

        int i;

        /* if key is longer than 64 bytes reset it to key=SHA1(key) */

        if (key_len > 64) {

                A_SHA_CTX      tctx;

                A_SHAInit(&tctx);

                A_SHAUpdate(&tctx, key, key_len);

                A_SHAFinal(&tctx, key);

                key_len = 20;

        }

        /*

         * the HMAC_SHA1 transform looks like:

         *

         * SHA1(K XOR opad, SHA1(K XOR ipad, text))

         *

         * where K is an n byte key

         * ipad is the byte 0x36 repeated 64 times

         * opad is the byte 0x5c repeated 64 times

         * and text is the data being protected

         */

        /* start out by storing key in pads */

        memset( k_ipad, 0, sizeof k_ipad);

        memset( k_opad, 0, sizeof k_opad);

        memcpy( k_ipad, key, key_len);

        memcpy( k_opad, key, key_len);

        /* XOR key with ipad and opad values */

        for (i=0; i<64; i++) {

                k_ipad[i] ^= 0x36;

                k_opad[i] ^= 0x5c;

        }

        /*

         * perform inner SHA1

         */

        A_SHAInit(&context);                   /* init context for 1st

                                              * pass */

        A_SHAUpdate(&context, k_ipad, 64);     /* start with inner pad

     */

        A_SHAUpdate(&context, text, text_len); /* then text of datagram

     */

        A_SHAFinal(&context, digest);

/* finish up 1st pass

     */


  /*

         * perform outer SHA1

         */

        A_SHAInit(&context);                   /* init context for 2nd

                                              * pass */

        A_SHAUpdate(&context, k_opad, 64);     /* start with outer pad

    */

        A_SHAUpdate(&context, digest, 20);     /* then results of 1st

                                              * hash */

        A_SHAFinal(&context, digest);          /* finish up 2nd pass */

}

// PRF

// Length of output is in octets rather than bits

// since length is always a multiple of 8

// output array is organized so first N octets starting from 0

// contains PRF output

//

// supported inputs are 16, 32, 48, 64

// output array must be 80 octets in size to allow for sha1 overflow

//

void PRF(unsigned char *key, int key_len, unsigned char *prefix, 

    int prefix_len, unsigned char *data, int data_len, 

    unsigned char *output, int len)

{


int i;


unsigned char input[1024]; // concatenated input


int currentindex = 0;


int total_len;


memcpy(input, prefix, prefix_len);


input[prefix_len] = 0;

// single octet 0


memcpy(&input[prefix_len+1], data, data_len);


total_len = prefix_len + 1 + data_len;


input[total_len] = 0;

// single octet count, starts at 0


total_len++;


for(i = 0; i < (len+19)/20; i++) {



hmac_sha1(input, total_len, key, key_len,

 &output[currentindex]);



currentindex += 20;
// next concatenation location



input[total_len-1]++;
// increment octet count


}

}

// test vectors from rfc2202

unsigned char key0[20] = { 

0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b };

unsigned char digest0[16] = {

0x92, 0x94, 0x72, 0x7a, 0x36, 0x38, 0xbb, 0x1c, 0x13, 0xf4, 0x8e, 0xf8, 0x15, 0x8b, 0xfc, 0x9d };

unsigned char digest01[20] = {

0xb6, 0x17, 0x31, 0x86, 0x55, 0x05, 0x72, 0x64, 0xe2, 0x8b, 0xc0, 0xb6, 0xfb, 0x37, 0x8c, 0x8e, 0xf1, 0x46, 0xbe, 0x00 };

unsigned char prf01[] = {


0xbc, 0xd4, 0xc6, 0x50, 0xb3, 0x0b, 0x96, 0x84, 0x95, 0x18, 0x29, 0xe0, 0xd7, 0x5f, 0x9d, 0x54, 0xb8, 0x62, 0x17, 0x5e, 0xd9, 0xf0, 0x06, 0x06, 0xe1, 0x7d, 


0x8d, 0xa3, 0x54, 0x02, 0xff, 0xee, 0x75, 0xdf, 0x78, 0xc3, 0xd3, 0x1e, 0x0f, 0x88, 0x9f, 0x01, 0x21, 0x20, 0xc0, 0x86, 0x2b, 0xeb, 0x67, 0x75, 0x3e, 0x74,


0x39, 0xae, 0x24, 0x2e, 0xdb, 0x83, 0x73, 0x69, 0x83, 0x56, 0xcf, 0x5a

};

unsigned char key1[] =         "Jefe";

unsigned char data1[] =        "what do ya want for nothing?";

unsigned char digest1[] =      { 0x75, 0x0c, 0x78, 0x3e, 0x6a, 0xb0, 0xb5, 0x03, 0xea, 0xa8, 0x6e, 0x31, 0x0a, 0x5d, 0xb7, 0x38 };

unsigned char digest11[] = { 0xef, 0xfc, 0xdf, 0x6a, 0xe5, 0xeb, 0x2f, 0xa2, 0xd2, 0x74, 0x16, 0xd5, 0xf1, 0x84, 0xdf, 0x9c, 0x25, 0x9a, 0x7c, 0x79 };

unsigned char prf11[] = { 


0x51, 0xf4, 0xde, 0x5b, 0x33, 0xf2, 0x49, 0xad, 0xf8, 0x1a, 0xeb, 0x71, 0x3a, 0x3c, 0x20, 0xf4, 0xfe, 0x63, 0x14, 0x46, 0xfa, 0xbd, 0xfa, 0x58,


0x24, 0x47, 0x59, 0xae, 0x58, 0xef, 0x90, 0x09, 0xa9, 0x9a, 0xbf, 0x4e, 0xac, 0x2c,


0xa5, 0xfa, 0x87, 0xe6, 0x92, 0xc4, 0x40, 0xeb, 0x40, 0x02, 0x3e, 0x7b, 0xab, 0xb2, 0x06, 0xd6, 0x1d, 0xe7, 0xb9, 0x2f, 0x41, 0x52, 0x90, 0x92, 0xb8, 0xfc

};

unsigned char key2[] = { 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA };

unsigned char data2[] = { 


0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD,


0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD,


0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD,


0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD,


0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD

};

unsigned char digest2[] = { 

0x56, 0xbe, 0x34, 0x52, 0x1d, 0x14, 0x4c, 0x88, 0xdb, 0xb8, 0xc7, 0x33, 0xf0, 0xe8, 0xb3, 0xf6 };

unsigned char digest21[] = { 

0x12, 0x5d, 0x73, 0x42, 0xb9, 0xac, 0x11, 0xcd, 0x91, 0xa3, 0x9a, 0xf4, 0x8a, 0xa1, 0x7b, 0x4f, 0x63, 0xf1, 0x75, 0xd3 };

unsigned char prf21[] = { 

0xe1, 0xac, 0x54, 0x6e, 0xc4, 0xcb, 0x63, 0x6f, 0x99, 0x76, 0x48, 0x7b, 0xe5, 0xc8, 0x6b, 0xe1, 0x7a, 0x02, 0x52, 0xca, 0x5d, 0x8d, 0x8d, 0xf1, 0x2c, 0xfb,

0x04, 0x73, 0x52, 0x52, 0x49, 0xce, 0x9d, 0xd8, 0xd1, 0x77, 0xea, 0xd7, 0x10, 0xbc, 0x9b, 0x59, 0x05, 0x47, 0x23, 0x91, 0x07, 0xae, 0xf7, 0xb4, 0xab, 0xd4,

0x3d, 0x87, 0xf0, 0xa6, 0x8f, 0x1c, 0xbd, 0x9e, 0x2b, 0x6f, 0x76, 0x07

};

struct {


unsigned char *key;


int key_len;


unsigned char *data;


int data_len;


unsigned char* digest;


unsigned char* digest1;


unsigned char* prf;

} tests[] = {


{ key0,


16,
// note for SHA1 this is 20 - code sets it to 20


(unsigned char *)"Hi There",


8,


digest0,


digest01,


prf01


},


{ key1,


4,


data1,


28,


digest1,


digest11,


prf11


},


{ key2,


16,

// sha1 20


data2,


50,


digest2,


digest21,


prf21


}

};

int _tmain(int argc, _TCHAR* argv[])

{


unsigned char digest[20];


unsigned char output[64+20];


int c;


hmac_md5(tests[0].data, tests[0].data_len, tests[0].key, tests[0].key_len, digest);


c = memcmp(digest, tests[0].digest, 16);


printf("HMAC_MD5 %02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x %s\n",



digest[0], digest[1], digest[2], digest[3], 



digest[4], digest[5], digest[6], digest[7], 



digest[8], digest[9], digest[10], digest[11], 



digest[12], digest[13], digest[14], digest[15], !c?"Pass":"Fail");


hmac_sha1(tests[0].data, tests[0].data_len, tests[0].key, tests[0].key_len+4, digest);


c = memcmp(digest, tests[0].digest1, 20);


printf("HMAC_SHA1 %02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x %s\n",



digest[0], digest[1], digest[2], digest[3], 



digest[4], digest[5], digest[6], digest[7], 



digest[8], digest[9], digest[10], digest[11], 



digest[12], digest[13], digest[14], digest[15],



digest[16], digest[17], digest[18], digest[19], !c?"Pass":"Fail");


memset(output, 0, 64);


PRF(tests[0].key, tests[0].key_len+4, (unsigned char *)"prefix", 6, tests[0].data, tests[0].data_len, output, 16);


c = memcmp(output, tests[0].prf, 16);


printf("PRF %02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x %s\n",



output[0], output[1], output[2], output[3], 



output[4], output[5], output[6], output[7], 



output[8], output[9], output[10], output[11], 



output[12], output[13], output[14], output[15],



!c?"Pass":"Fail");


memset(output, 0, 64);


PRF(tests[0].key, tests[0].key_len+4, (unsigned char *)"prefix", 6, tests[0].data, tests[0].data_len, output, 64);


c = memcmp(output, tests[0].prf, 64);


printf("PRF %02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x\

%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x\

%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x\

  %s\n",



output[0], output[1], output[2], output[3], 



output[4], output[5], output[6], output[7], 



output[8], output[9], output[10], output[11], 



output[12], output[13], output[14], output[15],



output[16], output[17], output[18], output[19], 



output[20], output[21], output[22], output[23],



output[24], output[25], output[26], output[27],



output[28], output[29], output[30], output[31],



output[32], output[33], output[34], output[35],



output[36], output[37], output[38], output[39],



output[40], output[41], output[42], output[43],



output[44], output[45], output[46], output[47],



output[48], output[49], output[50], output[51],



output[52], output[53], output[54], output[55],



output[56], output[57], output[58], output[59],



output[60], output[61], output[62], output[63],



!c?"Pass":"Fail");


hmac_md5(tests[1].data, tests[1].data_len, tests[1].key, tests[1].key_len, digest);


c = memcmp(digest, tests[1].digest, 16);


printf("HMAC_MD5 %02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x %s\n",



digest[0], digest[1], digest[2], digest[3], 



digest[4], digest[5], digest[6], digest[7], 



digest[8], digest[9], digest[10], digest[11], 



digest[12], digest[13], digest[14], digest[15], !c?"Pass":"Fail");


hmac_sha1(tests[1].data, tests[1].data_len, tests[1].key, tests[1].key_len, digest);


c = memcmp(digest, tests[1].digest1, 20);


printf("HMAC_SHA1 %02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x %s\n",



digest[0], digest[1], digest[2], digest[3], 



digest[4], digest[5], digest[6], digest[7], 



digest[8], digest[9], digest[10], digest[11], 



digest[12], digest[13], digest[14], digest[15],



digest[16], digest[17], digest[18], digest[19], !c?"Pass":"Fail");


memset(output, 0, 64);


PRF(tests[1].key, tests[1].key_len, (unsigned char *)"prefix", 6, tests[1].data, tests[1].data_len, output, 16);


c = memcmp(output, tests[1].prf, 16);


printf("PRF %02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x %s\n",



output[0], output[1], output[2], output[3], 



output[4], output[5], output[6], output[7], 



output[8], output[9], output[10], output[11], 



output[12], output[13], output[14], output[15],



!c?"Pass":"Fail");


memset(output, 0, 64);


PRF(tests[1].key, tests[1].key_len, (unsigned char *)"prefix", 6, tests[1].data, tests[1].data_len, output, 64);


c = memcmp(output, tests[1].prf, 64);


printf("PRF %02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x\

%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x\

%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x\

  %s\n",



output[0], output[1], output[2], output[3], 



output[4], output[5], output[6], output[7], 



output[8], output[9], output[10], output[11], 



output[12], output[13], output[14], output[15],



output[16], output[17], output[18], output[19], 



output[20], output[21], output[22], output[23],



output[24], output[25], output[26], output[27],



output[28], output[29], output[30], output[31],



output[32], output[33], output[34], output[35],



output[36], output[37], output[38], output[39],



output[40], output[41], output[42], output[43],



output[44], output[45], output[46], output[47],



output[48], output[49], output[50], output[51],



output[52], output[53], output[54], output[55],



output[56], output[57], output[58], output[59],



output[60], output[61], output[62], output[63],



!c?"Pass":"Fail");


hmac_md5(tests[2].data, tests[2].data_len, tests[2].key, tests[2].key_len, digest);


c = memcmp(digest, tests[2].digest, 16);


printf("HMAC_MD5 %02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x %s\n",



digest[0], digest[1], digest[2], digest[3], 



digest[4], digest[5], digest[6], digest[7], 



digest[8], digest[9], digest[10], digest[11], 



digest[12], digest[13], digest[14], digest[15], !c?"Pass":"Fail");


hmac_sha1(tests[2].data, tests[2].data_len, tests[2].key, tests[2].key_len+4, digest);


c = memcmp(digest, tests[2].digest1, 20);


printf("HMAC_SHA1 %02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x %s\n",



digest[0], digest[1], digest[2], digest[3], 



digest[4], digest[5], digest[6], digest[7], 



digest[8], digest[9], digest[10], digest[11], 



digest[12], digest[13], digest[14], digest[15],



digest[16], digest[17], digest[18], digest[19], !c?"Pass":"Fail");


memset(output, 0, 64);


PRF(tests[2].key, tests[2].key_len+4, (unsigned char *)"prefix", 6, tests[2].data, tests[2].data_len, output, 16);


c = memcmp(output, tests[2].prf, 16);


printf("PRF %02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x %s\n",



output[0], output[1], output[2], output[3], 



output[4], output[5], output[6], output[7], 



output[8], output[9], output[10], output[11], 



output[12], output[13], output[14], output[15],



!c?"Pass":"Fail");


memset(output, 0, 64);


PRF(tests[2].key, tests[2].key_len+4, (unsigned char *)"prefix", 6, tests[2].data, tests[2].data_len, output, 64);


c = memcmp(output, tests[2].prf, 64);


printf("PRF %02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x\

%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x\

%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x\

  %s\n",



output[0], output[1], output[2], output[3], 



output[4], output[5], output[6], output[7], 



output[8], output[9], output[10], output[11], 



output[12], output[13], output[14], output[15],



output[16], output[17], output[18], output[19], 



output[20], output[21], output[22], output[23],



output[24], output[25], output[26], output[27],



output[28], output[29], output[30], output[31],



output[32], output[33], output[34], output[35],



output[36], output[37], output[38], output[39],



output[40], output[41], output[42], output[43],



output[44], output[45], output[46], output[47],



output[48], output[49], output[50], output[51],



output[52], output[53], output[54], output[55],



output[56], output[57], output[58], output[59],



output[60], output[61], output[62], output[63],



!c?"Pass":"Fail");


return 0;

}

1.9.1 Test Vectors for HMAC-SHA1 and PRF

The test vectors for HMAC_SHA1 are from rfc2202 and have been checked against the reference code above. The PRF test vectors have been checked against two other implementations.

test_case =     1

key =           0x0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b

key_len =       20

data =          "Hi There"

data_len =      8

digest =        0xb617318655057264e28bc0b6fb378c8ef146be00

PRF = 
    0xbcd4c650b30b9684951829e0d75f9d54b862175ed9f00606e

    17d8da35402ffee75df78c3d31e0f889f012120c0862beb6775

    3e7439ae242edb8373698356cf5a

test_case =     2

key =           "Jefe"

key_len =       4

data =          "what do ya want for nothing?"

data_len =      28

digest =        0xeffcdf6ae5eb2fa2d27416d5f184df9c259a7c79

PRF = 
    0x51f4de5b33f249adf81aeb713a3c20f4fe631446fabdfa58

    244759ae58ef9009a99abf4eac2ca5fa87e692c440eb40023e

    7babb206d61de7b92f41529092b8fc

test_case =     3

key =           0xaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

key_len =       20

data =          0xdd repeated 50 times

data_len =      50

digest =        0x125d7342b9ac11cd91a39af48aa17b4f63f175d3

PRF = 
    0xe1ac546ec4cb636f9976487be5c86be17a0252ca5d8d8df12c

        fb0473525249ce9dd8d177ead710bc9b590547239107aef7b4ab

        d43d87f0a68f1cbd9e2b6f7607

1.10 Appendix F: RSN Requirements

	Function
	Section 
	Required/Recommended/Optional

	48 bit TKIP (including phase 1 and 2)
	1.5
	Required

	Fragmentation of TKIP data packets
	1.5.1
	Optional

	De-fragmentation of TKIP data packets
	1.5.1
	Required

	Use of integrity check and IV for replay protection
	1.5.4.2
	Required

	Michael
	1.5.5
	Required

	Michael counter measures
	1.5.5.3
	Required

	RSN information element in beacon, probe response, association/re-association request
	1.3
	Required

	Privacy bit set in capability information element Beacon/Probe response/association/re-association request
	1.3
	Required

	4-way handshake
	1.4.6.7.3
	Required

	Validation of RSN IE in beacon/probe response/association/re-association request with RSN IE in 4-way handshake
	1.4.6.7.7
	Required

	Group key update
	1.4.6.7.4
	Required

	Pairwise Request (with or without error)
	1.4.6.7.5
	Required

	Group Request (with or without error)
	1.4.6.7.5
	Required

	Encryption of 802.1X messages with Pairwise key
	1.4.6.9
	Required

	802.1X messages not encrypted with Group Keys
	1.4.6.9
	Required

	RSN authentication mode
	1.3
	Required

	RSN-PSK authentication mode
	1.3
	Required

	RSN-None authentication mode
	1.3, 1.4.4.1
	Required for NIC

	Open 802.11 MAC authentication for all RSN authentication modes
	1.1
	Required

	RSN-PSK 104 bit key
	1.1
	Required

	RSN-PSK 256 bit key
	1.1
	Recommended

	Non-RSN support
	1.1
	Recommended

	Non-RSN and RSN mixed mode
	1.1
	Recommended

	Group key cipher
	1.3
	Required

	Pairwise key cipher
	1.3
	Required for NIC

Recommended for AP

	No sending of non-802.1X data packets until Group Key installed
	1.4.6.9.1
	Required

	Queuing of EAPOL-Key messages when in power save
	1.4.3
	Required

	Saving of IBSS IV
	1.4.4.1
	Required

	Support for RADIUS
	1.4.4.2, 1.4.6.2
	Recommended for AP

	Group Key Update on a time interval
	1.4.6.6
	Recommended

	Group key update on a disassociation of a authenticated station
	1.4.6.6
	Optional

	Use of PRF for Pairwise key generation
	1.4.6.5
	Required

	Use of PRF for Group Key generation
	1.4.6.6
	Required

	Use of random number on AP for master key for Group Key generation
	1.4.6.3
	Recommended

	Initialization of Key Counter
	1.4.6.4
	Required

	Initialization of EAPOL-IV from Key Counter
	1.4.6.4
	Required
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