March 2002

doc.: IEEE 802.11-02/282r0

IEEE P802.11
Wireless LANs

Alternate Temporal Key Hash

Date:
April 2, 2002

Authors:

Russ Housley

RSA Laboratories

918 Spring Knoll Drive

Herndon, Virginia 20170

Phone: +1 703-435-1775

E-mail: RHousley@rsasecurity.com

Doug Whiting

Hifn

5973 Avenida Encinas, Suite 110

Carlsbad, California 92008

Phone: +1 760-827-4502

E-mail: DWhiting@hifn.com

and

Niels Ferguson

MacFergus BV

Bart de Ligtstraat 64

1097 JE Amsterdam, Netherlands

Phone: +31 20 643 0977

E-mail: Niels@ferguson.net

Abstract

As part of an overall solution to the many security problems with WEP, this paper describes a proposal for processing of a temporal key to derive a per-packet key. This proposal offers a significantly longer key life span than the previous proposal. The process is divided into phases. To improve performance, implementations are likely to cache the output of the first phase.

1 Motivation

IEEE Std 802.11-1999 is a wireless LAN standard. The standard includes a security protocol called WEP that is intended to provide security equivalent a wired LAN. Unfortunately, WEP includes many flaws. This proposal is intended to address two of the flaws:

· The reuse of IV values, which leads to the reuse of RC4 key streams, which leads to a data recovery attack.

· A correlation between the combination of the IV and RC4 key with the first RC4 key stream bytes, which leads to a key recovery attack.

In WEP, it is necessary to generate a different RC4 key for each packet from a shared key. WEP concatenates the IV and the key. The key-scheduling algorithm of RC4 is too lightweight for this purpose, particularly when the initial few bytes of plaintext are easily predictable (as is the case when SNAP/SAP is used to carry IP datagrams). Ron Rivest, the author of RC4, suggested two solutions to the weaknesses in the RC4 key-scheduling algorithm. He recommends discarding the first 256 output bytes of the pseudo-random generator before beginning encryption. Alternatively, he recommends strengthening the key-scheduling algorithm by preprocessing the key and the IV by passing them through a hash function such as MD5. Neither of these solutions is acceptable in the currently fielded equipment. Discarding the first 256 output bytes is expensive, and it is impossible for some implementations. One-way hash functions, such as SHA-1 and MD5, are too expensive.

Document 01/550r3 proposed a simple hash function. The IV space used in that proposal was 16 bits. Thus, the maximum life span for a temporal key was 64K MPDUs. The authors of document 01/550r3 selected a short IV because they believed that the currently fielded hardware could not handle any frame format changes. However, at the meeting March 2002 Plenary Meeting in St Louis, we learned that the existing fields in the frame format could not be altered, but additional fields could be added. This proposal builds on the earlier one, but it uses a 48-bit IV. One logical IV is used, but it carried in two fields: the existing WEP field and a new field.

The proposed hash function has two phases. To improve performance, implementations are likely to cache the output of the first phase.

2 Introduction

Before discussing the details of the temporal key hash function, it is useful to define the context in which this mechanism must work. The following requirements must be met:

· The encryptor and decryptor must share a 104-bit secret key. This key is called the temporal key (TK). The TK may be common among many parties to protect multicast and broadcast traffic. The management of the TK is not discussed in this document. However, to achieve security, it is critical that TK be a temporal key (i.e., an ephemeral key) that is generated in a manner which ensures that TK values do not repeat, even across reboots, except of course with the very low probability expected for a random 104-bit value. Typically, this requirement is met by including random entropy from exchanged nonces.

· The encryptor and decryptor must use the RC4 stream cipher.

· Each party must ensure that no initialisation vector (IV) value is used more than once with each TK. We expect the IV to be implemented as a counter, starting with zero. Implementations must ensure that the TK is updated before the full 48-bit IV space is exhausted.

The transmitter address (TA) is mixed into the TK to ensure that the various parties encrypting with the TK use different key streams. This property is important in all networks. Consider the simple case where a station communicates only with an access point (AP). Data sent by the station to the access point and data sent by the access point to the station will be encrypted with the same TK. The station and access point the will both begin their IV counters at zero. Thus, if the TA were not mixed with the TK, the same series of RC4 key streams used by both the station and the access point, enabling a data recovery attack.

By mixing the TA and the TK, a different RC4 key stream is used by each party. Traffic sent by a station to the access point will use a different RC4 key stream than traffic sent by the access point to the station. Traffic encrypted by one station using a default temporal key will use a different RC4 key stream than traffic encrypted by another station using the same default temporal key.

3 Alternate Temporal Key Hash Function

Other portions of the overall WEP security upgrade are defining the mechanisms to manage temporal keys. This paper specifies the two-phase processing of the temporal key (TK) to determine the per-packet encryption key. The first phase mixes the TK with the transmitter address (TA) and the most significant 32 bits of the IV (called IV32). The output of this phase will likely be cached; it can be reused to process subsequent packets associated with the same TK and the same TA. The second phase mixes the output of the first phase with the TK and least significant 16 bits of the IV (called IV16). The 48-bit IV value must be different for each packet encrypted under the TK. If desired, the per-packet key (PPK) can be computed well before it is used. The two-phase process may be summarized as:

P1K = Phase1 (TK, TA, IV32)

RC4KEY = Phase2 (P1K, TK, IV16)

An S-box is used in both Phase 1 and Phase 2. The S-box substitutes one 16-bit value with another 16-bit value. This function is a non-linear substitution, and it is implemented as a table look up. Section 6 specifies the S-Box.

3.1 Phase 1

The inputs to the first phase of the temporal key hash function are the temporal key (TK), the transmitter address (TA), and the IV. The TK is 104 bits. Only the most significant 32 bits of the IV (IV32) and the first 80 bits of TK are used in Phase 1. The output of Phase 1, called P1K, is 80 bits and is represented by an array of 16-bit values, P1K[0..4]. The IV32 value is represented as a 32-bit unsigned integer. The TK and TA inputs are represented as arrays of 8-bit values: TA[0..5], TK[0..12]. The first three octets of TA (TA[0..2]) contain the OUI.

The exclusive-or operation ((), the addition operation (+), and the bit shift operations (>> and <<) are used in conjunction with an S-box. A loop counter, called i, is also employed.

Two functions are used. The first function, Lo16, references the least significant 16 bits of a 32-bit input value. The second function, Hi16, references the most significant 16 bits of a 32-bit value.

The first phase is comprised of two steps. The first step mixes 80 bits from the TK with the TA and IV32 to initialise P1K. The second step is an iterated 80-bit bijective mixing, employing an S-box.

The 80-bit P1K array is computed in two steps. The PHASE1_LOOP_COUNT in the second step is set to 8. The P1K array values are computed as follows:

PHASE1_STEP1:

P1K[0] = TK[0] (TA[0] (((TK[1] (TA[1]) << 8)

P1K[1] = TK[2] (TA[2] (((TK[3] (TA[3]) << 8)

P1K[2] = TK[4] (TA[4] (((TK[5] (TA[5]) << 8)

P1K[3] = TK[6] (Hi16(IV32) ((TK[7] << 8)

P1K[4] = TK[8] (Lo16(IV32) ((TK[9] << 8)

PHASE1_STEP2:

FOR i = 1 to PHASE1_LOOP_COUNT

BEGIN

P1K[0] = P1K[0] + S[P1K[4]]

P1K[1] = P1K[1] (S[P1K[0]]

P1K[2] = P1K[2] + S[P1K[1]]

P1K[3] = P1K[3] (S[P1K[2]]

P1K[4] = P1K[4] + S[P1K[3]]

END

3.2 Phase 2

The inputs to the second phase of the temporal key hash function are the output of the first phase (P1K), together with IV16 and the TK . The P1K is 80 bits. Only the last 24 bits of TK are used in Phase 2. The output is a 128-bit per-packet key, called RC4KEY. RC4KEY has an internal structure to conform to the WEP specification. That is, the first 24 bits will be transmitted in plaintext. As such, these 24 bits are used to convey IV16 from the encryptor to the decryptor. The rest of the IV (IV32) shall be conveyed in another field, in big-endian order. The TK and P1K values are represented as in Phase 1. The RC4KEY is represented as an array of 8-bit values: RC4KEY[0..15].

The exclusive-or operation ((), the addition operation (+), the and operation (&), the or operation (|), and the bit shift operations (>> and <<) are used.

Two functions are used. The first function, Lo8, references the least significant 8 bits of a 16-bit input value. The second function, Hi8, references the most significant 8 bits of a 16-bit value.

One variable is employed: PPK. The PPK is 128 bits, and it is represented as an array of 16-bit values: PPK[0..7]. A loop counter, called i, is also employed. As detailed below, the mapping from the 16-bit PPK values to the 8-bit RC4KEY values is explicitly little-endian to match the endian architecture of the most common processors used for this application.

The second phase is comprised of three steps. The first step brings in IV16 and more of the TK. The second step is a 96-bit bijective mixing, employing an S-box. Finally, the third step brings in the last of the TK bits and assigns the 24-bit WEP IV value.

The RC4KEY array values are computed as follows:

PHASE2_STEP1:

PPK[0] = P1K[0]

PPK[1] = P1K[1]

PPK[2] = P1K[2]

PPK[3] = P1K[3]

PPK[4] = P1K[4]

PPK[5] = TK[10] ((TK[11] << 8) (IV16

PHASE2_STEP2:

PPK[0] = PPK[0] + S[PPK[5]]

PPK[1] = PPK[1] (S[PPK[0]]

PPK[2] = PPK[2] + S[PPK[1]]

PPK[3] = PPK[3] (S[PPK[2]]

PPK[4] = PPK[4] + S[PPK[3]]

PPK[5] = PPK[5] (S[PPK[4]]

PPK[0] = PPK[0] + S[PPK[5]]

PPK[1] = PPK[1] (PPK[0]

PPK[2] = PPK[2] + PPK[1]

PPK[3] = PPK[3] (PPK[2]

PPK[4] = PPK[4] + PPK[3]

PPK[5] = PPK[5] (PPK[4]

PHASE2_STEP3:

FOR i = 0 to 5

BEGIN

RC4KEY[4+(2*i)] = Lo8(PPK[i])

RC4KEY[5+(2*i)] = Hi8(PPK[i])

END

RC4KEY[0] = Hi8(IV16)

RC4KEY[1] = (Hi8(IV16) | 0x20) & 0x7F

RC4KEY[2] = Lo8(IV16)

RC4KEY[3] = TK[12] (RC4KEY[12]

4 Key Caching

Implementations can achieve a significant performance improvement by caching the output of the first phase. The Phase 1 output is the same for 65,536 consecutive packets from the same TK and TA. The <TK, TA, IV32> value can be thought of as an identifier for the set of MPDUs that share a common Phase 1 output. Consider the simple case where a station communicates only with an access point (AP). The station will perform the first phase using its own address, and it will be used to encrypt traffic sent to the access point. The station will perform the first phase using the access point address, and it will be used to decrypt traffic received from the access point.

In some situations, more than two parties use a particular TK, therefore implementations must be prepared to mix more than two TAs with the TK.

Phase 1 uses the most significant 32 bits of the IV (IV32), and Phase 2 uses the other 16 bits of the IV (IV16). Since the IV is expected to be set with a counter, a carry from IV16 bits into IV32 will require the computation of a new Phase 1 value for the cache.

5 Initialization Vector Management

Each party must ensure that it does not encrypt more than one MPDU under a given temporal key (TK) with the same 48-bit initialisation vector (IV) value. We expect the IV to be implemented as a 48-bit counter, starting with zero.

While the management of TKs is not within the scope of this document, implementations must ensure that the TK is updated before the full 48-bit IV space is exhausted. If a new TK cannot be obtained, then encrypted communications must cease. Reuse of an IV will result in the reuse of the associated RC4 key stream, enabling a data recovery attack.

The WEP IV format carries three octets. Step 3 of Phase 2 (as described in section 3.2) determines the value of each of these three octets. The construction was selected to preclude the use of weak keys. The recipient can reconstruct the least significant 16 bits of the IV (IV16) used by the originator by concatenating the first and third octets, ignoring the second octet. The remaining 32 bits of the IV (IV32) are obtained from another field.
6 S-Box

The same S-box is used in both Phase 1 and Phase 2. The S-box substitutes one 16-bit value with another 16-bit value. This function is a non-linear substitution, and it is implemented as a table look up. The table look up can be organized as either a single table with 65,536 entries and a 16-bit index (128 Kbytes of table) or two tables with 256 entries and an 8-bit index (1024 bytes for both tables). When the two smaller tables are used, the high-order byte is used to obtain 16-bit value from one table and the low-order byte is used to obtain a 16-bit value from the other table; the S-box output is the exclusive-or (() of the two 16-bit values.

The sample code in Annex A used the two smaller table approach. The S-box tables can be extracted from the reference implementation.

7 Test Vectors

The following output is provided to test implementations of this algorithm. All input and output values are shown in hexadecimal.

Test vector #1:

TK = 00 01 02 03 04 05 06 07 08 09 0A 0B 0C

TA = 10 22 33 44 55 66

IV32 = 00000000 [transmitted as 00 00 00 00]

IV16 = 0000

P1K = 602C CB0D CA32 8D1D FE64

RC4KEY= 00 20 00 20 49 7E A3 59 D5 23 C8 AE 2C AD FA BC

Test vector #2:

TK = 00 01 02 03 04 05 06 07 08 09 0A 0B 0C

TA = 10 22 33 44 55 66

IV32 = 00000000 [transmitted as 00 00 00 00]

IV16 = 0001

P1K = 602C CB0D CA32 8D1D FE64

RC4KEY= 00 20 01 9C 65 C2 FF F8 31 C3 2C 4E 90 4C 91 24

Test vector #3:

TK = 9C 65 C2 FF F8 31 C3 2C 4E 90 4C 91 24

TA = 90 4E 2C C3 31 F8

IV32 = 91C24CF8 [transmitted as 91 C2 4C F8]

IV16 = FFFF

P1K = E059 8479 9080 5E30 032E

RC4KEY= FF 7F FF C2 43 40 08 16 88 A6 B8 F8 E6 FB 15 99

Test vector #4:

TK = 9C 65 C2 FF F8 31 C3 2C 4E 90 4C 91 24

TA = 90 4E 2C C3 31 F8

IV32 = 91C24CF9 [transmitted as 91 C2 4C F9]

IV16 = 0000

P1K = DB2D C097 B565 2D67 B6C9

RC4KEY= 00 20 00 2B B2 25 BC 09 21 BF 46 92 0F 49 85 80

Test vector #5:

TK = 2B B2 25 BC 09 21 BF 46 92 0F 49 85 80

TA = 0C 92 46 BF 21 09

IV32 = 85254909 [transmitted as 85 25 49 09]

IV16 = 80B2

P1K = A234 2BC0 DEAE D8D6 19A0

RC4KEY= 80 20 B2 DC B1 99 BC 1E 6A FD BC 25 5C 3F 56 2E

Test vector #6:

TK = 2B B2 25 BC 09 21 BF 46 92 0F 49 85 80

TA = 0C 92 46 BF 21 09

IV32 = 85254909 [transmitted as 85 25 49 09]

IV16 = 80B3

P1K = A234 2BC0 DEAE D8D6 19A0

RC4KEY= 80 20 B3 A9 21 B4 B1 6B 5F 4A 89 92 29 AC 13 59

Test vector #7:

TK = A9 21 B4 B1 6B 5F 4A 89 92 29 AC 13 59

TA = 28 92 89 4A 5F 6B

IV32 = 13B4AC6B [transmitted as 13 B4 AC 6B]

IV16 = 5921

P1K = 4829 1911 7922 2815 3F7D

RC4KEY= 59 79 21 AD DC EF 40 EB 62 64 77 4C F4 8B D7 79

Test vector #8:

TK = A9 21 B4 B1 6B 5F 4A 89 92 29 AC 13 59

TA = 28 92 89 4A 5F 6B

IV32 = 13B4AC6B [transmitted as 13 B4 AC 6B]

IV16 = 5922

P1K = 4829 1911 7922 2815 3F7D

RC4KEY= 59 79 22 80 EF 20 27 52 49 CB 5C E3 D9 22 DF 3D

Annex A – Reference Implementation

/***

 Contents: Generate 802.11 per-packet RC4 key hash test vectors

 Date: March 29, 2002

 Authors: Doug Whiting, Hifn

 Russ Housley, RSA Labs

 Niels Ferguson, MacFergus

 Doug Smith, Cisco

 Notes:

 This code is released to the public domain use, built solely out of

 the goodness of our hearts for the benefit of all mankind. As such,

 there are no warranties of any kind given on the correctness or

 usefulness of this code.

 This code is written for pedagogical purposes, NOT for performance.

**/

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <assert.h>

#include <time.h>

typedef unsigned char byte; /* 8-bit byte (octet) */

typedef unsigned short u16b; /* 16-bit word */

typedef unsigned long u32b; /* 32-bit word */

#define DO_SANITY_CHECK 1

#define Lo8(v16) ((v16) & 0xFF)

#define Hi8(v16) (((v16) >> 8) & 0xFF)

#define Lo16(v32) ((u16b) ((v32) & 0xFFFF))

#define Hi16(v32) ((u16b)(((v32) >>16) & 0xFFFF))

#define _S_(v16) (Sbox[0][Lo8(v16)] ^ Sbox[1][Hi8(v16)])

/* fixed algorithm "parameters" */

#define PHASE1_LOOP_CNT 8 /* this needs to be "big enough" */

/* "global" variables */

static int verbose; /* enables additional output if set */

/* 2-byte by 2-byte subset of the full AES table */

const u16b Sbox[2][256]= /* Sbox for hash (can be in ROM) */

{ {

 0xC6A5,0xF884,0xEE99,0xF68D,0xFF0D,0xD6BD,0xDEB1,0x9154,

 0x6050,0x0203,0xCEA9,0x567D,0xE719,0xB562,0x4DE6,0xEC9A,

 0x8F45,0x1F9D,0x8940,0xFA87,0xEF15,0xB2EB,0x8EC9,0xFB0B,

 0x41EC,0xB367,0x5FFD,0x45EA,0x23BF,0x53F7,0xE496,0x9B5B,

 0x75C2,0xE11C,0x3DAE,0x4C6A,0x6C5A,0x7E41,0xF502,0x834F,

 0x685C,0x51F4,0xD134,0xF908,0xE293,0xAB73,0x6253,0x2A3F,

 0x080C,0x9552,0x4665,0x9D5E,0x3028,0x37A1,0x0A0F,0x2FB5,

 0x0E09,0x2436,0x1B9B,0xDF3D,0xCD26,0x4E69,0x7FCD,0xEA9F,

 0x121B,0x1D9E,0x5874,0x342E,0x362D,0xDCB2,0xB4EE,0x5BFB,

 0xA4F6,0x764D,0xB761,0x7DCE,0x527B,0xDD3E,0x5E71,0x1397,

 0xA6F5,0xB968,0x0000,0xC12C,0x4060,0xE31F,0x79C8,0xB6ED,

 0xD4BE,0x8D46,0x67D9,0x724B,0x94DE,0x98D4,0xB0E8,0x854A,

 0xBB6B,0xC52A,0x4FE5,0xED16,0x86C5,0x9AD7,0x6655,0x1194,

 0x8ACF,0xE910,0x0406,0xFE81,0xA0F0,0x7844,0x25BA,0x4BE3,

 0xA2F3,0x5DFE,0x80C0,0x058A,0x3FAD,0x21BC,0x7048,0xF104,

 0x63DF,0x77C1,0xAF75,0x4263,0x2030,0xE51A,0xFD0E,0xBF6D,

 0x814C,0x1814,0x2635,0xC32F,0xBEE1,0x35A2,0x88CC,0x2E39,

 0x9357,0x55F2,0xFC82,0x7A47,0xC8AC,0xBAE7,0x322B,0xE695,

 0xC0A0,0x1998,0x9ED1,0xA37F,0x4466,0x547E,0x3BAB,0x0B83,

 0x8CCA,0xC729,0x6BD3,0x283C,0xA779,0xBCE2,0x161D,0xAD76,

 0xDB3B,0x6456,0x744E,0x141E,0x92DB,0x0C0A,0x486C,0xB8E4,

 0x9F5D,0xBD6E,0x43EF,0xC4A6,0x39A8,0x31A4,0xD337,0xF28B,

 0xD532,0x8B43,0x6E59,0xDAB7,0x018C,0xB164,0x9CD2,0x49E0,

 0xD8B4,0xACFA,0xF307,0xCF25,0xCAAF,0xF48E,0x47E9,0x1018,

 0x6FD5,0xF088,0x4A6F,0x5C72,0x3824,0x57F1,0x73C7,0x9751,

 0xCB23,0xA17C,0xE89C,0x3E21,0x96DD,0x61DC,0x0D86,0x0F85,

 0xE090,0x7C42,0x71C4,0xCCAA,0x90D8,0x0605,0xF701,0x1C12,

 0xC2A3,0x6A5F,0xAEF9,0x69D0,0x1791,0x9958,0x3A27,0x27B9,

 0xD938,0xEB13,0x2BB3,0x2233,0xD2BB,0xA970,0x0789,0x33A7,

 0x2DB6,0x3C22,0x1592,0xC920,0x8749,0xAAFF,0x5078,0xA57A,

 0x038F,0x59F8,0x0980,0x1A17,0x65DA,0xD731,0x84C6,0xD0B8,

 0x82C3,0x29B0,0x5A77,0x1E11,0x7BCB,0xA8FC,0x6DD6,0x2C3A,

 },

 { /* second half of table is byte-reversed version of first! */

 0xA5C6,0x84F8,0x99EE,0x8DF6,0x0DFF,0xBDD6,0xB1DE,0x5491,

 0x5060,0x0302,0xA9CE,0x7D56,0x19E7,0x62B5,0xE64D,0x9AEC,

 0x458F,0x9D1F,0x4089,0x87FA,0x15EF,0xEBB2,0xC98E,0x0BFB,

 0xEC41,0x67B3,0xFD5F,0xEA45,0xBF23,0xF753,0x96E4,0x5B9B,

 0xC275,0x1CE1,0xAE3D,0x6A4C,0x5A6C,0x417E,0x02F5,0x4F83,

 0x5C68,0xF451,0x34D1,0x08F9,0x93E2,0x73AB,0x5362,0x3F2A,

 0x0C08,0x5295,0x6546,0x5E9D,0x2830,0xA137,0x0F0A,0xB52F,

 0x090E,0x3624,0x9B1B,0x3DDF,0x26CD,0x694E,0xCD7F,0x9FEA,

 0x1B12,0x9E1D,0x7458,0x2E34,0x2D36,0xB2DC,0xEEB4,0xFB5B,

 0xF6A4,0x4D76,0x61B7,0xCE7D,0x7B52,0x3EDD,0x715E,0x9713,

 0xF5A6,0x68B9,0x0000,0x2CC1,0x6040,0x1FE3,0xC879,0xEDB6,

 0xBED4,0x468D,0xD967,0x4B72,0xDE94,0xD498,0xE8B0,0x4A85,

 0x6BBB,0x2AC5,0xE54F,0x16ED,0xC586,0xD79A,0x5566,0x9411,

 0xCF8A,0x10E9,0x0604,0x81FE,0xF0A0,0x4478,0xBA25,0xE34B,

 0xF3A2,0xFE5D,0xC080,0x8A05,0xAD3F,0xBC21,0x4870,0x04F1,

 0xDF63,0xC177,0x75AF,0x6342,0x3020,0x1AE5,0x0EFD,0x6DBF,

 0x4C81,0x1418,0x3526,0x2FC3,0xE1BE,0xA235,0xCC88,0x392E,

 0x5793,0xF255,0x82FC,0x477A,0xACC8,0xE7BA,0x2B32,0x95E6,

 0xA0C0,0x9819,0xD19E,0x7FA3,0x6644,0x7E54,0xAB3B,0x830B,

 0xCA8C,0x29C7,0xD36B,0x3C28,0x79A7,0xE2BC,0x1D16,0x76AD,

 0x3BDB,0x5664,0x4E74,0x1E14,0xDB92,0x0A0C,0x6C48,0xE4B8,

 0x5D9F,0x6EBD,0xEF43,0xA6C4,0xA839,0xA431,0x37D3,0x8BF2,

 0x32D5,0x438B,0x596E,0xB7DA,0x8C01,0x64B1,0xD29C,0xE049,

 0xB4D8,0xFAAC,0x07F3,0x25CF,0xAFCA,0x8EF4,0xE947,0x1810,

 0xD56F,0x88F0,0x6F4A,0x725C,0x2438,0xF157,0xC773,0x5197,

 0x23CB,0x7CA1,0x9CE8,0x213E,0xDD96,0xDC61,0x860D,0x850F,

 0x90E0,0x427C,0xC471,0xAACC,0xD890,0x0506,0x01F7,0x121C,

 0xA3C2,0x5F6A,0xF9AE,0xD069,0x9117,0x5899,0x273A,0xB927,

 0x38D9,0x13EB,0xB32B,0x3322,0xBBD2,0x70A9,0x8907,0xA733,

 0xB62D,0x223C,0x9215,0x20C9,0x4987,0xFFAA,0x7850,0x7AA5,

 0x8F03,0xF859,0x8009,0x171A,0xDA65,0x31D7,0xC684,0xB8D0,

 0xC382,0xB029,0x775A,0x111E,0xCB7B,0xFCA8,0xD66D,0x3A2C,

 }

};

#if DO_SANITY_CHECK

/*

**

* Routine: SanityCheckTable -- verify Sbox properties

*

* Inputs: Sbox

* Output: None, but an assertion fails if the tables are wrong

* Notes:

* The purpose of this routine is solely to illustrate and

* verify the following properties of the Sbox table:

* - the Sbox is a "2x2" subset of the AES table:

* Sbox + affine transform + MDS.

* - the Sbox table can be easily designed to fit in a

* 512-byte table, using a byte swap

* - the Sbox table can be easily designed to fit in a

* 256-byte table, using some shifts and a byte swap

**

*/

void SanityCheckTable(void)

 {

 const static int M_x = 0x11B; /* AES irreducible polynomial */

 const static byte Sbox8[256] = { /* AES 8-bit Sbox */

 0x63,0x7c,0x77,0x7b,0xf2,0x6b,0x6f,0xc5,

 0x30,0x01,0x67,0x2b,0xfe,0xd7,0xab,0x76,

 0xca,0x82,0xc9,0x7d,0xfa,0x59,0x47,0xf0,

 0xad,0xd4,0xa2,0xaf,0x9c,0xa4,0x72,0xc0,

 0xb7,0xfd,0x93,0x26,0x36,0x3f,0xf7,0xcc,

 0x34,0xa5,0xe5,0xf1,0x71,0xd8,0x31,0x15,

 0x04,0xc7,0x23,0xc3,0x18,0x96,0x05,0x9a,

 0x07,0x12,0x80,0xe2,0xeb,0x27,0xb2,0x75,

 0x09,0x83,0x2c,0x1a,0x1b,0x6e,0x5a,0xa0,

 0x52,0x3b,0xd6,0xb3,0x29,0xe3,0x2f,0x84,

 0x53,0xd1,0x00,0xed,0x20,0xfc,0xb1,0x5b,

 0x6a,0xcb,0xbe,0x39,0x4a,0x4c,0x58,0xcf,

 0xd0,0xef,0xaa,0xfb,0x43,0x4d,0x33,0x85,

 0x45,0xf9,0x02,0x7f,0x50,0x3c,0x9f,0xa8,

 0x51,0xa3,0x40,0x8f,0x92,0x9d,0x38,0xf5,

 0xbc,0xb6,0xda,0x21,0x10,0xff,0xf3,0xd2,

 0xcd,0x0c,0x13,0xec,0x5f,0x97,0x44,0x17,

 0xc4,0xa7,0x7e,0x3d,0x64,0x5d,0x19,0x73,

 0x60,0x81,0x4f,0xdc,0x22,0x2a,0x90,0x88,

 0x46,0xee,0xb8,0x14,0xde,0x5e,0x0b,0xdb,

 0xe0,0x32,0x3a,0x0a,0x49,0x06,0x24,0x5c,

 0xc2,0xd3,0xac,0x62,0x91,0x95,0xe4,0x79,

 0xe7,0xc8,0x37,0x6d,0x8d,0xd5,0x4e,0xa9,

 0x6c,0x56,0xf4,0xea,0x65,0x7a,0xae,0x08,

 0xba,0x78,0x25,0x2e,0x1c,0xa6,0xb4,0xc6,

 0xe8,0xdd,0x74,0x1f,0x4b,0xbd,0x8b,0x8a,

 0x70,0x3e,0xb5,0x66,0x48,0x03,0xf6,0x0e,

 0x61,0x35,0x57,0xb9,0x86,0xc1,0x1d,0x9e,

 0xe1,0xf8,0x98,0x11,0x69,0xd9,0x8e,0x94,

 0x9b,0x1e,0x87,0xe9,0xce,0x55,0x28,0xdf,

 0x8c,0xa1,0x89,0x0d,0xbf,0xe6,0x42,0x68,

 0x41,0x99,0x2d,0x0f,0xb0,0x54,0xbb,0x16 };

 int i,k,k2,k3;

 byte bitmap[0x2000];

 /* show that smaller tables can be used, if desired */

 for (i=0;i<256;i++)

 {

 k = Sbox8[i];

 k2 = (k << 1) ^ ((k & 0x80) ? M_x : 0);

 k3 = k ^ k2;

 assert(Sbox[0][i] == ((k2 << 8) ^ k3));

 assert(Sbox[1][i] == ((k3 << 8) ^ k2));

 }

 /* now make sure that it's a 16-bit permutation */

 memset(bitmap,0,sizeof(bitmap));

 for (i=0;i<0x10000;i++)

 {

 k = _S_(i); /* do an S-box lookup: 16 --> 16 bits */

 assert(k < (1 << 16));

 assert((bitmap[k >> 3] & (1 << (k & 7))) == 0);

 bitmap[k >> 3] |= 1 << (k & 7);

 }

 for (i=0;i<sizeof(bitmap);i++)

 assert(bitmap[i] == 0xFF);

 /* if we reach here, the 16-bit Sbox is ok */

 printf("Table sanity check successful\n");

 }

#endif

/*

**

* Routine: Phase 1 -- generate P1K, given TA, TK, IV32

*

* Inputs:

* TA[] = transmitter's MAC address [48 bits]

* TK[] = temporal key (only use 0..9 here) [104 bits]

* IV32 = upper 32 bits of IV [32 bits]

* Output:

* P1K[] = Phase 1 key [80 bits]

* Note:

* This function only needs to be called every 2**16 packets,

* although in theory it could be called every packet.

*

**

*/

void Phase1(u16b *P1K,const byte *TA,const byte *TK,u32b IV32)

 {

 int i;

 /* initialize P1K[], mixing in TA and upper 32 IV bits (48 + 32 = 80)*/

 P1K[0] = TK[0] ^ TA[0] ^ (((u16b) TK[1] ^ TA[1]) << 8);

 P1K[1] = TK[2] ^ TA[2] ^ (((u16b) TK[3] ^ TA[3]) << 8);

 P1K[2] = TK[4] ^ TA[4] ^ (((u16b) TK[5] ^ TA[5]) << 8);

 P1K[3] = TK[6] ^ Hi16(IV32) ^ (((u16b) TK[7]) << 8);

 P1K[4] = TK[8] ^ Lo16(IV32) ^ (((u16b) TK[9]) << 8);

 /* now do some fairly substantial bijective mixing on the 80 bits */

 for (i=0; i < PHASE1_LOOP_CNT ;i++)

 { /* adds here discard 16-bit carry out */

 P1K[0] = P1K[0] + _S_(P1K[4]);

 P1K[1] = P1K[1] ^ _S_(P1K[0]);

 P1K[2] = P1K[2] + _S_(P1K[1]);

 P1K[3] = P1K[3] ^ _S_(P1K[2]);

 P1K[4] = P1K[4] + _S_(P1K[3]);

 }

 }

/*

**

* Routine: Phase 2 -- generate RC4KEY, given P1K, TK, IV16

*

* Inputs:

* P1K[] = Phase 1 output key [80 bits]

* TK [] = temporal key (only use 10..12 here) [104 bits]

* IV16 = "low" 16 bits of sequence number [16 bits]

* Output:

* RC4KEY[] = the key used to encrypt the packet [128 bits]

*

* Note:

* The value <TA,IV32,IV16> for Phase1/Phase2 must be unique

* across all packets using the same key TK value. Thus, the

* final RC4KEY value is unique across all packets with the

* same TK, so no RC4 key stream is ever re-used.

*

*Implementation suggestion: if PPK[] is "overlaid" appropriately on

* RC4KEY[], there is no need for the for loop below that copies

* the PPK[] result into RC4KEY[].

**

*/

void Phase2(byte *RC4KEY,const u16b *P1K,const byte *TK,u16b IV16)

 {

 int i;

 u16b PPK[6]; /* temporary key for mixing */

 /* first, bring in IV16, plus 16 more key bits from TK[10..11] */

 PPK[5] = TK[10] ^ (((u16b) TK[11]) << 8) ^ IV16;

 /* now, bijective mixing of 96 bits */

 PPK[0] = P1K[0] + _S_(PPK[5]);

 PPK[1] = P1K[1] ^ _S_(PPK[0]);

 PPK[2] = P1K[2] + _S_(PPK[1]); /* adds here discard 16-bit carry out */

 PPK[3] = P1K[3] ^ _S_(PPK[2]);

 PPK[4] = P1K[4] + _S_(PPK[3]);

 PPK[5] = PPK[5] ^ _S_(PPK[4]);

 PPK[0] = PPK[0] + _S_(PPK[5]); /* a total of seven S-box lookups */

 PPK[1] = PPK[1] ^ PPK[0]; /* the rest of the way is "linear" */

 PPK[2] = P1K[2] + PPK[1];

 PPK[3] = P1K[3] ^ PPK[2];

 PPK[4] = P1K[4] + PPK[3];

 PPK[5] = PPK[5] ^ PPK[4];

 /* use 96 bits of PPK to set last RC4KEY[4..15] */

 for (i=0;i<6;i++)

 {

 RC4KEY[4+2*i] = Lo8(PPK[i]); /* little-endian store */

 RC4KEY[5+2*i] = Hi8(PPK[i]);

 }

 /* set the "cleartext" portion of the RC4 key from IV16 */

 RC4KEY[0] = Hi8(IV16);

 RC4KEY[1] =(Hi8(IV16)|0x20) & 0x7F;/* help avoid weak (FMS) keys */

 RC4KEY[2] = Lo8(IV16);

 /* inject 8 more bits of key material, for a total of 104 bits */

 RC4KEY[3] = TK[12] ^ RC4KEY[12]; /* RC4KEY[3] is not a fixed value */

 }

/*

**

* Routine: doTestCase -- execute test case, and print results

**

*/

void DoTestCase(byte *RC4KEY,u32b IV32,u16b IV16,const byte *TA,

 const byte *TK)

 {

 int i;

 u16b P1K[5]; /* "temp" copy of phase1 key */

 printf("\nTK =");

 for (i=0;i<13;i++) printf(" %02X",TK[i]);

 printf("\nTA =");

 for (i=0;i< 6;i++) printf(" %02X",TA[i]);

 printf("\nIV32 = %08X [transmitted as",IV32);

 for (i=0;i<4;i++) printf(" %02X",(IV32 >> (24-8*i)) & 0xFF);

 printf("]");

 printf("\nIV16 = %04X",IV16);

 Phase1(P1K,TA,TK,IV32);

 printf("\nP1K =");

 for (i=0;i< 5;i++) printf(" %04X ",P1K[i] & 0xFFFF);

 Phase2(RC4KEY,P1K,TK,IV16);

 printf("\nRC4KEY= ");

 for (i=0;i<16;i++) printf("%02X ",RC4KEY[i]);

 }

/*

**

* Static Test Cases

**

*/

#define NUM_TEST_CASES 8

void DoStaticTestCases(void)

 {

 int i,j;

 byte TA[6],TK[13],RC4KEY[16];

 u16b IV16=0;

 u32b IV32=0;

 /* set a fixed starting point */

 for (i=0;i<13;i++) TK[i]=i;

 for (i=0;i< 6;i++) TA[i]=(i+1)*17;

 TA[0] = TA[0] & 0xFC; /* Clear I/G and U/L bits in OUI */

 /* now generate tests "recursively" */

 for (i=0; i<NUM_TEST_CASES/2; i++)

 {

 printf("\n\nTest vector #%d:",2*i+1);

 DoTestCase(RC4KEY,IV32,IV16,TA,TK);

 IV16++; /* emulate per-packet "increment" */

 if (IV16 == 0) IV32++;

 printf("\n\nTest vector #%d:",2*i+2);

 DoTestCase(RC4KEY,IV32,IV16,TA,TK);

 /* use results to seed the next test */

 IV16 = RC4KEY[4] + (((u16b) RC4KEY[15]) << 8);

 if (i == 0) IV16 = 0xFFFF; /* show the wrap case */

 IV32 = RC4KEY[5] + (((u16b) RC4KEY[14]) << 8);

 IV32 = RC4KEY[7] + (((u16b) RC4KEY[13]) << 8) + (IV32 << 16);

 for (j=0;j<13;j++) TK[j]=RC4KEY[j+3];

 for (j=0;j< 6;j++) TA[j]=RC4KEY[12-j];

 TA[0] = TA[0] & 0xFC; /* Clear I/G and U/L bits in OUI */

 }

 /* note: the final output is a pretty good check of validity */

 printf("\n");

 }

/*

**

* Randomly Generated Test Cases

**

*/

void DoRandomTestCases(void)

 {

 int i,j;

 u16b IV16;

 u32b IV32;

 byte TA[6],RC4KEY[16],TK[13];

 printf("Random tests:\n");

 /* now generate tests "recursively" */

 for (i=0; i<NUM_TEST_CASES; i++)

 {

 IV16 = rand() & 0xFFFF;

 IV32 = rand() + (rand() << 16);

 for (j=0;j<13;j++) TK[j]=rand() & 0xFF;

 for (j=0;j< 6;j++) TA[j]=rand() & 0xFF;

 TA[0] = TA[0] & 0xFC; /* Clear I/G and U/L bits in OUI */

 printf("\n\nRandom test vector #%d:",2*i+1);

 DoTestCase(RC4KEY,IV32,IV16,TA,TK);

 }

 printf("\n");

 }

/*

**

* Usage text

**

*/

void Usage(void)

 {

 printf(

 "Usage: tkip48 [options]\n"

 "Purpose: Generate test vectors for proposed 802.11 per-packet key hash\n"

 "Options -? -- output this usage text\n"

 " -r -- random test vectors\n"

 " -sN -- init random seed to N\n"

 " -v -- enable verbose output\n"

);

 exit(0);

 }

/*

**

* Main

**

*/

int main(int argc, char **argv)

 {

 int i;

 char *parg;

 unsigned seed=(unsigned) time(NULL);

#if DO_SANITY_CHECK

 SanityCheckTable();

#endif

 for (i=1; i<argc; i++)

 {

 parg = argv[i];

 switch (parg[0])

 {

 case '-':

 switch (parg[1])

 {

 case '?':

 case 'H':

 case 'h':

 Usage();

 return 0;

 case 'R':

 case 'r':

 /* generate some random test vectors */

 DoRandomTestCases();

 return 0;

 case 'S':

 case 's':

 seed = atoi(parg+2);

 break;

 case 'V':

 case 'v':

 verbose = 1;

 break;

 default:

 break;

 }

 break;

 case '?':

 Usage();

 return 0;

 default:

 break;

 }

 printf("Invalid argument: \"%s\"\n", parg);

 }

 srand(seed);

 /* generate some test vectors */

 DoStaticTestCases();

 return 0;

 }

Submission
page 1
Housley, Whiting & Ferguson

