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Replace clause “8 Security” of TGi draft 1.8 with the following text:

8 Security

8.1 Framework

This standard defines two classes of security algorithms for IEEE 802.11 networks: pre-RSN security algorithms, and algorithms for a Robust Security Network, called RSN security algorithms. Equipment implementing Robust Security Network algorithms are called RSN-capable, while earlier 802.11 equipment are called pre-RSN equipment.

All security algorithms are optional, but all 802.11 implementations claiming security shall implement the mandatory RSN components.

8.1.1 Security components

Pre-RSN security consists of two basic subsystems:

· WEP privacy, to encapsulate data, and

· IEEE 802.11 authentication.

8.2.2.1 describes WEP, while 8.2.3.1 describes the 802.11 authentication procedures.

RSN security consists of two basic subsystems:

· Data privacy mechanism. 
· TKIPto provide data privacy for pre-RSN hardware conforming to the 1999 issue of this standard
· AES-based protocol, to provide robust data privacy for the long term.

· Security association management. 
· RSN negotiation procedures to establish a security context;

· IEEE 802.1X authentication replacing IEEE 802.11 authentication;

· IEEE 802.1X key management to provide cryptographic keys;

8.1.2 Identifying pre-RSN equipment

Pre-RSN equipment (An AP or STA conforming to the 1999 issue of this Standard sets the Robust Security Subfield in the Capability Information Field to zero in its Beacons, or in Probe, Association, or Reassociation Requests or Responses. Pre-RSN equipment ignores the Robust Security Subfield in the Capability Information Field in received  messages.

8.1.3 Identifying RSN-capable equipment

An RSN-capable AP shall, and a non-AP STA may, assert the Robust Security Subfield in the Capability Information Field in all Beacons, Probe Requests and Responses, Association Requests and Responses, and Reassociation Requests and Responses. When set, this subfield advertises the sender as RSN-capable. 

 
[Any interaction with Privacy bit?? This says whether you require WEP.

Need group to work through all the bits in various header and specify how each are used. 7.3.1.4 has privacy bit. The discussion of its use needs to go somewhere in Clause 8. where?]

8.1.4 Mixtures of RSN and pre-RSN equipment

An RSN-capable AP in an ESS or a STA in an IBSS may communicate with both RSN-capable and pre-RSN equipment simultaneously. An RSN-capable STA in an ESS may communicate with either RSN-capable or legacy APs, but shall not do so simultaneously. These rules permit migration from deployments based on legacy WEP security to RSN-based security.

[My note: Jesse you use the term “WEP” but in the beginning we use the term “TKIP”, which do you mean here?]

[Editor’s note: we will define normative text requiring a mechanism to prevent an RSN-capable STA from communicating with a legacy AP if desired, as this can violate security policy.]

8.1.5 Operation 
RSN-capable STAs use Beacons and Probe request to identify other RSN-capable peer STAs offering distribution services. When the peer indicates it is RSN-capable, the STA shall implement the following RSN association procedure:

1. First it associates and negotiates the security parameters used with the association. 8.3.2.2 describes the RSN negotiation procedures. 
2. Next it authenticates, using the agreed upon association mechanism. 8.3.2.3.2 describes 802.11 implemenation of 802.1X authentication.

3. Third, it executes a key exchange algorithm, based on the 802.1X EAPOL Rekey protocol. Clause 8.3.2.3.3 describes 802.11 implementation of 802.1X key management.

4. Finally, it uses the key to protect the link, using the agreed upon unicast and multicast cipher suites. 8.3.1 describes the two defined data RSN encapsulation mechanisms.

If the peer fails to indicate it is RSN-capable the STA shall implement the following procedure:

1. First the STA authenicates using pre-RSN authentication8.2.3.1 describes pre-RSN authentication,
2. Next it associates 
3. optionally the use of WEP. 8.2.2.1 describes WEP.

8.1.6 RSN assumptions and constraints

Inability to do anything about DoS is one constraint

8.2 Pre-RSN security methods

8.2.1 Commentary on pre-RSN security methods

All pre-RSN security mechanisms have been deprecated.. All pre-RSN security mechanisms can be easily compromised with public domain tools downloaded freely from the Internet.

8.2.2 Data privacy protocols

Pre-RSN networks define a single data privacy protocol, Wired Equivalent Privacy, abbreviated as WEP.

8.2.2.1 Wired Equivalent Privacy (WEP)

8.2.2.1.1 WEP overview

WEP was defined in the 1999 issue of this standard as a means of protecting authorized users of a wireless LAN from casual eavesdropping. The protocol designfails to meet its security objectives and is deprecated. Implementation of WEP is optional. It should be supported only for backward compatibility with systems conforming to the 1999 issue of the standard.
[jesse-again, do we state WEP ior TKIP?]
8.2.2.1.2 WEP MPDU format

Figure 1 depicts the encrypted Frame Body as constructed by the WEP algorithm.
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Figure 1—Construction of Expanded WEP MPDU

The WEP ICV shall be a 32-bit field. The expanded Frame Body shall start with a 32-bit IV field immediately/. This field shall contain three sub fields: a three-octet field that contains the initialization vector, a 2-bit key ID field, and a 6-bit pad field. The ordering conventions defined in 7.1.1 apply to the IV fields and its sub fields and to the ICV field. The key ID subfield contents select one of four possible secret key values for use in decrypting this Frame Body. Interpretation of these bits is discussed further in 8.2.2.1.4.6. The contents of the pad subfield shall be zero. The key ID occupies the two msb of the last octet of the IV field, while the pad occupies the six lsb of this octet.

8.2.2.1.3 WEP state

WEP uses encryption keys only. WEP encryption keys shall be 40-bits in length. WEP uses two types of encryption keys: key-mapping keys and default keys.

A key-mapping key is an unnamed key corresponding to a distinct <TA,RA> pair.This means the key-mapping key shall be used to WEP encapsulate or decapsulate MPDUs transmitted by TA to RA, regardless of the presence of other key types. When a key-mapping key for an address pair is present, the WEP key ID field in the MPDU shall be set to zero on transmit and ignored on receive.

A default key is an item in a four-element MIB array called dot11WEPDefaultKeys, named by the value of a related array index called dot11WEPDefaultKeyID. If a key-mapping key is not configured for a WEP MPDU’s <TA,RA> pair, WEP shall use a default key to encapsulate or decapsulate it. On transmit the key selected is the element of the dot11DefaultKeys array given by the index dot11WEPDefaultKeyID—a value of 0, 1, 2, or 3—corresponding to the first, second, third, or fourth element, respectively, of dot11WEPDefaultKeys. The value the transmitter encodes in the WEP key ID field of the transmitted MPDU shall be the dot11WEPDefaultKeyID value The receiver shall use the key id field of the MPDU to index into dot11WEPDefaultKeys to obtain the correct default key. All WEP implementations shall support default keys.

[Someone has raised the issue of whether the text should be amended to recognize the defacto use of 104-bit keys. In the past TGi has rejected this.]

The default value for all WEP keys shall be null. WEP implementations shall discard the containing MSDU and generate an MA-UNITDATA-STATUS.indication with transmission status indicating that a frame may not be encapsulated with a null key in response to any request to encapsulate an MPDU with a null key.

8.2.2.1.4 WEP procedures

8.2.2.1.4.1 WEP ICV algorithm

The WEP ICV shall be computed using the CRC-32, as defined in 7.1.3.6, calculated over the MPDU Data (PDU) field.
8.2.2.1.4.2 WEP encryption algorithm

A WEP implementation shall use the RC4 stream cipher from RSA Data Security, Inc., as its encryption and decryption algorithm. RC4 uses a PRNG to generate a key stream that it XOR’s with a plaintext data stream to produce ciphertext or with a ciphertext stream to produce plaintext.
8.2.2.1.4.3 WEP seed construction

A WEP shall construct a per-packet key, called a seed, by concatenating an encryption key to an initialization vector (IV). Bits 0 through 39 of the WEP key correspond to bits 24 through 63 of the seed, and bits 0 through 23 of the IV correspond to bits 0 through 23 of the seed. The bit numbering conventions in 7.1.1 apply to the seed. The seed shall be the input to RC4, in order to encrypt or decrypt the WEP Data and ICV fields.

The WEP implementation encapsulating an MPDU should select a new IV for every packet it encapsulates, but the selection algorithm is unspecified. The algorithm the encapsulator uses to select the encryption key used to construct the seed is also unspecified. [is the last sentence redundant?]
The WEP implementation decapsulating an MPDU shall use the IV from the received MPDU’s Init Vector subfield. Clause 8.2.2.1.4.6 specifies how the decapsulator selects the key.

8.2.2.1.4.4 WEP MPDU encapsulation

WEP shall apply three transformations to the plaintext MPDU to effect the WEP encapsulation. WEP computes the ICV over the plaintext Data and then appends this after the MPDU data. WEP encrypts the MPDU plaintext Data and ICV using RC4 with a seed constructed, as specified in Clause 8.2.2.1.4.3. WEP encodes the IV and key id into the IV field, prepended to the encrypted Data field.

Figure 2 depicts the WEP encapsulation process. The ICV shall be computed and appended to the plaintext data prior to encryption, but the IV encoding step may occur in any order convenient for the implementation.
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Figure 2—WEP Encapsulation Block Diagram

8.2.2.1.4.5 WEP MPDU decapsulation

WEP shall apply three transformations to the WEP MPDU to decapsulate its payload. WEP extracts the IV and key id from the received MPDU. The key id identifies the decryption key to use, which is combined as described in Clause 8.2.2.1.4.3 to construct the seed for this MPDU. WEP uses the constructed seed to decrypt the Data field of the WEP MPDU; this produces plaintext data and an ICV. Finally WEP recomputes the ICV and bit-wise compares it with the decrypted ICV from the MPDU. If the two are bit-wise identical, then WEP removes the IV and ICV from the MPDU, which is accepted as valid; if they differ in any bit position, WEP generates an error indication to MAC management. MSDUs with erroneous MPDUs (due to inability to decrypt) shall not be passed to LLC.

Figure 3 depicts a block diagram for WEP decapsulation. Unlike encapsulation, the decapsulation steps shall be in the indicated order.
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Figure 3—WEP Decapsulation Block Diagram

8.2.2.1.4.6 WEP MIB attributes

An MPDU of type Data with the WEP subfield of the Frame Control field equal to 1 is called a WEP MPDU. Other MPDUs of type Data are called non-WEP MPDUs.

A STA shall not transmit WEP encapsulated MPDUs when value of the MIB variable dot11PrivacyInvoked is “false.” This MIB variable does not affect MPDU or MMPDU reception.

if dot11PrivacyInvoked is “false”

the MPDU is transmitted without WEP encapsulation

else

if (the MPDU has an individual RA and

there is an entry in dot11WEPKeyMappings for that RA)

if that entry has WEPOn set to “false”

the MPDU is transmitted without WEP encapsulation

else

if that entry contains a key that is null

discard the MPDU’s entire MSDU and generate an

MA-UNITDATA-STATUS.indication primitive to notify

LLC that the MSDU was undeliverable due to a null WEP key

else

encrypt the MPDU using that entry’s key, setting the KeyID

subfield of the IV field to zero

else

if (the MPDU has a group RA and the Privacy subfield

of the Capability Information field in this BSS is set to 0)

the MPDU is transmitted without WEP encapsulation

else

if dot11WEPDefaultKeys[dot11WEPDefaultKeyID] is null

discard the MPDU’s entire MSDU and generate an

MA-UNITDATA-STATUS.indication primitive to notify

LLC that the MSDU was undeliverable due to a null WEP key

else

WEP encapsulate the MPDU using the key

dot11WEPDefaultKeys[dot11WEPDefaultKeyID],

setting the KeyID subfield of the IV field to

dot11WEPDefaultKeyID

When the boolean attribute aExcludeUnencrypted is set to True, non-WEP MPDUs shall not be indicated at the MAC service interface, and only MSDUs successfully reassembled from successfully decrypted MPDUs shall be indicated at the MAC service interface. When receiving a frame of type Data, the values of dot11PrivacyOptionImplemented, dot11WEPKeyMappings, dot11WEPDefaultKeys, dot11WEPDefaultKeyID, and aExcludeUnencrypted in effect at the time the PHY-RXSTART.indication primitive is received by the MAC shall be used according to the following decision tree:

if the WEP subfield of the Frame Control Field is zero

if aExcludeUnencrypted is “true”

discard the frame body without indication to LLC and increment

dot11WEPExcludedCount

else

receive the frame without WEP decapsulation

else

if dot11PrivacyOptionImplemented is “true”

if (the MPDU has individual RA and

there is an entry in dot11WEPKeyMappings matching the MPDU’s TA)

if that entry has WEPOn set to “false”

discard the frame body and increment dot11WEPUndecryptableCount
else

if that entry contains a key that is null

discard the frame body and increment

dot11WEPUndecryptableCount

else

WEP decapsulate with that key, 
if the ICV check fails

discard the frame body and increment
dot11WEPICVErrorCount  






else








send  the data to the LLC
else

if dot11WEPDefaultKeys[KeyID] is null

discard the frame body and increment

dot11WEPUndecryptableCount

else

WEP decapsulate with dot11WEPDefaultKeys[KeyID],
if the ICV check fails
discard the frame body and increnmentdot11WEPICVErrorCount if the ICV check fails
else


send  the data to the LLC
else

discard the frame body 
increment dot11WEPUndecryptableCount
[Someone has raised the issue of whether the WEP decision tree should be modified to allow WEP implementations to pass EAPOL packets unencrypted. Thus far TGi has decided no.]

8.2.3 Security association management

Pre-RSN security does not have a proper notion of a security association. It does an authentication framework.

8.2.3.1 Authentication

8.2.3.1.1 Overview

Pre-RSN authentication is deprecated but optional. It may be implemented for backward compatibility with legacy equipment only, and should not constitute the default security choices.

The 1999 issue of the standard defines two subtypes of pre-RSN authentication service, Open System and Shared Key. All management frames of subtype Authentication shall be unicast, as authentication is performed between pairs of stations.Multicast authentication is not allowed. Management frames of subtype Deauthentication are advisory, and may be sent as group-addressed frames.

A mutual authentication relationship shall exist between two stations following a successful authentication exchange. Authentication shall be used between stations and the AP in an infrastructure BSS. Authentication may be used between two STAs in an IBSS.

[Someone has raised an issue of whether the standard should allow the use of 802.1X with legacy WEP deployments, since this is deployed today. Thus far TGi has said no.]

8.2.3.1.2 Open system authentication

Open System authentication is a null authentication algorithm. Any STA requesting Open System authentication may be authenticated if dot11AuthenticationType at the recipient station is set to Open System authentication. A STAmay decline to authenticate with another requesting STA. Open System authentication is the default authentication algorithm for pre-RSN equipment.

Open System authentication utilizes a two-message authentication transaction sequence. The first message asserts identity and requests authentication. The second message returns the authentication result. If the result is “successful,” the STAs shall be declared mutually authenticated.
In the following description, the STA initiating the authentication exchange is referred to as the requester, and the STA to which the initial frame in the exchange is addressed is referred to as the responder.
8.2.3.1.2.1 Open System authentication (first frame)

— Message type: Management

— Message subtype: Authentication

— Information items:

• Authentication Algorithm Identification = “Open System”

• Station Identity Assertion (in SA field of header)

• Authentication transaction sequence number = 1

• Authentication algorithm dependent information (none)

— Direction of message: From requester to responder
8.2.3.1.2.2 Open System authentication (final frame)

— Message type: Management

— Message subtype: Authentication

— Information items:

• Authentication Algorithm Identification = “Open System”

• Authentication transaction sequence number = 2

• Authentication algorithm dependent information (none)

• The result of the requested authentication as defined in 7.3.1.9

— Direction of message: From responder to requester
If dot11AuthenticationType does not include the value “Open System,” the result code shall not take the value “successful.”

8.2.3.1.3 Shared key authentication

Shared Key authentication seeks to authenticate STAs as either a member of those who know a shared secret key or a member of those who do not. 
Shared Key authentication requires the WEP privacy mechanism. 
This mechanism uses a shared keythat is delivered to participating STAs via a secure channel that is independent of IEEE 802.11. This shared key is contained in a write-only MIB attribute in an attempt to keep the key value internal to the MAC.

A STA shall not initiate a Shared Key authentication exchange unless its dot11PrivacyOptionImplemented attribute is “true.”

In the following description, the STA initiating the authentication exchange is referred to as the requester, and the STA to which the initial frame in the exchange is addressed is referred to as the responder.

8.2.3.1.3.1 Shared Key authentication (first frame)

— Message type: Management

— Message subtype: Authentication

— Information Items:

• Station Identity Assertion (in SA field of header)

• Authentication Algorithm Identification = “Shared Key”

• Authentication transaction sequence number = 1

• Authentication algorithm dependent information (none)

— Direction of message: From requester to responder

8.2.3.1.3.2 Shared Key authentication (second frame)

Before sending the second frame in the Shared Key authentication sequence, the responder shall use WEP to generate a string of octets to be used as the authentication challenge text.

— Message type: Management

— Message subtype: Authentication

— Information Items:

• Authentication Algorithm Identification = “Shared Key”

• Authentication transaction sequence number = 2

• Authentication algorithm dependent information = the authentication result.

• The result of the requested authentication as defined in 7.3.1.9.

If the status code is not “successful,” this shall be the last frame of the transaction sequence.

If the status code is “successful,” the following additional information items shall have valid contents:

Authentication algorithm dependent information = challenge text.

The authentication result shall be of fixed length of 128 octets generated by the WEP pseudo-random number generator (PRNG)and shall not be a static value.

— Direction of message: From responder to requester

8.2.3.1.3.3 Shared Key authentication (third frame)

The requester shall copy the challenge text from the second frame into the third frame. The third frame shall be transmitted after encapsulation by WEP, as defined in Clause 8.2.2.1, using the shared key.

— Message type: Management

— Message subtype: Authentication

— Information Items:

• Authentication Algorithm Identification = “Shared Key”

• Authentication transaction sequence number = 3

• Authentication algorithm dependent information = challenge text from second frame

— Direction of message: From requester to responder

8.2.3.1.3.4 Shared Key authentication (final frame)

The responder shall WEP decapsulate the third frame as described in Clause 8.2.2.1. If the WEP ICV check is successful, the responder shall compare the decrypted contents of the Challenge Text field with the challenge text sent in second frame . If they are the same, then the responder shall respond with a successful status code in final frame of the sequence. If the WEP ICV check fails or challenge text comparison fails, the responder shall respond with an unsuccessful status code in final frame.

— Message type: Management

— Message subtype: Authentication

— Information Items:

• Authentication Algorithm Identification = “Shared Key”

• Authentication transaction sequence number = 4

• Authentication algorithm dependent information = the authentication result

The result of the requested authentication.

.”

— Direction of message: From responder to requester

8.2.3.1.3.5 Shared key MIB attributes

To transmit a frame of type Management, subtype Authentication with an Authentication Transaction Sequence Number field value of 2, the MAC shall operate according to the following decision tree:

if dot11PrivacyOptionImplemented is “false”

the MMPDU is transmitted with 
· a sequence of zero octets in the Challenge Text field 
· a Status Code value of 13

else

the MMPDU is transmitted with 
· a sequence of 128 octets generated using the WEP PRNG 
· a key whose value is unspecified and beyond the scope of this standard 
· a randomly chosen IV value (note that this will typically be selected by the same mechanism for choosing IV values for transmitted data MPDUs) in the Challenge Text field 
· a status code value of 0 (the IV used is immaterial and is not transmitted). 
Note that there are cryptographic issues involved in the choice of key/IV for this process as the challenge text is sent unencrypted and therefore provides a known output sequence from the PRNG.

To receive a frame of type Management, subtype Authentication with an Authentication Transaction Sequence Number field value of 2, the MAC shall operate according to the following decision tree:

if the WEP subfield of the Frame Control field is 1

respond a frame that has
· Authentication Transaction Sequence Number field equal 3
·  a status code value of 15

else

if dot11PrivacyOptionImplemented is “true”

if there is a mapping in dot11WEPKeyMappings matching the MSDU’s TA

if that key is null

respond with a frame that has

· Authentication Transaction Sequence Number field equal 3
· 
· the appropriate Authentication Algorithm Number
·  a status code value of 15 
· no Challenge Text field,
no encrypting the contents of the frame

else

respond with a frame that has

· Authentication Transaction Sequence Number field equal 3
· the appropriate Authentication 

· algorithm Number, 
· a status code value of 0 and 
· the identical Challenge Text field, encrypted using that key,


· setting the key ID subfield in the IV field to 0
· 
else

if dot11WEPDefaultKeys[dot11WEPDefaultKeyID] is null

respond with a frame that has

· Authentication Transaction Sequence Number field equal 3
· the appropriate Authentication Algorithm Number,

· a status code value of 15 
· no Challenge Text field
,no encrypting the contents of the frame

else

respond with a frame that has 

· Authentication Transaction Sequence Number field equal 3
· the appropriate Authentication Algorithm Number,
· a status code value of 0 
· the identical Challenge Text field
· , WEP encapsulating the frame under the key

· dot11WEPDefaultKeys[dot11WEPDefaultKeyID], setting the key


· ID subfield in the IV field to dot11WEPDefaultKeyID
else

respond with a frame that has 

· Authentication Transaction Sequence Number field equal 3 
· the appropriate Authentication Algorithm Number
· a status code value of 13 
· no Challenge Text field 
no encrypting the contents of the frame

When receiving a frame of type Management, subtype Authentication with an Authentication Transaction Sequence Number field value of 3, the MAC shall operate according to the following decision tree:

if the WEP subfield of the Frame Control field is zero

respond with a frame that has 

· Authentication Transaction Sequence Number field equal 4 
· a status code value of 15

else

if dot11PrivacyOptionImplemented is “true”

if there is a mapping in dot11WEPKeyMappings matching the MSDU’s TA

if that key is null

respond with a frame that has 
· Authentication Transaction Sequence Number field equal 4

· the appropriate Authentication Algorithm Number,
· a status code value of 15 
no encrypting the contents of the frame

else

WEP decapsulate with that key, incrementing dot11WEPICVErrorCount
t 
if the ICV check fails
respond with a frame that has 

· Authentication Transaction Sequence Number field equal 4
· a status code value of 15

else

respond with a frame that has 

· Authentication Transaction Sequence Number field equal 4

· a status code value of 0
else

if dot11WEPDefaultKeys[KeyID] is null

respond with a frame that has 
· Authentication Transaction Sequence Number field equal 4
· the appropriate Authentication

· Algorithm Number
· a status code value of 15 
no encrypting the contents of the frame

else

WEP decapsulate with dot11WEPDefaultKeys[KeyID], incrementing

dot11WEPICVErrorCount 
if the ICV check fails

respond with a frame that has 

· Authentication Transaction Sequence Number field equal 4

· a status code value of 15

else

respond with a frame that has 

· Authentication Transaction Sequence Number field equal 4

· a status code value of 0



else

respond with a frame that has 

· Authentication Transaction Sequence Number field equal 4

· the appropriate Authentication Algorithm Number,

· a status code value of 15 

The attribute dot11PrivacyInvoked shall not take the value “true” if the attribute dot11PrivacyOptionImplemented is “false.” Setting dot11WEPKeyMappings to a value that includes more than dot11WEPKeyMappingLength entries is illegal and shall have an implementation-specific effect on the operation of the privacy service. dot11WEPKeyMappings may contain from zero to dot11WEPKeyMappingLength entries.
The attributes in the aPrivacygrp should not be changed during the authentication sequence, as unintended operation may result.

8.3 RSN security methods

An RSN defines, a suite of data privacy protocols, and a set of management protocols to coordinate their use. The RSN also defines the concept of a security association, which is used to organize and synchronize the states needed for secure operation.

8.3.1 Data privacy protocols

8.3.1.1 Overview

This standard defines two RSN data privacy protocols, TKIP and an AES-OCB-based protocol. TKIP is defined to provide pre-RSN hardware devices with a way to securely interoperate with RSN-capable equipment.

Because of TKIP weaknesses TKIP is used for communication for pre-RSN equipment. 
[Jesse this next paragraph makes no sense.  To say  “you are RSN compliant” we need one statement like, OCB.  We cannot say well I’m RSN if I was built before some unknown date! Perhaps we need RSN level 1 compliant is TKIP and RSN level 2 is OCB.]
The AES-OCB-based protocol shall be mandatory-to-implement in all IEEE 802.11 equipment claiming RSN compliance. Equipment designed to the 1999 issue of this standard shall be patched to implement TKIP to claim RSN conformance. Implementation of TKIP is optional.

8.3.1.2 Temporal Key Integrity Protocol (TKIP)

[Jesse- here is where I have real  heartburn.  I understood that we cannot make any equipment produced under an earlier verision on this spec obsolete.  By saying a vendor MUST upgrade his equipment to meet the new specification is not right.  How does a consumer who bought IEEE 802.11 equipment last year get the new updates?  If the customer did not purchase maintenance, then is he inititled for an update?  

I know that this is a technical issue.   So I will address it in St. Louis]
8.3.1.2.1 TKIP overview

The Temporal Key Integrity Protocol (TKIP) is a suite of algorithms enhancing the WEP protocol, provide secure operation on pre-RSN hardware. The new algorithms are:
[ we need to decide are all the following implemented? How does a system determine which implemenation is being used for a specific user?]
1. A transmitter calculates a keyed cryptographic message integrity code, or MIC, over the MSDU source and destination addresses and the MSDU plaintext data .  The MIC is appended to the data prior to fragmentation into MPDUs. The receiver, reassembles MPDUs into an MSDU and verifies the MIC after decryption.  The receiver discards any received MSDUs with invalid MICs. This protects against forgery attacks.

2. Because an adversary can compromise the TKIP MIC with relatively few messages, TKIP also implements countermeasures whick stops communication for a period of time.  This stopage forces the sending and receiving stations to request new keys. Requests for new keys  limit the probability of a false positive {WHAT?}and the amount of information an attacker can learn about a key.

3. TKIP uses a packet sequence counter to sequence the MPDUs it sends.  When a MPDU is received out of order  the receiver discards the MPDU. This provides a weak form of replay protection. TKIP encodes the packet sequence counter in the  WEP IV field of the MPDU,.

4. TKIP uses a cryptographic mixing function to combine a temporal key and the packet sequence counter into the WEP seed, including[ including makes no sense here] the WEP IV. The constructed WEP IV corresponds in a one-to-one fashion with the packet sequence counter. [ in the paragraph before, we stated the that “TKIP encodes the packet sequence counter as  WEP IV”  now you say “The constructed WEP IV corresponds in a one-to-one fashion with the packet sequence counter”.  They appear to say different things] The receiver recovers the counter from a received MPDU and utilizes the mixing function to compute the same WEP seed needed to correctly decrypt the MPDU. The key mixing function is designed to defeat weak-key attacks against the WEP key.

5. TKIP uses the 802.1X EAPOL key protocol to refresh the temporal and MIC keys to prevent key reuse. If the key refresh fails, the implementation halts further data traffic until rekeying succeeds, or the STA disassociates. This forces WEP seeds to use concatenations of  unique IV and key pairs. 8.3.2.3.3 specifies the rekeying mechanism.

8.3.1.2.1.1 TKIP encapsulation

TKIP enhances the WEP encapsulation with several additional functions. 
1. TKIP computes the MIC over the MSDU source address, destination address, and data, and appends the computed MIC to the MSDU.  It discards any MIC padding prior to appending the MIC. 
2. TKIP fragments the MSDU into one or more MPDUs.  TKIP assigns a TKIP sequence counter value to each MPDU. All the MPDUs generated from the same MSDU use counter values from the same 16-bit counter space. 
3. For each MPDU, TKIP uses the key mixing function to compute the WEP seed. 
4. TKIP represents the WEP seed as a WEP IV and RC4 key.  TKIP passes the WEP IV and RC4 key with each MPDU to WEP for encapsulation. WEP consumes the WEP seed as a WEP default key, identified by a key id associated with the temporal key. [ this last sentence makes no sense.  “WEP consumes..”]
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Figure 4—TKIP Encapsulation Block Diagram

8.3.1.2.1.2 TKIP decapsulation

TKIP enhances the WEP decapsulation process with several additional steps. 
1. Before WEP decapsulating a received MPDU, TKIP extracts the TKIP sequence number and key id from the WEP IV. TKIP discards a received MPDU that violates the sequencing rulesTKIP uses the mixing function to construct the WEP seed. 
2. TKIP represents the WEP seed as a WEP IV and RC4 key and passes the WEP IV and RC4 key with the MPDU to WEP for decapsulation. 
3. If WEP indicates the ICV check succeeded, the implementation reassembles the MPDU into an MSDU. If the MSDU reassembly succeeds, the receiver verifies the MIC. 
4. The MIC verification step recomputes the MIC over the MSDU source address, destination address, and MSDU data (but not the MIC field), and bit-wise compares the result against the received MIC. 
5. If the two are identical, the verification succeeds, and TKIP delivers the MSDU to the upper layer. If the two differ in any bit position, then the verification fails, the receiver discards the packet, and engages in appropriate countermeasures.
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Figure 5—TKIP Decapsulation Block Diagram

8.3.1.2.2 TKIP MPDU formats

TKIP extends the MSDU format by an additional 8 bytes, to accommodate the new MIC field. TKIP appends the MIC to the MSDU Data field.

Once this is accomplished, 
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the MSDU-with-MIC is fragmented into appropriately sized MPDUs and then WEP encapsulated. 
TKIP  shall encrypt all the MPDUs generated from one MSDU under the same key.

8.3.1.2.3 TKIP state

TKIP augments the dot11WEPKeyMappings MIB array with a new one, called the dot11TKIPKeyMappings, to support zero, one, or two entries for each MAC address pair with which the STA maintains secure associations. The size of the dot11TKIPKeyMappings array is implementation defined. A global MIB variable dot11TKIPKeyMappingLength indicates the number of entries in the array.

Each entry of the dot11TKIPKeyMappings groups together the following state:

1. A dot11TKIPReceiveAddress and a dot11TKIPTransmitAddress, indicating that this entry applies to all MPDUs associated being sent between this pair of addresses;

2. A dot11TKIPKeyID, indicating the WEP KeyID into which this entry maps;

3. A 128-bit key called the dot11TKIPTemporalKey, referred to informally as the temporal key, for constructing the TKIP encryption keys for send and receive. The Phase 1 TKIP mixing function (see 8.3.1.2.4.3) expands dot11TKIPTemporalKey (TK) with the transmitter address (TA) into different send and receive keys..

4. A 16-bit counter called the dot11TKIPSequenceCounter, referred to informally as the sequence counter, for constructing the next WEP IV and seed;

5. A 64-bit key called the dot11TKIPMICSendKey, referred to informally as the MIC send key, used to provide data origin authenticity in MSDU transmitted;

6. A 16-bit window called the dot11TKIPReceiveWindow, referred to informally as the TKIP receive window, used to detect replayed MPDUs;

7. A 64-bit key called the dot11TKIPMICReceiveKey, referred to informally as the MIC receive key, used to verify data authenticity of received MSDUs;

8. A boolean flag called dot11TKIPEnableTransmit, to indicate when the temporal key and MIC send key can be used for transmitting MSDUs;

9. A boolean flag called dot11TKIPEnableReceive, to indicate when the temporal key and MIC receive key can be used for receiving MSDUs.

[Someone has raised the question whether the dot11TKIPEnableTransmit flag is set in both dot11TKIPKeyMappings entries. The editor believes there is only one entry, so there must be something wrong with the model, its explanation, or both.]

An AP also maintains two TKIP global MIB variables:

1. A boolean flag called dot11TKIPMICFailureEvent, to indicate whether a MIC failure has occurred in the last minute.

2. A boolean flag called dot11TKIPCountermeasures, to indicate whether TKIP countermeasures are being applied.

8.3.1.2.4 TKIP procedures

8.3.1.2.4.1 TKIP MIC

Annex F contains a “C++” language reference implementation of the TKIP MIC. It also provides test vectors for the MIC.

In order to defeat active attacks against the privacy key, TKIP mandates use of a MIC, called Michael, which is calculated by an algorithm.

Michael generates a 64-bit MIC, with a design goal of 20 bits of security. Michael uses a 64-bit key represented as an 8-byte value k0...k7. This is converted to two 32-bit little-Endian words K0 and K1. Throughout the Michael design, all conversions between bytes and 32-bit words shall use the little-Endian conventions, given in 7.1.1. At the transmitter, the TKIP MIC key shall be the dot11MICSendKey, and at the receiver the dot11MICReceiveKey.

Michael operates on MSDUs. The MSDU consists of bytes m0...mn–1 where n is the number of MSDU bytes, including source address, destination address, and data field. The message is padded at the end with a single byte with value 0x5a, followed by between 4 and 7 zero bytes. The number of zero bytes is chosen so that the overall length of the MSDU plus the padding is a multiple of 4. The MSDU is then converted to a sequence of 32-bit words M0 ...MN-1, where N = ((n+5)/4(. By defintion,  MN–1 = 0 (and MN–2 ( 0. Padding is used only in the MIC computation, and is not transmitted as part of the MSDU.

The MIC value is computed iteratively by starting with the key value and applying a block function b for every message word, as shown in Figure 6. The for loop runs a total of N times (i has values from 0 to N–1). The resulting two words (l,r) are converted to a sequence of eight bytes using the least-significant-byte-first convention. It is then appended to the MSDU.

Input: Key (K0, K1) and padded MPDU (represented as32-bit words) M0...MN
Output: MIC value (V0, V1)

MICHAEL((K0, K1) , (M0,...,MN))

(l,r) ( (K0, K1)

for i = 0 to N–1 do
l ( l ( M​i
(l, r) ( b(l, r)

return (l,r)

Figure 6—Michael message processing

Figure 7 defines the Michael block function b. It is a Feistel-type construction with alternating additions and XOR operations. It uses <<< to denote the rotate-left operator on 32-bit values, >>> for the rotate-right operator, and XSWAP for a function that swaps the position of the two least significant bytes and the position of the two most significant bytes in a word.

Input: (l,r)

Output: (l,r)

b(L,R)

r ( r ( (l <<< 17)

l ( (l + r) mod 232
r ( r ( XSWAP(l)

l ( (l + r) mod 232
r ( r ( (l <<< 3)

l ( (l + r) mod 232

r ( r ( (l >>> 2)

l ( (l + r) mod 232
return (l, r)

Figure 7—Michael block function

8.3.1.2.4.2 TKIP counter-measures

. Michael - provides only weak protection against active attack. If TKIP detects a suspected active attack, TKIP will take countermeasures to compensate for this weakness.

8.3.1.2.4.2.1 BSS case

If an AP detects a MIC failure on a unicast MSDU it receives, it shall take the following steps:

1. Delete the authentication and encryption keys in question.

2. Disassociate the MSDU source. This shall only include sending the disassociation notification, and no further exchanges with the STA shall be attempted.

3. Log details of the MIC failure, and check the dot11TKIPMICFailureEvent flag.. If the dot11TKIPMICFailureEvent is false, the AP take the following steps:

a. sets the dot11TKIPMICFailureEvent to true 

b. Disable both the transmitter and the receiver. This (temporarily) stops all traffic in the BSS.

c. Set a one-minute timer.

d. When a one-minute timer expires, clear the dot11TKIPMICFailureEvent and dot11TKIPMICCountermeasures to false and re-enable the transmitter and receiver.

Note: the one-minute rule was adopted to limit the expected number of undetected forgeries to one a year against a given AP.

[Editor’s note: “Delete the authentication and encryption keys in question” seems to be referring to the temporal keys. If this is the case, then the STA can later Reassociate with the same AP and use the current MSK and/or TSK? Or does the AP delete these too? If not, if the STA roams to another AP and IAPP is in place, can the AP hand off the MSK to the new AP, even when the one-minute rule is in effect?]

If a STA detects a MIC failure, it shall take the following steps:

1. STA deletes the authentication and encryption key in question.

2. STA disassociates from the AP, by sending a disassociate message with a status code indicating a MIC failure. The AP may use this information to create a log item and/or send an SNMP trap.

3. STA associates anew with a MicFailure flag set in the association message. On receipt of such an associate message, the AP generates a MicFailureEvent. If AP generates two MicFailureEvents in less than 60 seconds , the association request is delayed or discarded . 
(Open problem: how do we authenticate the MicFailureEvent flag in the association request? We must prevent the attacker from resetting this flag. Can we include this in the authentication of the key negotiation protocol? But this is not feasible if we have deleted the keys. Presumably disassociation forces an association with a full re-authentication)
4. Once the new association is established, STA and AP can resume their communications.

[Editor’s note: Once again “authentication and encryption key” seems to refer to temporal keys only. Can the STA use its MSK to securely Reassociate with another AP?]

[Editor’s note: This algorithm is unsuitable as it stands, as we don’t know the station will associate with the same AP. A better algorithm appears to be to disassociate with a reason code saying that the STA is under attack. We will want a MIC in the disassociation message if we take this approach; adding one causes all sorts of complications This is because we would presumably be using the TKIP MIC, so we would have to encrypt the “data payload”. We would also have to change the WEP MIB processing to allow the disassociation message to be authenticated. Implementations would also have to escape the current disassociation processing, to allow the MIC to be checked wherever it is done in the TKIP implementation.]

8.3.1.2.4.2.2 IBSS case

[Editor’s note: Currently there are no proposals for appropriate countermeasures in an IBSS. The problem is that there is no central point like the AP to keep the MicFailureEvent rate below a guaranteed value. This remains an area for further study.]

8.3.1.2.4.3 TKIP mixing function

Annex F defines the TKIP S-box, a “C” language reference implementation of the TKIP mixing function. It also provides test vectors for the mixing function.
The mixing function has two phases. The first phase mixes the dot11TKIPTemporalKey (TK) with the transmitter address (TA). A STA may cache the output of this phase to reuse with subsequent MPDUs associated with the same TK and the same TA. The second phase mixes the output of the first phase with the initialization vector (IV) to produce the WEP seed, also called the per-packet key. The WEP seed may be computed well before it is used.  The two-phase process may be summarized as:

TTAK ( Phase1(TK, TA)

WEP seed ( Phase2(TTAK, IV)

Phase 1 is somewhat simpler than Phase 2. This simplicity is possible because the output of Phase 1 is not used directly as an RC4 key.

Both Phase 1 and Phase 2 rely on an S-box, defined in Annex F The S-box substitutes one 16-bit value with another 16-bit value. This function is a non-linear substitution, and may be implemented as a table look up.

8.3.1.2.4.3.1 Phase 1 definition

The inputs to the first phase of the temporal key mixing function shall be a dot11TKIPTemporalKey (TK) and the transmitter address (TA). The TK shall be 128 bits in length. The output, called TTAK, shall also be 128 bits in length.

The description of the phase 1 algorithm treats all of these [refers to ?] values as arrays of 16-bit values: TA0..TA2, TK0..TK7, and TTAK0..TTAK7. The TA byte order is represented according to the conventions from 7.1.1. The exclusive-or (() operation is used to obtain the index to the S-box.

The TTAK array values are computed as follows:

Input: transmit address TA0…TA2 and temporal key TK0..TK7
Output: intermediate key TTAK0..TTAK7
PHASE2-KEY-MIXING(TA0…TA2, TK0..TK7)

TTAK7 ( S[TK7 ( TA1]

TTAK6 ( S[TK6 ( TA2 ( TTAK7]

TTAK5 ( S[TK5 ( TA0 ( TTAK6]

TTAK4 ( S[TK4 ( TA1 ( TTAK5]

TTAK3 ( S[TK3 ( TA2 ( TTAK4]

TTAK2 ( S[TK2 ( TA0 ( TTAK3]

TTAK1 ( S[TK1 ( TA1 ( TTAK2]

TTAK0 ( S[TK0 ( TA2 ( TTAK1]

Figure 8—Phase 1 key mixing


8.3.1.2.4.3.2 Phase 2 definition

The inputs to the second phase of the temporal key mixing function shall be the output of the first phase (TTAK) and the TKIP sequence counter tsc. The TTAK is 128-bits in length. The tsc shall be 16 bits in length. The output is the per-packet key 128-bits WEP seed . The constructed WEP seed has an internal structure conforming to the WEP specification. The first 24 bits of the WEP shall be transmitted in plaintext as the WEP IV, encoding the tsc from the encryptor to the decryptor[ problem, tsc is 16 bits, WEP IV is 24 bits]. The TTAK shall be treated as an array of 16-bit values: TTAK0…TTAK7. The WEP seed is treated as an array of 8-bit values: Seed0…Seed15. The tsc shall be treated as scalar 16-bit value.

The algorithm specification relies on three functions.

· The first function, ROTATE_LEFT_1BIT, rotates the 16-bit input value one bit to the left. Thus, the most significant bit becomes the least significant bit.

· The second function, LO_8BITS, references the least significant 8 bits of the 16-bit input value.

· The third function, HI_8BITS, references the most significant 8 bits of the 16-bit value.

The algorithm description employs four variables: ppk, h0, h1, and temp. The ppk is 128 bits, and is an array of 16-bit values: ppk0..ppk7. h0, h1and temp are scalar 16-bit values.  i is a loop counter. As shown in figure 14, the mapping from the 16-bit ppk values to the 8-bit WEP seed values is explicitly little-Endian. 
The second phase is comprised of three steps. 
STEP 1is a Feistel-like mixing function, employing an S-box. 
STEP 2 performs additional mixing, employing rotate and addition operations. 
STEP 3 assigns the 24-bit WEP IV value.

Input: intermediate key TTAK0…TTAK7 and TKIP sequence counter tsc
Output: WEP Seed Seed0…Seed15
PHASE2-KEY-MIXING(TTAK0…TTAK7, tsc)

STEP 1: h0 ( tsc
h1 ( 0x0000

for i = 0 to 7 do

h0 ( h0 ( TTAKi
temp ( S[h0]

h0 ( temp ( h1
h1 ( temp
ppki ( h0
STEP 2: temp ( TTAK[0]

for i = 7 downto 1 do
temp ( ROTATE_LEFT_1BIT[temp] + ppk[i]

Seed2(i ( LO_8BITS[temp]

Seed2(i+1 ( HI_8BITS[temp]

STEP 3: Seed0 ( HI_8BITS[tsc]

Seed1 ( (HI_8BITS[tsc] | 0x20) & 0x7f

Seed2 ( LO_8BITS[tsc]

return Seed0…Seed15
Figure 9—Phase 2 key mixing

8.3.1.2.4.3.3 S-box

The algorithm S-box utilized by the Phase 1 and Phase 2 functions is defined in Annex F. The S-box substitutes one 16-bit value with another 16-bit value. This is a non-linear substitution, and it is implemented as a table look-up NOT TRUE! It is a mathematical process. The table look-up can be organized as either a single table with 65,536 entries and a 16-bit index (128 Kbytes of table) or two tables with 256 entries and an 8-bit index (1024 bytes for both tables). When the two smaller tables are used, the high-order byte is used to obtain a 16-bit value from one table and the low-order byte is used to obtain a 16-bit value from the other table; the S-box output is the exclusive-or (() of the two 16-bit values. The second S-box table is a byte-swapped replica of the first.

The sample code in Annex F uses the two smaller table approach. The S-box tables can be extracted from the AES reference implementation.

8.3.1.2.4.4 TKIP replay protection

TKIP implementations shall reuse the WEP IV field to provide protection against replay attacks by implementing the following rules.

1. As with WEP IVs, TKIP sequence counter values (values of dot11TKIPSequenceCounter) shall be unique for each MPDU and temporal key pair.

2. TKIP sequence counter (16 bit counters) shall be selected from a single pool by each transmitter for each directional temporal key 
3. The TKIP sequence counter shall be implemented as a 16-bit monotonically incrementing counter, initialized to zero when the corresponding TKIP temporal key is initialized or refreshed.

4. If a new TKIP temporal key cannot be established before the full 16-bit TKIP sequence counter space is exhausted, then TKIP-protected communications shall cease. Reuse of a counter value will result in the reuse of the associated RC4 key stream, enabling a data recovery attack against previously encrypted data. In particular, each party shall ensure that only one packet is encrypted using a given temporal key and a specific TKIP sequence counter value.

Note: MAC level re-transmissions transmit an MPDU using the same WEP IV and encryption. Security is not compromised, since a given IV is associated with one and only one encrypted data payload. Re-transmissions will not affect the requirement for incremented IVs at the receiving station, since in-order delivery is supported: the frame transmission must be completed from station A to station B before advancing to a succeeding frame destined to station B. With QoS enabled, the rule is applied to frames at the same priority.  This eliminates the issues of different retransmission timing for prioritized or scheduled frames.

5. The WEP IV format carries 3 octets. Step 3 of Phase 2 in the temporal key mixing function (Clause 8.3.1.2.4.3) uses the TKIP sequence counter to determine the value of each of these octets. The construction was selected to preclude the use of known weak keys. The recipient can reconstruct the 16-bit TKIP sequence counter by concatenating the first and third octets, ignoring the second octet.

6. The recipient shall use the TKIP sequence counter to detect a replayed. A replayed frame is detected when the extracted TKIP sequence counter is not greater than the current TKIP replay window for the same traffic class. This accommodates frames that may be delayed due to traffic class priority values.

7. A receiver shall maintain a separate TKIP replay window for each TKIP temporal key.

8. A receiver may delay advancing a TKIP replay window until an MSDU passes the MIC check, to prevent attackers from injecting MPDUs with valid ICVs and IVs but invalid MICs.

9. In order to accommodate burst ACK, the TKIP receiver shall check that the received TKIP sequence counter (16 bit counter) is no smaller than 15 less than the greatest TKIP replay window value for the MPDU’s temporal key. [we need to reword the previous sentence.n Problem, an bad guy sends a message with the sequence number greater than the current number.]When combined with the prohibition on correctly decrypting more than one MPDU under a given <temporal key, IV> pair, this provides replay protection and accommodates frames that may be delayed due to message class priority values, with a window size of 16.

 [Revisit point 9 once we know what the right answer is.]

[The algorithm we have been discussing, viz., to simply maintain separate receive windows for each traffic class, works only if we never change keys. This certainly makes everything work properly if we don’t change keys, but if we do, there is no guarantee that low priority traffic protected under an old <key, sequence number> pair is not still queued after two rekeys. Either we will have to assign a new sequence number and key or else drop the traffic, or change the algorithm.]

Note: This works because if an attacker modifies the IV, then this alters the encryption key and hence both the ICV and MIC will ordinarily decrypt incorrectly, causing the received MPDU to be dropped.

8.3.1.2.4.5 TKIP MIB attributes

The following is the TKIP decision tree on transmit:

if the packet Ethertype is 802.1X

the MPDU is transmitted without encapsulation

else if the packet Ethertype is not 802.1X

map the MSDU DA to the appropriate RA

if there is one or more entries in dot11TKIPKeyMappings for that RA
[Thisis the first time we use the term “dot11TKIPKeyMappings”.]
if all entries have dot11TKIPEnableTransmit set to “false”

discard the entire MSDU and generate an

MA-UNITDATA-STATUS.indication primitive to notify LLC that

the MSDU was undelivered because no temporal key is in the

appropriate state

else if an entry has dot11TKIPEnableTransmit set to “true”

TKIP enccpsulate the MSDU using that entry, setting the KeyID

subfield of the WEP IV field to KeyID
[Thisis the first time we use the term “KeyID”.]
else if WEP is implemented

apply WEP decision tree (clause 8.2.3.1.3.5) to associated MPDUs 
else if aExcludeUnencrypted is true

discard the entire MSDU and generate an MA-UNITDATA-STATUS.indication

primitive to notify LLC that the MSDU was undelivered because no TKIP entry

exists

else

forward the MSDU without TKIP protections

The following is the TKIP decision tree on receive:

if the WEP subfield of the MPDU Frame Control Field is zero

if aExcludeUnencrypted is “true” and the packet Ethertype is not 802.1X

discard the frame body without indication to LLC and increment

dot11WEPExcludedCount

else

receive the frame without decapsulation

else

if there is one or more entries in dot11TKIPKeyMappings matching the MPDU’s TA, RA,

and KeyID

if all entries have dot11TKIPEnableReceive set to “false”


 increment the dot11TKIPWrongStateCount
discard the MPDU
else
if the sequence check fails

increment the dot11TKIPReplayCount

elseif the ICV check fails

increment the dot11WEPICVErrorCount

elseif the MIC check on the reassembled MSDU fails

increment the dot11TKIPMicFailureCount

invoke countermeasures as necessary

else
TKIP decapsulate with the entry
· 
· 
· 
-deliver the MSDU 
else if WEP is implemented

apply the WEP receive decision tree (clause 8.2.3.1.3.5)
else

the MPDU is encapsulated, but we don’t have the key; discard the MPDU

[Editor’s note: The question becomes what else do we do in the last case? Generating some sort of event would be useful to recover from the case where we have crashed, lost our keys, and then come back up but the peer has not yet noticed anything amiss. Or it might represent an attack. Or it might represent packets filtering through from a different security domain that the station has left and therefore flushed its keys.]

8.3.1.3 AES-OCB privacy

A protocol based on the Advanced Encryption Standard (AES) and Offset Codebook (OCB) mode has been adopted. This protocol is called AES-OCB-based privacyOr is it AES-OCB privacy?].

8.3.1.3.1 AES-OCB overview

AES-OCB privacy is based on 128-bit AES in OCB mode.  It consists of three parts: a key derivation procedure, an encapsulation procedure, and a decapsulation procedure:
a) The key derivation procedure - Once an association is established and a temporal key for the association configured by 802.1X, the 802.11 MAC uses the key derivation algorithm to derive a cryptographic keys from the (Re)association Request and Response and the temporal key K. This will produce the key used to protect the association data. The implementations also initialize synchronized association state at this time, described in more detail below.

b) The encapsulation procedure - Once the key has been derived and its associated state initialized, the 802.11 MAC uses the AES-OCB encapsulation algorithm with the key and the state to protect all unicast MSDUs it sends to the associatted STA,.

c) The decapsulation procedure - Once the key has been derived and associated state initialized, the 802.11 MAC uses the AES-OCB decapsulation algorithm with the receive key and state to decapsulate all unicast MSDUs received from the associatted STA. Once the key is known the MAC shall discard any MSDUs received from the associated STA that were not encrypted. 
802.1X may also assign a broadcast/multicast key. The implementation uses this key as a derived key.  The key is used  to protect all broadcast/multicast MSDUs. The broadcast/multicast state is initialized whenever the broadcast/unicast key is set.

Note 1. The AES-OCB privacy protocol requires 802.1X authentication and key management. 
Note 2.The quality of protection any key offers with any cryptographic algorithm degrades through key usage.   It is impossible to estimate when the protection a key affords has been exhausted without counting the number of blocks protected. In order to avoid maintaining a history of all MSDUs used with every key a fresh, never-used-before key is required whenever a new “session” begins. Thus, keys really cannot be used independently of some notion of a session. Similarly, the replay protection counter assumes that peers synchronize a fresh never-used-before key whenever the replay state is initialized..   This avoid having to maintain history of every MSDU received. The 802.11 AES-OCB privacy algorithm identifies unicast key “sessions” with 802.11 associations and uses (Re)association messages for the synchronization function, a random nonce exchange with a key derivation to effect fresh keys. An IBSS desiring to use the AES-OCB privacy algorithm must therefore implement (Re)association messages. [if AES-OCB uses 802.1x, then how can IBSS use AES-OCB?]
Note 3. The AES-OCB privacy protocol architecturally lies above the 802.11 retry function.[ we need a diagram or something to understand the term “lies above”.  I think we want “AES .. muse be executed before any retry attemps”] This is required since an MDSU may be accepted by the local 802.11 implementation but its acknowledgement lost in transit to the peer. If the AES-based privacy protocol were to lie below the 802.11 MAC retry function, then it would be impossible to recover from this state, as the replay protection function would discard all further retries.

AES is defined by FIPS Standard 197. OCB Mode is defined by the paper http://www.cs.ucdavis.edu/~rogaway/ocb/ocb.pdf, key portions of which are reproduced in Annex ??.

8.3.1.3.1.1 AES-OCB encapsulation

The following steps encapsulate MSDU plaintext data: :

a) Select the appropriate context based on the MSDU;

b) Increment block count and the appropriate replay counter, based on the MSDU service class;

c) Construct the Replay-Counter field of the final AES-OCB-protected MSDU payload;

d) Construct the OCB nonce using the Replay-Counter, MSDU service class, and source MAC address;

e) Construct an associated data block from the destination MAC address;

f) AES-OCB encrypt the MSDU and associated data;

g) Construct the MSDU payload from the replay counter, OCB encrypted data, and the OCB tag.

8.3.1.3.1.2 AES-OCB decapsulation

The following steps decapsulate the MCSU received over a protected association or broadcast/multicast channel:

a) Select the appropriate context based on the received MSDU;

b) perform some basic sanity checks on the packet; [we should specify the checks]
c) construct the OCB nonce using the Replay-Counter, QoS Traffic Class, and the source and destination MAC addresses from the received MSDU;

d) using the constructed nonce and temporal key from the selected context, AES-OCB decrypt the MSDU data;

e) If the MSDU is unicast, extract the sequence number from the MSDU Replay-Counter field and verify the MSDU is not a replay. [ there is no replay protection for broadcast.multicast messages?]
8.3.1.3.2 AES-OCB MSDU format

The AES-OCB-based privacy method encapsulates the MSDU payload. Figure 10 shows the encapsulated MSDU when using AES-OCB-based privacy.

The data overhead of the AES-OCB-based privacy algorithm is 12 bytes. This includes a 28-bit replay counter, the single KeyID byte inherited from WEP, and a 64-bit Message Integrity Code (MIC) used to detect forgeries.


[image: image7.wmf] 

MSDU Data

 

(PDU)

 

>=1

 

MIC

 

8

 

Note: The encipherment process has expanded the original MSDU by 12 Octets, 4 for the replay counter field, 

and 8 for the Message Integri

ty Check (MIC). The MIC is calculated over the Data fields only.

 

Encrypted 

(Note)

 

Replay 

Counter

 

4

 

KeyID

 

2 bits

 

Replay Sequence No

 

Reserved

 

2 bits

 


Figure 10 - Construction of Expanded AES MPDU

The AES-OCB privacy protocol is invisible to entities outside the 802.11 MAC data path. [ why this statement? All link encryption can only be seen at the MAC/PHY layer only]
Note: The AES-OCB-protected MSDU payload may span MPDUs.

8.3.1.3.3 AES-OCB state

AES-OCB uses  the dot11AESOCBKeyMappings MIB array. The array has zero, one, or two entries for each MAC address pair with which the STA maintains secure associations. The size of the dot11AESOCBKeyMappings array is implementation-specific. A global MIB variable dot11AESOCBKeyMappingLength indicates the number of entries in the array.

Each entry of the dot11AESOCBKeyMappings groups contains:

1. A dot11AESOCBReceiveAddress and a dot11AESOCBTransmitAddress, indicating that this entry applies to all MPDUs being sent between this pair of addresses;

2. A dot11AESOCBKeyID, indicating the WEP KeyID into which this entry maps;

3. A 128-bit key called the dot11AESOCBTemporalKey, referred to informally as the temporal key. This is the derived key as specified in 8.3.1.3.4.1 for  unicast, and the unaltered temporal key for broadcast/multicast. The broadcast/multicast temporal key shall be configured by 802.1X.

[Bit ordering of AES key?]

4. A set of 28-bit dot11AESOCBTrafficClassNSequenceCounter counters, for constructing the next OCB nonce.  The are N classes.  The number of classes  ranges from 0 to15, with one traffic class defined for each QoS service class. When QoS is not used, only dot11AESOCBTrafficClass0SequenceCounter is used.

5. A 48-bit dot11AESOCBBlocksSent counter is used to count the number of 128-bit blocks protected by the present temporal key;

6. A set of 28-bit dott11AESOCBTrafficClassNReplayWindow replay windows, are used to detect. replays.  The number of replay windows N ranges from 0 to15. When QoS is not used, only dot11AESOCBTrafficClasse0ReplayWindow is used.

7. A dot11AESOCBEnableTransmit boolean flag is used to indicate when the temporal key and MIC send key can be used for transmitting MSDUs;

8. A dot11AESOCBEnableReceive boolean flag is used  to indicate when the temporal key and MIC receive key can be used for receiving MSDUs.

9. A 32-bit 802dot11AESOCBFormatErrors counter is used to indicate the number of MSDUs received with an invalid format
10. a 32-bit 802dot11AOCBReplays counter is used  to indicate the number of received unicast fragments discarded by the replay mechanism
11. a 32-bit 802dot11AESOCBDecryptErrors counter is used  to indicate the number of received fragments discarded by the OCB decryption mechanism, 
12. a 48-bit 802dot11AESOCBRecvdBlocks counter is used, to track the total number of protected blocks received.

Note 1: A broadcast/multicast entry does not utilize the replay window. This is because it is impossible to detect broadcast/multicast replays using symmetric key techniques. Any party holding the broadcast/multicast key can masquerade as any other member of the group.  So, an any member could intrude on another’s sequence space without detection.

Note 2: Rather than save the key itself, the AES-OCB key schedule can be computed once and maintained  for all MSDUs received. Functionally this is indistinguishable from re-computing the key schedule on each MSDU.

8.3.1.3.4 AES-OCB procedures

8.3.1.3.4.1 AES-OCB key derivation

AES-OCB-based privacy protocol derives the unicast keys from the 802.1x temporal key. The key derivation algorithm shall be applied to all unicast keys.

The key derivation algorithm uses 
· the 802.11 Association or Reassociation Request and Response messages establishing the association. These messages shall include Nonce Elements when the AES-OCB-based privacy protocol is used. It is a protocol error to use the AES-OCB-based privacy algorithm without including Nonce Elements in the Association or Reassociation messages establishing the association. 
· the MAC addresses of the association peers in the computation, so the derived keys are tied to communication between a particular pair of 802.11 systems.
 The derived keys are per-association.

The key derivation algorithm uses the AES-128-CBC-MAC algorithm. Denote the CBC-MAC of a text string A under the key K by CBC-MACK(A):

partition A into 128-bit blocks A = A1 || … || An–1 || pad(An)

IV0 ( 0128
for i = 1 to n–1 do

IVi  ( AES_EncryptK(Ai ( IVi–1)

the result is AES_EncryptK(pad(An) ( IVn–1)
That is, the algorithm begins by partitioning A into a sequence of n concatenated 128-bit blocks A1 || … || An–1 || pad(An), padding the last block with trailing zero bits as necessary to extend it to the full 128-bit block size; the notation “||” denotes the concatenation operator. Next the algorithm creates an all-zeros initialization vector IV. The Algorithm XORs the IV with each block A1 || … || An–1 || pad(An) in succession to compute the next IV, finally returning the last IV as its result.

To derive the association unicast keys from the association key K, first concatenate the following fields from the (Re)association messages used to establish this association, in the order specified:

a) the MAC address MACI from the initiating STA’s (Re)association Request message;

b) the MAC address MACR from the responding STA’s (Re)association Response message;

c) the Nonce Element NI from the initiating STA’s (Re)association Request message;

d) the Nonce Element NR from the responding STA’s (Re)association Response message;

e) if present, the ASE ASEI from the initiating STA’s (Re)association Request message;

f) if present, the ASE ASER from the responding STA’s (Re)association Response message;

g) if present, the UCSE UCSEI from the initiating STA’s (Re)association Request message;

h) if present, the UCSE UCSR [should this be UCSER?] from the responding STA’s (Re)association Response message;

i) if present, the UCSE UCSEI [should this be MCSEI?] from the initiating STA’s (Re)association Request message; and

j) if present, the UCSE UCSR[should this be MCSER?]  from the responding STA’s (Re)association Response message:

C = MACI || MACR || NI || NR || ASEI || ASER || UCSEI || UCSER || MCSEI || MCSER
Then compute the per-association unicast key as the CBC-MAC of this string C:

Temporal Key = CBC-MACK(C)

Note. The unicast key derivation algorithm performs three functions. First, it protects all the fields extracted from the (Re)association messages utilized to establish the association from undetected modification. Second, assuming the Nonce Elements convey random data, it randomizes the keys actually used to protect the association data traffic, thereby making it unlikely that any key will ever be reused across different associations. Finally, it “stretches” the entropy of the underlying temporal key, so systems can maintain reasonable security guarantees without requiring frequent manual rekeying of the temporal key.

8.3.1.3.4.2 Transmit context selection

To encapsulate data, the transmitter first checks whether the MSDU is unicast or multicast/broadcast. It selects the correct transmit context by mapping the destination address to an entry in the dot11AESOCBKeyMappings. If an appropriate context exists, a conformant implementation shall use the entry to protect any MSDU it sends.

8.3.1.3.4.3 Incrementing the transmit block count and replay counter

To encapsulate data, the transmitter computes the total number of blocks to be protected in the MSDU. This is defined as

m = ((# MSDU data bytes)/AES-Block-Size(,

where (a( means, round a up to the nearest integer, and AES-Block-Size = 16 (bytes). 

If adding the number of blocks m would cause the context’s value of dot11AESOCBBlocksSent to wrap—i.e., if   m + dot11AESOCBBlocksSent > 248—then the cryptographic protection afforded by the key are considered exhaustedIt is a protocol error to continue using the key . The sender shall not transmit another MSDU on the association or broadcast/multicast channel protected by the key until a new key is gnenerated. [if the implemenation trys to send then ]The encapsulation algorithm shall halt with an error in this case.

Given a valid key,  from the selected context and the MSDU QoS traffic class, the implementation selects appropriate 28-bit per-service-class replay counter[what MIB value is this?]. If QoS traffic classes are not in use, then there is only one replay counter for the entire association.

If the value of the selected replay counter is 228–2 = 268435454 (or greater), then another valid nonce cannot be constructed. Re-using this replay counter means that more than one MSDU would be protected by the same <key, nonce> pair, voiding the security guarantees. The sender shall not transmit another MSDU on this association or broadcast/multicast channel until the key is replaced, and [see above, when is the error generated?]the encapsulation algorithm shall halt with an error.

If  the value of the selected replay counter is less than 268435454, thenit is still feasible to construct another valid nonce. The implementation adds m to dot11AESOCBBlocksSent and 2 to the replay counter, and proceeds to the next step.

Note:[we need an ntroduction to this note.  The text appears to address three different items] The value 248 was selected because the proof of OCB mode security indicates the insecurity of the construction increases as O(s2/2128), where s is the total number of blocks protected. If A is the probability that an adversary can break the underlying block cipher AES, then the choice of s = 248 bounds chances of breaking AES-OCB mode to no more than approximately A + (248)2/2128 = A + 1/232;. U sing a single key in OCB mode over 248 blocks does not greatly increase the adversary’s chances over breaking a single block encrypted under AES. the following argument does not hold water]the replay counter is transmitted with the encrypted data, and it is necessary to minimize the number of bits transmitted through the wireless medium; further, it is desirable to use an odd number of bytes for the sequence number, so the existing WEP KeyID byte could be maintained to simplify hardware implementations. This limited the choices to 24-bits (3 bytes), 28-bits[how is 28 bits an odd number of bytes?], 40-bits (5 bytes), 56-bits (7 bytes), etc. 24-bits is too small, but security decays too much with 56-bits. While 40-bits can be selected, it requires the counter to be interspersed in the replay sequence number field as the KeyID bits are in fixed bit positions 30 and 31. However, if we expand from 24-bits to 28-bits, it allows us to maintain a 32-bit replay sequence number field and enough blocks to be processes with a reasonable lifespan for the key.

8.3.1.3.4.4 Encoding the transmit Replay-Counter

The AES-OCB-based privacy algorithm Replay Counter is a four-byte field. It is used to convey the MSDU sequence number to the peer, The replay Counter is utilized to construct the nonce and to detect replayed MSDUs.  
The replay counte r computed in 8.3.1.3.4.3 is encoded into the Replay-Counter field. This is accomplished by first encoding the number as a 28-bit big-Endian integer BEI. Next the three most significant bytes of BEI are encoded into the first three bytes of the Replay-Counter field. Following these three bytes the remaining 4-bits is concatenated with the 2 KeyID bits. Symbolically,

BEI ( Big-Endian(replay counter ( 16)
Partition BEI into a sequence of 4 bytes: BEI = BEI1 || BEI2 || BEI3 || BEI4, where

B EI4 = BEIbit25 || BEIbit26 || BEIbit27 || BEIbit28 || 04KeyID ( 068 [jese this appear to be wrong]|| keyidbit1 || keyidbit2

Replay-Counter ( BEI1 || BEI2 || BEI3 || KeyID
This format matches the WEP IV field, with the exception of the use of the first nibble in the KeyID byte. 

8.3.1.3.4.5 Construct the OCB nonce

This algorithm works for both transmit and receive. OCB mode requires a unique nonce be used for each message it encrypts for valid  security guarantees. The implementation shall construct the OCB nonce as the concatenation of 
1. Replay-Counter from clause 8.3.1.3.4.4 
2.  its QoS traffic class, 
3.  the MSDU source MAC address
4.  the MSDU destination MAC address:

nonce ( Replay Counter || QoS-Traffic-Class || Source-MAC-Address  || Destination-MAC-Address
If QoS traffic classes are not in use, the QoS-Traffic-Class value shall be 04, i.e., 4 bits of zero. The Source-MAC-Address, Destination-MAC-Address, and QoS-Traffic-Class shall be encoded in the nonce in the same byte order as in their MSDU encoding. This nonce construction guarantees nonce unicity of these values. Note Source-MAC-Address may differ from the 802.11 transmit address. Similarly, the Destination-MAC-Address may differ from the 802.11 receiver address.

Note. An 802.11 implementation can  construct a duplicate nonce by using the wrong station’s MAC address as the source or destination MAC address, but such a construction is non-conformant. This can be a security problem for broadcast/multicast. If a deployment experiences a rash of duplicate nonces for broadcast multicast, it may indicates either a non-conformant implementation, a “traitor” within the BSS—i.e., a party intentionally misbehaving—or a compromise of the BSS broadcast/multicast key.

8.3.1.3.4.6 Protect the transmit MSDU

The implementation shall use the AES-OCB temporal key TK constructed in 8.3.1.3.4.1and the nonce constructed in 8.3.1.3.4.5 to OCB encrypt the plaintext MSDU data. This results in two outputs:

a) An OCB-ciphertext string. This string contains the same number of bytes as the MSDU plaintext data; and

b) A 64-bit OCB-tag.

Symbolically,

OCB-ciphertext || OCB-tag  ( OCB-Encrypt(TK, nonce, MSDU-data)

where OCB-Encrypt(A, B, C) denotes encrypting its third parameter C under key A using nonce B.

8.3.1.3.4.7 Construct the MSDU transmit payload

Finally, all the elements are assembled in the final MSDU payload. The AES-OCB-based privacy-protected MSDU payload consists of the concatenation of the Relay-Counter field (clause 8.3.1.3.4.4), the OCB-ciphertext (clause 8.3.1.3.4.6), and the OCB-tag (clause 8.3.1.4.6):

MSDU-Data ( Replay-Counter || OCB-ciphertext || OCB-tag.

.

8.3.1.3.4.8 Receive context selection

The recipient shall select the appropriate context for the received MSDU based on the Transmit and Receive MAC addresses and the KeyID bits. If the Receive address is broadcast/multicast, then the selected context becomes the broadcast context. If not, the receiver verifies there is a unicast context for the frame. If the selected context is for the AES-OCB-based privacy algorithm, then the receiver continues with the AES-based privacy decapsulation algorithm.

If the AES-OCB-based privacy algorithm is utilized by an association, the receiver must treat all MSDUs as protected. Without this provision, an attacker can forge a valid message by simply sending a clear text message. Hence all implementations must maintain some state indicating whether AES-based privacy protection should be applied to a received MSDUs, whether or not (a) the WEP bit from the MAC header is asserted, and  (b) the KeyID bits are actually zero.

8.3.1.3.4.9 Receive sanity checks

When a MSDU in AES-OCB is received the following checks shall be performed

1. If an applicable AES con ext is present, and if it does not consist of at least 15 bytes (3 bytes of LLC header, and 12 bytes of AES-based protocol overhead bytes), then the receiver shall discard the received MSDU and increment the context’s 802dot11AesFormatErrors counter. .

2. . The implementation computes the total number of blocks protected in the MSDU. This is defined as

m = ((# MSDU data bytes – 12)/AES-Block-Size(,

where (a( means to round a up to the nearest integer, and AES-Block-Size = 16..12 bytes are removed to account for the MSDU Replay Counter field and the OCB-tag field.

If adding the number of blocks m will cause the value of 802dot11RecvdAesBlocks from the context selected in 8.3.1.3.4.3 to wrap—i.e., if   m + 802dot11RecvdAesBlocks > 248—then the cryptographic protection afforded by the key are considered exhausted It is a protocol error to comtinue using the key. The receiver shall discard the MSDUm increment the context’s 802dot11SpentKeyErrors counter and halt with an error .[What revovers from a halt (thisis the the third time we lhalt)]
8.3.1.3.4.10 Decrypting the MSDU data

Use the nonce constructed in 8.3.1.3.4.5 and the AES key from the context selected in 8.3.1.3.4.8 to OCB decrypt the received MSDU. 

The OCB decryption algorithm will result in two one of outputs:

a) A verification of the tag, and the decrypted plaintext;

b) Failure, 
If the OCB decryption reports failure, the receiver shall increment the context’s 802dot11AesDecryptErrors counter, and the decapsulation algorithm shall halt.

8.3.1.3.4.11 Unicast replay verification

If the received MSDU was unicast, the last [we need a ponter to the “last chck’]check determines whether it is fresh or represents a replay. The receiver skip[skip?] shall this step for broadcast/multicast MSDUs, because it is infeasible to reliably determine replays using symmetric key techniques, and public key techniques are not specified for this implementation.
The MSDU sequence number is needed to provide replay protection. The little-Endian encoding of the MSDU sequence number can be extracted from the Replay-Counter field by dropping the last four bits of the Key-ID byte:

if Replay-Counter = RC1 || RC2 || RC3 || RC4 then

Big-Endian(SeqNum) ( RC1 || RC2 || RC3 || (RC4 ( 1404)

where “(” denotes bit-wise ANDoperation 
[redo as a flow]

To determine whether a unicast represents a replay, the receiver shall test whether the MSDU  replay counter SeqNum extracted from the MSDU Replay Counter field is a fresh value. 
if the pair <QoS-Service-Class, SeqNum> has never been received in a valid MSDU for the context’s key
It is fresh. 

Else

 
the receiver shall discard the MSDU, increments the 802dot11AesReplays counter
halts the decapsulation. 
Note that the AES transmit encapsulation implies that MSDUs sent from the STA to the AP always use even values for the sequence number, and MSDUs sent from the AP to the STA always use odd values for the sequence number. Hence, the sequence number checking at an AP shall verify that the constructed SeqNum value is even, and at the STA that the constructed SeqNum value is odd; the implementation shall increment the 802dot11AesReplays counter and halt the decapsulation of this check fails. The implementation may use any suitable technique to guarantee that the pair <QoS-Traffic-Class, SeqNum> is fresh.

8.3.1.3.4.12 Completing reception

If the MSDU has not been discarded due to the processing described above, then the receiver must update the 802dot11RecvdBlocks counter by adding to it the value b computed in 8.3.1.3.4.3, to indicate the number of blocks decapsulated, and the decapsulation completed successfully.

8.3.1.3.4.13 AES-OCB MIB attributes

8.3.2 Security association management

8.3.2.1 Security association life cycle

8.3.2.2 RSN Negotiation

As described in 8.1.3, RSN capable STAs (including APs) identify themselves by asserting Robust Security in Association, Beacon, Probe, and Reassociation messages. This forms the basis of RSN negotiation. RSN negotiation is an integral part of association or Reassociation, and establishes four association-specific parameters:

1. a authentication mechanism- Authentication Suite Element (ASE, 7.3.2.17),;

2. a unicast cipher suite the Unicast Cipher suite Element (UCSE, 7.3.2.18),;

3. a multicast cipher suite the Multicast Cipher suite Element (MCSE, 7.3.2.19),
4. nonces- Nonce Element (NE, 7.3.2.20).

. A STA may include ASE, UCSE, and MCSE in Beacons and in Association, Probe, and Reassociation Responses asserting Robust security. A STA may include one NE in Association and Reassociation Requests/Responses asserting Robust security. A STA shall not include any of these information elements in any in any messages that fail to assert Robust security.

An RSN uses the RSN Information elements to negotiate security parameters governing an association. The RSN Information Elements included in (Re)association Requests suggest parameter values, and RSN Information Elements included in (Re)association Responses indicate the agreed upon parameter values.

8.3.2.2.1  Advertisements

If an RSN-capable STA includes the CSE or UCSE in an Association or Reassociation Request to another RSN-capable STA, the CSE or UCSE may specify one or more authentication or cipher suites, respectively. All the suggested suite values shall be implemented and acceptable to the initiating STA, and the STA shall order the suite OUIs from most desirable to least desirable in each Information Element. If an RSN-capable STA does not include the CSE or UCSE in an Association or Reassociation Request to another RSN-capable STA, this signals the requestor has delegated the suite selection to the responder.

If an RSN-capable STA includes the CSE, UCSE, or MCSE in an Association or Reassociation Response to another RSN-capable STA, the CSE, UCSE, or MCSE shall specify a single authentication or cipher suite, respectively; this shall be the suite selected for use with the association. If an RSN-capable STA does not include the CSE, UCSE, or MCSE in an Association or Reassociation Response to another RSN-capable STA, this shall signal the requestor to use the default the suite associated with the information element. The default CSE authentication suite is 802.1X authentication, and the default UCSE and MCSE cipher suite is the AES-based protocol.

If an RSN-capable STA receives an Association or Reassociation request conveying a CSE, it shall either select one of the authentication suites specified by the CSE or else shall refuse to accept the Request. Similarly, it shall either select one o f the cipher suites offered in an included UCSE or else refuse to accept the Request. A response accepting the request shall always convey a responding CSE or UCSE when the corresponding request included one.

If an RSN-capable STA receives an Association or Reassociation Request not conveying a CSE but with RSN asserted, the receiver shall select any RSN-enabled authentication suite it supports; similarly, the receiver may select any RSN-enabled cipher suite if it receives an Association or Reassociation Request fails to include a UCSE.

If an RSN-capable STA receives an Association or Reassociation Response conveying a CSE, it shall execute the specified authentication protocol or else it shall immediately disassociate. Similarly, when an RSN-capable STA receives an Association or Reassociation response conveying a UCSE or MCSE, it shall either prepare to use the specified cipher suite or else shall immediately disassociate.

If an RSN-capable STA receives an Association or Reassociation Response from an RSN-enabled peer that does not include a CSE, it shall either use the default cipher suite, or it shall immediately disassociate if it does not support the default. Similarly, if it receives an Association or Reassociation Response from an RSN-enabled peer that does not include a UCSE or MCSE, it shall prepare to use the default cipher suite corresponding to the missing Information Element, or shall immediately disassociate if it does not support the default.

8.3.2.2.2 Negotiation procedures

An RSN-enabled STA or AP offering association services may advertise the authentication, unicast, and multicast cipher suite(s) it supports by including the ASE, UCSE, and MCSE in its Beacons and in its Probe Responses. See 8.3.2.2.5, however, on interoperability with pre-RSN equipment.

8.3.2.2.3 Roaming

When using fast hand-off to effect roaming, the STA shall propose in its Reassociation Request only the unicast cipher suite agreed upon during the initial contact association. The responding AP shall reject the Reassociation Request if this unicast cipher suite is unacceptable, and otherwise shall accept the unicast cipher suite. A rejection requires the STA to perform a full association to re-establish communications instead of a Reassociation.

If the AP accepts the Reassociation, then the requesting STA shall disassociate if the Reassociation response selects a unicast or multicast cipher suite different from that selected by the original association when fast hand-off is in effect.

8.3.2.2.4 Error handling

A requesting STA may decline to associate with a peer for any of the following policy reasons:

1. The peer AP or STA does not assert Robust Security in its Beacons and Probe Responses;

2. The peer does not include an ASE in its Beacons and Probe Responses;

3. The peer does not advertise an acceptable Authentication Suite Selector in its ASE;

4. The peer does not advertise an UCSE in its Beacons and Probe Responses;

5. The peer does not advertise an acceptable Unicast Cipher Suite Selector in its UCSE;

6. The peer SSID is unknown;

7. The peer SSID is known but forbidden;

8. The peer selects an unsupported or unauthorized authentication suite in its Association or Reassociation Response;

9. The peer selects an unsupported or unauthorized unicast cipher suite in its Association or Reassociation Response;

10. The peer selects an unsupported or unauthorized multicast cipher suite in its Association or Reassociation Response.

A responding STA may decline to associate with a requesting STA for any of the following policy reasons:

1. The requesting STA does not assert Robust Security in its Associate or Reassociate Requests;

2. The requestor includes an ASE proposing only authentication suites the RSN does not utilize;

3. The requestor includes an UCSE proposing only unicast cipher suites the RSN does not utilize.

A requesting or responding STA may also decline to associate for other reasons that are outside the scope of this standard.

If an RSN-capable STA detects that its peer has asserted Robust Security unexpectedly, then it shall disassociate with a “Robust Security used inconsistently” (12) reason code. This happens when

a) An AP or STA asserts Robust Security in its Beacons and Probe Responses but not in its Association or Reassociation Responses.

b) An AP or STA fails to assert Robust Security in its Beacons and Probe Responses, but does in its Association or Reassociation Responses.

c) A STA uses legacy MAC-sub layer authentication but asserts Robust Security in its Association or Reassociation Requests.

Similarly, an RSN-capable MAC shall silently ignore a Beacon or Probe Request or Response that includes an ASE, UCSE, or MCSE that does not assert Robust Security, and it responds with a Disassociation Notification if it receives an Association or Reassociation Request or Response including an ASE, UCSE, MCSE, or NE that does not assert Robust Security; the reason code is “Robust Security required by Information Element” (11).

It is an error for a responding STA to include an ASE, UCSE, or MCSE containing more than one selector in an Association or Reassociation Response. Initiating STAs reject such Association or Reassociation Responses with a Disassociation Notification conveying a Reason Code of “Invalid Information Element” (13).

8.3.2.2.5 Coexistence with pre-RSN equipment

Because 802.11 information elements are not self-describing, it is impossible for pre-RSN equipment to recognize the RSN Information Elements. Therefore, RSN-capable equipment shall not include the CSE, UCSE, MCSE, or NE Information Elements in any Association, Beacon, Probe, or Reassociation message sent to another STA that fails to assert Robust Security in its Association, Beacon, Probe, or Reassociation messages.

In particular, an RSN-capable STA initiating an association shall not include any of the RSN Information Elements in its (Re)association Requests unless the targeted peer has advertised its support of an RSN by asserting Enhanced Security in its own Beacons and Probe Responses. An initiating STA shall not include an RSN Information Elements in its Probe Requests unless the targeted peer has asserted RSN in its Beacons. Note also that 8.1.3 permits an RSN-capable STA requesting an association to masquerade as a legacy STA, by failing to assert the Enhanced Security subfield.

Similarly, a STA or AP offering distribution services shall never include RSN Information Elements in its Beacons unless the local security policy expressly forbids interoperability with legacy equipment.

8.3.2.3 Security association initiation

8.3.2.3.1 Overview

8.3.2.3.2 Authentication

8.3.2.3.2.1 802.1X authentication

802.1X authentication performs authentication in a layer above the IEEE 802.11 MAC layer. It removes all authentication processing from the IEEE 802.11 MAC, instead delegating this function to 802.1X. A Station that requests authentication with this algorithm may become authenticated if dot11AuthenticationType at the recipient station is set to Upper Layer Authentication. IEEE 802.1X authentication is not required to be successful, as a Station may decline to authenticate with any other Station.

If the Association or Reassociate completes successfully with the selection of 802.1X Authentication, the IEEE 802.11 MAC passes all data packets it receives from higher layers, delegating the filtering of any unauthorized traffic to IEEE 802.1X. This filtering and the steps of the 802.1X authentication are opaque to the 802.11 MAC itself.

802.1X Authentication does not use and does not permit the use of IEEE 802.11 Authentication frames. An implementation that generates authentication management messages when Upper Layer authentication has been negotiated is not in compliance with this specification. However, a MAC that receives 802.11 Authentication management messages over an association using 802.1X Authentication should increment an error counter and discard the messages; they could represent a denial of service attack masquerading as the peer.

An implementation may cache the ASE information associated with an RSN, to optimise later exchanges. That is, it may guess that the same RSN will use the same ASE in later exchanges, and so it can specialize the ASE in its Reassociation Requests. If this assumption fails because the RSN changes authentication algorithms, it can fall back to an exchange based on all the authentication mechanisms its policy allows.

8.3.2.3.3 Key hierarchy

A key hierarchy is the sequence of steps that are used to generate from a root key a set of encryption keys that are used to either encrypt/decrypt messages or authenticate messages. A key hierarchy should include some time varying information so that the same set of encryption keys is not generated each time the hierarchy is used. A key hierarchy should also be set up such that if the derived encryption keys were to become known, the root key could not be obtained from the encryption keys.

This proposal defines an overall key hierarchy that consists of three smaller layered key hierarchies:

· The master key hierarchy (EAP keying, pre-shared key, or random number, depending on the hierarchy and authentication method).  If EAP keying is used for the master key hierarchy, the master key hierarchy will normally reside on the RADIUS server and the supplicant.

· The rekeying key hierarchy.  The two types of rekeying hierarchies are called Dyad key hierarchies and Assemblage key hierarchies. The steps in these two types of hierarchies are similar; only the inputs to the two types are different.

· The per-packet key hierarchy.  This may be either for TKIP (using an RC4 encryption engine), or for AES.

Dyad key hierarchies are used to derive the keys that are used between two entities in a BSS wireless network (AP and associated station in a BSS network, or a pair of stations in an IBSS network).

Assemblage key hierarchies are used to derive and transfer keys that are used by all entities in a wireless group (an AP and all stations associated with that AP in a BSS network, or all entities in an IBSS network).

The diagrams in this section show an overview of the overall key hierarchies for TKIP and AES Dyad keys and TKIP and AES Assemblage keys. Later sections in the document go into each part of the key hierarchy in more detail.

Dyad key hierarchies are instantiated in parallel on the two entities that are using that Dyad key, with each entity calculating the same set of encryption keys using shared information.  One of the two entities drives the Dyad key hierarchy, that entity is known as the Dyad key owner.  For BSS networks, the Dyad key owner is the AP; for IBSS networks each possible pair of stations will have a Dyad key hierarchy, and the Dyad key owner is the station of the pair with the lower MAC address.

Assemblage key hierarchies are instantiated only on one entity, and the derived encryption keys are promulgated to all the other entities; the entity that drives the Assemblage key hierarchy is the Assemblage key owner.  For BSS networks, the Assemblage key owner is the AP; for IBSS networks the Assemblage key owner is the current beacon transmitter.

Each station will have at least two key hierarchies’ instantiated, and quite probably more.  In a BSS network, the AP will have a Dyad key hierarchy instantiated for each station that is associated, and also at least one Assemblage key hierarchy; the AP will be the key owner for all these hierarchies.  Each associated station will have one Dyad key hierarchy instantiated, and at least one assemblage key hierarchy.  For the IBSS network, each station will have a Dyad key hierarchy instantiated for every other station in the network, as well as a single Assemblage key hierarchy.

Note: In an IBSS network, since the beacon generator moves, the Assemblage key owner will move from station to station depending on which station transmitted the last beacon when an Assemblage key update is required. 

Note: If there are hidden stations in an IBSS network such that there are multiple beacon generators, then there will be multiple stations being Assemblage keys owners, and stations will need to choose which Assemblage key to use. 

The key owner will have a single Assemblage rekeying hierarchy instantiation for the Assemblage keys, and a Dyad rekeying hierarchy instantiation for each association. A key owner will have a per-packet key hierarchy per TKIP temporal key for both Assemblage and Dyad temporal keys (if any). A non-key owner will have a rekeying hierarchy instantiation for Assemblage keys and Dyad keys per association, and a per-packet key hierarchy per TKIP temporal key for both Assemblage and Dyad temporal keys (if any).

Note: In an IBSS network the Assemblage key owner and the Dyad key owner may not be the same station.

The following functions are used in the document:

PRF
Pseudo-random function defined in 8.3.2.3.10.

L (I, F, L)
Take from I starting from the left, bit F for L bits moving to the right using 7.1.1 bit convention from 802.11.

The terms KOA (Key Owner Address) and NOA (Non Owner Address) are used.  In a BSS network the KOA is the AP wireless MAC address and NOA is the station MAC address.

In an IBSS network KOA is the key owner MAC address and NOA is the other station MAC address.

8.3.2.3.3.1 TKIP key hierarchies
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Figure 11—Complete TKIP Dyad Key Hierarch
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Figure 12—Complete TKIP Assemblage Key Hierarchies

8.3.2.3.3.2 AES-OCB key hierarchies
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Figure 13—Complete AES Dyad Key Hierarchy
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Figure 14—Complete AES Assemblage Key Hierarchies

8.3.2.3.4 Master key derivation

8.3.2.3.4.1 Dyad master key (DMK) derivation

The Dyad Master Key is derived as a result of authentication between the two entities involved. Each authentication method has a different DMK derivation.

8.3.2.3.4.1.1 EAP method

An EAP method normally derives Master Session Key information from a Master Key. This key derivation is normally carried out independently and simultaneously on the authentication server and the station, based on information that was communicated between the authentication server and the station during authentication. Each EAP method will have a different key derivation method. Each EAP method will also have a different method of passing the master session key to the AP from the authentication server; the station will already have the master session key. For the EAP/TLS method, the Master Session Key is derived in the RADIUS server, and the Master Session Key information is passed to the AP in RADIUS attributes (defined by the EAP method such as in RFC2716).
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Figure 15—Master Key to EAP Master Session Key Derivation, example RFC2716

8.3.2.3.4.1.1.1 Radius Attribute

The Authenticator or AP shall use the MS-MPPE-Recv-Key (vendor-id = 17) attribute (See RFC2548 Section 2.4.3) which contains the first 256 bits of the EAP Master Session Key as the Dyad Master Key (DMK). The DMK and any derived keys shall not be used any longer than the Session-Timeout attribute + the IEEE 802.1X reAuthMax*txPeriod values.

Note: If the Radius Session-Timeout attribute is not in the Radius Accept message the DMK lifetime is infinite.

8.3.2.3.4.1.2 Pre-shared key

The EAPOL-Key exchange described later in this document is carried out using a pre-shared key as the Dyad Master Key (DMK). A single pre-shared key per ESS is supported as a MIB variable (dot11presharedkey) and must be 16 octets. When pre-shared keys are used the Dyad Master Key (DMK) information shall not be transferred between APs.

8.3.2.3.4.1.3 Reassociation

When a station re-associates with another AP, it would be useful to be able to transfer the keying information to the new AP and authenticate the station without requiring full 802.1X authentication. When transferring the Dyad Master Key (DMK), it would be useful to derive a Transfer DMK to pass to the new AP so if the new AP is compromised it cannot read old data.

To enable this, the Transfer DMK is derived by the old AP to be sent to the new AP. The following PRF should be computed to 32 bytes and is used as a Transfer DMK. The station shall also independently calculate the Transfer DMK. KOA is the old AP’s radio MAC address.

Transfer DMK = PRF-256 (DMK, “client EAP encryption”, KOA)

In addition, the remaining lifetime of the DMK (See 8.3.2.3.4.1.1) and the station’s MAC address must be passed to the new AP. The new AP shall check that the passed MAC address and the station’s MAC address in the re-association request are the same.

8.3.2.3.4.2 Assemblage master key (AMK) derivation

The Assemblage Master Key (AMK) for the Assemblage key hierarchy should be initialized using a cryptographically secure random number. If this is not possible it must be initialized to the first DMK the Assemblage key master receives (since there is no need to send broadcast traffic unless there is at least one station associated), but the following rules shall then be applied:

1. The AMK should be updated periodically from another current DMK.

2. The AMK shall be changed when the station whose DMK is being used as the AMK disassociates or the AP times out the association. 

Note: For the pre-shared key case the AMK is the pre-shared key.

8.3.2.3.5 Rekeying hierarchy

The Rekeying hierarchy takes the Dyad Master Key (DMK) material, derives the Dyad Transient Key (DTK) and then splits the Dyad Transient Key into the keys required. 8.3.2.3.4 describes how the Dyad Master Key is obtained. The Rekeying hierarchy also takes the Assemblage Master Key (AMK) material and derives the Assemblage Transient Key (ATK) and then splits the ATK into the keys required. 

DTKs are derived from the DMK using nonces from the key owner (KONonce) and from the other station (SNonce). ATKs are derived from the AMK using nonces from the key owner (ANonce).

8.3.2.3.5.1 Keying counter

All stations contain a global Keying Counter which is 192 bits in size. It should be initialized at system boot up time to

PRF-192(Random number, “Init Counter”, AP MAC address | Time)

Random number should be the best possible random number possible and 128bits in size. Time should be the current time (from NTP or another time in NTP format). This initialization is to ensure that different initial Keying Counter values occur across system restarts whether a real-time clock is available or not. The Keying Counter must be incremented (all 192 bits) each time a value is used as a nonce. The Keying Counter must not be allowed to wrap to the initialization value (which will happen after 2192 ( 6.277 ( 1057 uses).

8.3.2.3.5.2 Dyad transient keys

Dyad TKs are derived from the Dyad MK using a PRF with KOA, NOA, SNonce and KONonce as inputs. The size of the PRF computation shall be taken as the size specified by EAPOL-Key Key Length plus the size of the EAPOL-Key MIC Key and the size of the EAPOL-Key Encryption Key, i.e. 32+16+16 bytes for TKIP and 16+16+16 bytes for AES.

DTK = PRF-384/512 (DMK, “innovationsinwireless Dyad key expansion”, Min(KOA, NOA) || Max(KOA, NOA) || SNonce || KONonce)

KOA and NOA are concatenated in integer order i.e. the lower MAC address is concatenated first, followed by the higher MAC address. SNonce is a nonce sent by the station to the Key Owner and is concatenated next. KONonce is a nonce sent by the Key Owner to the station and is concatenated last. KOA and NOA are part of the PRF input so that the inputs are unique to each station pair.

KONonce is a nonce taken from the global Counter on the Key Owner whenever a new Dyad TK is derived. KONonce is used so the inputs to PRF are different for each TK set. If a station re-associates to the same AP, a different KONonce value is used for the derivation of a new TK set.

SNonce is a nonce taken from the global Counter on the station; its value is taken when a DTK is instantiated and is sent to the DTK Key Owner.

Note: The key owner can derive DTKs in advance after the association.

8.3.2.3.5.3 Assemblage transient keys

The key derivation for Assemblage keys uses a subset of the Dyad key hierarchy. A key owner may derive a new Assemblage TK when a station disassociates, otherwise the disassociated station can still read broadcast traffic from the network. The Assemblage Master Key (AMK) for the Assemblage key hierarchy must be initialized using a cryptographically secure random number.  If this is not possible it may be initialized to the first MSK the system receives (since there is no need to send broadcast traffic unless there is at least one station associated) but the following rules shall then be applied:

1. The AMK should be updated periodically from another current MSK.

2. The AMK shall be changed when the station whose MSK is being used as the AMK disassociates or the AP times out the association. 

Note: For the pre-shared key case the AMK is the PSK.

The global Counter is also used and incremented whenever an Assemblage TK is derived. Assemblage TKs are derived from the AMK using a PRF with KOA and ANonce as inputs. The size of the PRF computation shall be taken as the size specified by EAPOL-Key Key Length, i.e. 32 bytes for TKIP and 16 bytes for AES.

ATK = PRF-128/256 (AMK, “innovationsinwireless Assemblage key expansion”, KOA || ANonce)

ANonce is a value taken from the global Counter on the station; its value is taken when an ATK is instantiated and is sent by the ATK Key Owner.

Note: The key owner can derive ATKs in advance after the first association.

8.3.2.3.5.4 TKIP per-packet key hierarchy

This piece takes the Transient Encryption key and derives a key per packet for TKIP. A TKIP Per-Packet key hierarchy is instantiated for each Transient Key used for TKIP.
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Figure 16—TKIP Transient Key Hierarchy

8.3.2.3.6 Packet sequence counter exhaustion

There is a single Packet Sequence Counter (PSC) space per station per key for transient keys (216 for TKIP and 231 for AES). This PSC space is shared across QoS traffic classes. For Dyad keys the key owner must know the current PSC in use at the two stations. In a BSS network that is using Dyad keys, only the AP uses the Assemblage keys to transmit.  In an IBSS network all stations can use the Assemblage key to transmit, and the current Assemblage key owner must track the highest PSC used by any station for the Assemblage key.

The key owner has a Tx and Rx MIB variable per key holding the highest used PSC.

Note: When using QoS traffic classes the last used PSC may not be the highest PSC used.

There is a MIB variable per key containing the maximum PSC for the cipher suite that the key is being used with and a MIB variable containing the PSC value that when reached either by the Tx and Rx variable will cause MLME-SetKeys.Indication to be indicated.

The replay counter space for EAPOL-Key keys (264) is per DTK. It is exhausted when it wraps and reaches the value it was when the EAPOL-Key Key was last changed. It is incremented when an EAPOL-Key message is sent. If the replay counter space becomes exhausted before the temporal key PSC space, a new DTK shall be derived. 

8.3.2.3.7 Coordination of key updates

The EAPOL-Key message is used to transfer information between stations in the network for the rekeying process. This information may be nonces that will allow entities to independently derive DTKs, or the information may be the ATKs themselves, sent from the Assemblage key owner to the other stations.

Assemblage and Dyad key updates each use two key indexes to mitigate the loss in the ongoing data transmissions while keys are being distributed and applied at the stations. In the following descriptions these key indexes are referred to as DPing and DPong for the Dyad case, and APing and APong for the Assemblage case. In all cases, APing and APong will probably be implemented as default keys. For an AP in a BSS network, the DPing and DPong keys have to be key mapping keys. For the station in a BSS network, the DPing and DPong keys will probably be key mapping keys, but can be implemented as default keys. For an IBSS network, the DPing and DPong keys have to be key mapping keys if there are more than two stations in the network. Synchronization of key usage is driven by the key owner.

There are several cases of key updating that need to be described. Dyad key initialization and Dyad key rekeying are described first; all entities will be involved in at least one of the Dyad key hierarchies. Then the Assemblage keying where unicast messages are transmitted using Dyad keys is described for the initialization and rekeying case. Finally, Assemblage keying where unicast messages are transmitted using Assemblage keys is described for the initialization and rekeying case.

There is not an explicit notification that the station is starting to use a key because:

1. The design is that the key owner tells the other stations what to do; if the stations do not follow the key owner they do not have access to the network. The MAC level acknowledgement is used to make sure the EAPOL-Key message has arrived at the station.

2. If the station has not sent all the traffic for a key (say, Ping) before the key owner has updated the other key (Pong) and wants to update the original key (Ping), then the traffic encrypted with the original (Ping) key either must be re-encrypted at the station or will be discarded by the key owner when it receives the packet. If the key owner is using PSC exhaustion to decide when to update keys then it must update the key at that time; the only other viable option is to stop sending data. Adding a synchronization message to tell the key owner when the key is installed will mean data transmission must stop. The simpler option of no synchronization is taken since data loss will occur with either solution.

8.3.2.3.7.1 State diagrams

The following state diagrams explain the flow diagrams in the next section in a different way.

Where the EAPOL-Key is shown the following format is used:

EAPOL-Key (H, M, A, N1, N2, T, KONonce, ANonce, MIC, ATK)

Parameters are:

H: Dyad to Assemblage or vice-versa handoff

M: MIC is available in message

A: Response is required to this message

N1: Tx/Rx Key Index (which key to use for transmission)

N2: Rx Key Index (which key is being updated)

T: Key type - D (Dyad), A (Assemblage)

KONonce/SNonce: Key Owner Nonce/Station Nonce

ANonce: Assemblage Nonce

MIC: Integrity check

ATK: Assemblage temporal key

8.3.2.3.7.1.1 General state diagrams

There are three states for BSS networks that are called on three conditions: on association, on re-association and on disassociation. These three states initialize state variables for the rest of the state machines (depending on whether the station is a Dyad key owner or an Assemblage key owner) and then set the 802.1X set variables. The key owner and non-key owner state machines are destroyed on disassociation, association and re-association. It then starts the correct state machines depending on which keys the station owns. INIT state is entered when the station is initialized and while it is disassociated. On association the state machine enters the ASSOCIATION state. If the station is configured for using a pre-shared key it sets up the MSK and starts the station and key owner state machines. If it is not using a pre-shared key it starts 802.1X and waits for the 802.1X backend success for the Dyad key owner and then starts the key owner and non key owner state machines, otherwise it starts the non-key owner state machine.
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8.3.2.3.7.1.1.1 Key state variables

Counter is the global station Counter used for generating Nonces.

KONonce holds the current Nonce to be used if the station is a Dyad key owner.

SNonce holds the current Nonce to be used if the station is not a Dyad key owner.

ANonce holds the current Nonce to be used if the station is an Assemblage key owner.

N, M are the current key indexes for Dyad keys.

AN, AM are the current key indexes for Assemblage keys

TxN is the current Dyad key for generating EAPOL-Key MICs

CSNonce is the current Non key owner Nonce if the station is a Dyad key owner.

CKONonce[] is the current Key Owner Nonce for each key index if the station is not a Dyad key owner.

DTK[] is the current Dyad transient keys for each Dyad key index.

ATK[] is the current Assemblage transient keys for each Assemblage key index.

DAKeys hold the state of whether the current station supports Dyad as unicast keys or Assemblage as unicast keys.

DyadKO is whether this station is the Dyad Key Owner.

AssemblageKO is whether this station is the Assemblage Key Owner

MSK is the current master Session Key

PSK is the current Pre-shared key

802.1X::XXX are the 802.1X XXX state variables

Note: A re-association does not affect the 802.1X state machines, i.e. they receive no events and do not change state.

The station may send a re-associate request and the AP shall send a re-associate response without any communication about the station occurring to the rest of the ESS. The AP shall keep the newly re-associated station isolated from any other stations associated to it and from the ESS at large until it has validated the station, even if the station has the same MAC address as an existing station on the AP. Once the station has been validated, then the rest of the ESS can be notified to update where the MAC address is now located.

There are three states for IBSS that are called on three conditions: on probe response, on receiving a beacon and on deciding to be a beacon generator. These three states set-up the rest of the state machines depending on whether the station is a Dyad key owner or an Assemblage key owner.
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There is a state machine that calculates new Assemblage keys for stations that are the Assemblage key owner. There is a single one of these state machines per station since the Assemblage keys are used for all associations to a station. The state machine also informs the association assemblage state machines that there are new keys available to be sent to the association’s station.
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8.3.2.3.7.1.2 Non-key owner state diagram

The Non key owner state machine acts on incoming EAPOL-Key messages that contains all the information for the station to act on the message. 
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Figure 17—Non key owner state diagram

8.3.2.3.7.1.3 Dyad/assemblage key owner state diagram

There are two state machines for the Dyad and Assemblage case, a state machine for the Dyad keys and a state machine for the Assemblage keys. The Dyad state machine starts when the key owner obtains the MSK. When it has initialized the Dyad keys it starts the Assemblage state machine, if this is the first Dyad it initializes the ATK state machine.
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Figure 18—Dyad state machine

8.3.2.3.7.1.4 Assemblage as unicast key owner state diagram

There are two state machines for the case when Assemblage keys are used for unicast messages. The first state machine handles Dyad keys but doesn’t generate and configure temporal keys from the Dyad keys. The second state machine handles Assemblage keys.
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Figure 19—Key owner Assemblage only state diagram

8.3.2.3.7.2 EAPOL-Key exchange

The EAPOL-Key message has been defined to handle several different notifications. The EAPOL-Key message can be used for the following:

· To send nonces between the key owner and a station.

· To tell a station which key index is the transmit key.

· To send an ATK to a station.

A single EAPOL-Key message can simultaneously be used for more than one of these notifications.

The Key Owner will usually set keys into a key index and simultaneously start sending with that key index; however for the other entity in the rekeying process, these two functions can be separated. The EAPOL-Key message can tell the station to set a key set into one key index, but transmit using a different key index. This allows the station to start transmitting on a key index that already has valid keys, while setting up a new key set in a different index.

The first EAPOL-Key message is sent by the key owner to the associated station and is not integrity checked. The EAPOL-Key MIC field is set to 0 and the Key Dyad Nonce field contains the KONonce value that will be used when the Key Owner derives its DTK. The station on receiving the first EAPOL-Key message generates a SNonce, and then derives the STK based on the SNonce and the KONonce.

The second EAPOL-Key message is sent by the associated station to the key owner and contains the SNonce in the EAPOL-Key Dyad Nonce field. The key owner takes the KONonce and the SNonce and derives the same DTK. This message includes an integrity check using the EAPOL-Key MIC Key from the DTK.

The third EAPOL-Key message sent is a normal EAPOL-Key message, containing a Dyad KONonce and an integrity check. The key info field contains the key index and key type to be used. 

The Assemblage TK key owner may then send the Assemblage TK and the ANonce used to derive the Assemblage TK in an EAPOL-Key message

If a station fails to validate an EAPOL-Key message, it should be discarded and the station should attempt to find a different AP or station to associate to. If the key owner is an AP, it should disassociate and block the station (using its MAC address) for 60 seconds. If the key owner does not receive a reply to its initial EAPOL-Key message, it should retry three times at five seconds intervals and then disassociate the station. If the station does not receive the initial EAPOL-Key message when it expects to, it should disassociate and try another station. If the station does not receive the third EAPOL-Key message, it should retry sending the second message three times at five second intervals and then disassociate from the key owner. When sending retries the same message should be sent.

Notes: Blocking a station is not designed to defeat an active attacker but to reduce the load on an AP processing requests from stations with an incorrect DMK. An active attacker can cycle MAC addresses to avoid the AP’s station block. 

8.3.2.3.7.3 Example key exchanges

This section gives several examples of key exchanges using the state diagrams in the previous section. The examples include:

1. Initialization of Dyad as unicast keys

2. Rekeying of Dyad as unicast keys

3. Initialization of Assemblage keys with Dyad as unicast keys

4. Initialization of Assemblage keys with Dyad as unicast keys when Assemblage key owner is not the Dyad key owner

5. Rekeying of Assemblage keys with Dyad as unicast keys

6. Initialization of Assemblage keys with Assemblage as unicast keys

7. Initialization of Assemblage keys with Assemblage as unicast keys when Assemblage key owner is not the Dyad key owner

8. Rekeying of Assemblage keys with Assemblage as unicast keys

8.3.2.3.7.3.1 Dyad keys

8.3.2.3.7.3.1.1 Initialization
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Figure 20—Key initialization for Dyad keys

EAPOL-Key* means the message is sent unencrypted, otherwise the EAPOL-Key messages are sent encrypted.

Initialization proceeds by first exchanging the Station Nonce (SNonce) and a Key Owner Nonce 0 (KONonce0); this gives both sides the information to derive the first DTK (DTK0). The key owner first sends an EAPOL-Key message containing the KONonce0 to the station; the station then has enough information to derive DTK0. The station then sends an EAPOL-Key message containing SNonce back to the key owner, using DTK0 to MIC the message. Once the key owner has received that message the key owner can derive DTK0 and verify that the MIC is correct. The key owner then sends an EAPOL-Key message that allows the station to configure the DTK0 keys into the encryption/MIC engine for key index DPong; the key owner also configures the DTK0 keys into its own encryption/MIC engine for key index DPong. At this point both the key owner and station can send and receive using key index DPong. The station then sends an EAPOL-Key message that is encrypted using key index DPong. If the key owner does not receive the message, it shall re-transmit its last EAPOL-Key message (note that it will now be encrypted); the key owner shall repeat sending the EAPOL-Key message until it gets a response or until it times out. The EAPOL-Key message from the station to the key owner in reply is to confirm that the 802.1X messages will now be encrypted. The key owner then gets a new Key Owner Nonce (KONonce1) and uses it to derive a second DTK (DTK1) for key index DPing. It sends the KONonce1 to the station to let the station derive DTK1, the station then configures the DTK1 keys into the encryption/MIC engine key index DPing for receive only. The key owner does not put the DTK1 keys into the encryption/MIC engine at this time. The key owner then derives DTK2 using a new Key Owner Nonce (KONonce2) for use with key index DPong in the future. At this point the station and key owner have completed initializing the Dyad keys.

The key owner should send the EAP-Success message from the IEEE 802.1X exchange after completing the EAPOL-Key exchange for key initialization, so the station on receiving an EAP-Success message can check whether it has received the keys as required by 802.11i. The EAP-Success message is integrity checked and encrypted as if it was any data packet.

8.3.2.3.7.3.1.2 Rekeying
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Figure 21—Re-keying for Dyad keys

At the end of the Dyad key initialization sequence the station and key owner are transmitting on key index DPong using keys from DTKn-1 and the station has keys from DTKn configured into key index DPing. The key owner has derived two DTKs (DTKn and DTKn+1) for future use. The key owner waits until its PSC threshold has been reached for transmit or receive PSC spaces for key index DPong and then initiates a rekey.

During rekey the key owner configures the encryption/MIC engine with the pre-computed Dyad keys from DTKn for key index DPing, and starts encrypting packets using DPing. It then waits until all the packets encrypted with key index DPong have been sent to the station and then sends an EAPOL-Key message to the station. The EAPOL-Key message tells the station to start transmitting using key index DPing (which already contains keys from DTKn) and gives the station the information to derive a new DTK (DTKn+1) for key index DPong. The station on receiving the message will check the MIC of the EAPOL-Key message; and then configure the encryption/MIC engine to transmit using key index DPing. The station will then derive DTKn+1 for key index DPong and then configure the encryption/MIC engine with the keys from DTKn+1 for key index DPong. The key owner starts deriving a new DTKn+2 for key index DPing for use in the future. At this point the station and key owner are transmitting on key index DPing and the station has configured the encryption/MIC engine with the keys from DTKn+1 in key index DPong.

The key owner then waits until the PSC threshold has been reached for transmit or receive PSC spaces for key index DPing and then initiates a rekey.  Rekeying for key index DPing is done in the same manner as rekeying for key index DPong was done.

8.3.2.3.7.3.2 Assemblage keys with Dyad unicast keys

8.3.2.3.7.3.2.1 Initialization
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Figure 22—Assemblage key initialization when using Dyad keys for unicast messages

When using Dyad keys for unicast traffic, Assemblage keys are used by the AP or beacon generator to transmit broadcast messages. The station never transmits using Assemblage keys. To initialize the Assemblage keys, the Assemblage key owner gets an ANonce value from the Key Counter; this will be ANonce0.  The Assemblage key owner then derives ATK0 using ANonce0 for key index APong. The key owner then sends an EAPOL-Key message to the station containing ANonce0 and the encrypted ATK0. The station then decrypts ATK0 and configures the ATK0 keys into the encryption/MIC engine for key index APong. The key owner configures the ATK0 keys into its encryption/MIC engine for key index APong.  The Assemblage key owner then gets another ANonce value from the Key Counter; this will be ANonce1; the key owner then derives ATK1 from ANonce1 for key index APing. The key owner sends an EAPOL-Key message containing ANonce1 and the encrypted ATK1 for key index APing.  The station decrypts ATK1 and configures the ATK1 keys into the encryption/MIC engine for key index APing. The Assemblage key owner then gets ANonce2 and derives ATK2 for key index APong for use in the future.

8.3.2.3.7.3.2.2 Init when Assemblage Key Owner is not the Dyad Key Owner
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Figure 23—Initialization when Assemblage Key Owner is not the Dyad Key Owner

When the Dyad key owner and the Assemblage key owner are not the same, the Dyad key owner first initiates the EAPOL-Key exchange to exchange the Station Nonce and the Key Owner Nonce and sends the Dyad key EAPOL-Key messages. The Assemblage key owner then sends the Assemblage key EAPOL-Key messages to update the Assemblage keys.

8.3.2.3.7.3.2.3 Rekeying
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Figure 24—Assemblage key rekeying when using Dyad keys for unicast messages

At the end of Assemblage key initialization, the Assemblage key owner is transmitting on key index APong and the station has keys configured for key index APing. The Assemblage key owner waits until its PSC threshold has been reached for the transmit PSC space for key index APong and then initiates a rekey.

During rekey the key owner configures the encryption/MIC engine with the pre-computed Assemblage keys from ATKn for key index APing, and starts transmitting using key index APing. The key owner then waits until all the packets have been sent that were encrypted using key index APong and then sends an EAPOL-Key message to the station. This EAPOL-Key message contains the new ANonce (ANoncen+1) for key index APong and the encrypted ATKn+1. The station decrypts ATKn+1 for key index APong and configures the encryption/MIC engine with the Assemblage keys from ATKn+1 for key index APong. The key owner then derives ATKn+2 for key index APing for future use.

The key owner then waits until its PSC threshold has been reached for the transmit PSC space for key index APing and initiates a rekey. Rekeying for key index APing is done in the same manner as key index APong was done.

Note: The Assemblage key initialization will be carried out when a station associates with a key owner. The Assemblage TK rekeying will be carried out when the PSC space for the Assemblage TK is exhausted and all the stations will need to be sent the new Assemblage TK.

8.3.2.3.7.3.3 Assemblage keys with assemblage unicast messages

8.3.2.3.7.3.3.1 Initialization


[image: image25.emf]802.11 Station

802.1X Supplicant

802.11Access Point

802.1X Authenticator

Dyad/Assemblage Key

Owner

Calculate ATK

1

 for APing using next Key Counter

(ANonce

1

)

Decrypt and set Temporal Encryption and MIC Keys

from ATK

1

 in Key index APing for Rx

If current KONonce != last KONonce then

calculate new DTK using current KONonce

EAPOL-Key* (0, 1, 1, Tx Key Index APong, Key Index APong, A, KONonce

0

, ANonce

0

, MIC, ATK

0

)

Set Temporal Encryption and MIC Keys from ATK

0

 in

Key index APong for Tx/Rx

Decrypt and set Temporal Encryption and MIC Keys

from ATK

0

 in Key index APong for Tx/Rx

EAPOL-Key (0, 1, 0, Tx Key Index APong, Key Index APing, A, current KONonce, ANonce

1

, MIC, ATK

1

)

Calculate ATK

2

 for APong using next Key Counter

(ANonce

2

)

EAP-Success

EAPOL-Key* (0, 0, 1, Tx Key Index DPong, Key Index DPong, D, KONonce

0

, 0, 0, 0)

Calculate DTK

0

 using KONonce

0

 and SNonce

EAP_OL-Key* (0, 1, 0, 0, 0, D, SNonce, 0, MIC, 0)

Calculate DTK

0

 using KONonce

0

 and SNonce

KONonce

0

 = Get next Key Counter value

Calculate ATK

0

 for APong using next Key Counter

(ANonce

0

)

SNonce = Get next Key Counter value

EAPOL-Key (0, 1, 0, Tx Key Index APong, 0, A, SNonce, 0, MIC, 0)

Repeat until reply received


Figure 25—Initialization of Assemblage keys only

EAPOL-Key* means the message is sent unencrypted, otherwise the EAPOL messages are sent encrypted.

When only Assemblage keys are used, derivation of the DTK is required to derive the key for the EAPOL-Key MIC and to authenticate the stations to the key owner. Initialization proceeds by first exchanging the Station Nonce and a Key Owner Nonce. This gives both sides the information to derive the first DTK. The DTK is first derived on the station and the station uses it to MIC the EAPOL-Key message to the key owner. Once the key owner has received that message it also can derive the DTK. The key owner then derives the Assemblage TK (ATK0) for key index APong. The key owner then sends an EAPOL-Key message that contains the ANonce0 and the encrypted ATK0 to the station. The station decrypts the ATK0 and configures the key into the encryption/MIC engine for key index APong. The key owner also configures the ATK0 into its encryption/MIC engine for key index APong. At this point both the key owner and station can send and receive using key index APong. The station then sends an EAPOL-Key message that is encrypted using key index APong. If the key owner does not receive the message, it shall re-transmit its last EAPOL-Key message (note it will now be encrypted), the key owner shall repeat sending the EAPOL-Key message until it gets a response or until it times out. The EAPOL-Key reply is to confirm that the 802.1X messages will now be encrypted.  The key owner then derives a second Assemblage TK (ATK1) for key index APing. It sends the ANonce (ANonce1) and the encrypted ATK1 to the station. The station decrypts the ATK1 and configures the ATK1 into the encryption/MIC engine key index APing for receive only. The key owner then derives an Assemblage TK (ATK2) for use with key index APong in the future. At this point the station and key owner have completed initializing the Assemblage TKs.

The key owner should send the EAP-Success message from the IEEE 802.1X exchange after completing the EAPOL-Key exchange for key initialization.

8.3.2.3.7.3.3.2 Init when Assemblage Key Owner is not the Dyad Key Owner
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Figure 26—Initialization when Assemblage key owner is not the Dyad key owner

When the Dyad key owner and the Assemblage key owner are not the same, the Dyad key owner first initiates the EAPOL-Key exchange to exchange the Station Nonce and the Key Owner Nonce. The Assemblage key owner then initiates the sending of the Assemblage EAPOL-Key messages to update the Assemblage keys.

8.3.2.3.7.3.3.3 Rekeying
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Figure 27—Re-keying of Assemblage keys only

At the end of Assemblage key initialization, the key owner and station are transmitting on key index APong and the station has keys configured for key index APing. The key owner waits until the PSC threshold has been reached for transmit or receive PSC spaces for key index APong and initiates a rekey.

During rekey the key owner configures the encryption/MIC engine with the pre-computed Assemblage keys from ATKn key for key index APing, and starts transmitting using key index APing. The key owner then waits until all the packets have been sent that were encrypted using key index APong and then sends an EAPOL-Key message to the station.  This EAPOL-Key message contains the new ANonce (ANoncen+1) for key index APong, the encrypted ATKn+1, and a request for the station to transmit using key index APing. The station, after checking the MIC, configures the encryption/MIC engine to transmit using key index APing. The station then decrypts ATKn+1 and configures the encryption/MIC engine with the key for key index APong. The key owner then derives a new GTK for default key index APong for future use.

The key owner then waits until the PSC threshold has been reached for transmit or receive PSC spaces for default key index APong and initiates a rekey. Rekeying for key index APong is done in the same manner as key index APing was done.

Note: The Assemblage key initialization will be carried out when a station associates with a key owner. The Assemblage key rekeying will be carried out when the PSC space for the Assemblage TK is exhausted and all the stations will need to be sent the new Assemblage TK.

8.3.2.3.8 MAC functions

The following MAC functions are required by the Rekeying function:

8.3.2.3.8.1 Pre-share key

A variable to hold the pre-shared key; it is a 16 octet array.

Dot11PreSharedEntry ::= SEQUENCE {

dot11PreSharedKey


Octet[16]

}
8.3.2.3.8.2 Queue flushing

Enable key owner to find out when the number of queued packets for a key index is 0. This is done using a MIB variable per key index and indicated to the management layer using SetKeys.Indication.

Dot11KeysEntry ::= SEQUENCE {

dot11KeyTableIndex


Integer32,

dot11KeyIndex



Integer32,

dot11KeyAddress


MacAddress,

dot11KeyType



Integer,

dot11KeyTx



TruthValue,

dot11KeyQueue



Integer32,

dot11KeyTxPacketCounter

Integer32,

dot11KeyRxPacketCounter

Integer32,

dot11KeyPacketCounterThreshold
Integer32,

dot11KeyMaxPacketCounter

Integer32,

dot11KeyValue



Keytype,

dot11KeyStatus


RowStatus

}
dot11KeyTableIndex is used to identify instances in the table.

dot11KeyIndex is used to identify the key index of Assemblage and Dyad keys. A minimum of two key indexes for Assemblage and Dyad keys shall be implemented.

dot11KeyType shall be 0 for Assemblage keys and 1 for Dyad keys. Dot11KeyAddress is not used for Assemblage keys.

Dot11KeyValue contains the temporal key including Temporal Encryption and MIC keys formatted as described in 8.3.2.3.3.1 and 8.3.2.3.3.2.

[The SetKeys discussion immediately below belongs in Clause 10, not in Clause 8. It is included here to remain faithful to the Key Hierarchy consensus document, but this text will move to Clause 10 in the draft.]

8.3.2.3.8.2.1 SetKeys

8.3.2.3.8.2.1.1 MLME-SETKEYS.request

8.3.2.3.8.2.1.1.1 Function

This primitive causes the keys identified in the parameters of the primitive to be set in the MAC and enabled for use. 

8.3.2.3.8.2.1.1.2 Semantics of the Service Primitive

The primitive parameters are as follows:

MLME-SETKEYS.request 
(
Keylist
)

	Name
	Type
	Valid range
	Description

	Keylist
	A set of KeyIdentifiers
	N/A
	The list of keys to be used by the MAC.


Each KeyIdentifier consists of the following elements:

	Name
	Type
	Valid range
	Description

	Key
	Bit string
	N/A
	The key value

	Length
	Integer
	N/A
	The number of bits in the Key to be used.

	Index
	Integer
	N/A
	Key Index

	Type
	Integer
	Assemblage, Dyad
	Defines whether this key is a Assemblage or Dyad key.

	Tx
	Boolean
	TRUE, FALSE
	This parameter indicates if this key is to be used for transmission and reception or just reception.

	Address
	MAC Address
	Any valid individual MAC address
	This parameter is valid only when the key type is Dyad and contains an 802 address

	Threshold
	Integer
	N/A
	This parameter indicates the threshold for Indication


8.3.2.3.8.2.1.1.3 When Generated

This primitive is generated by the SME at any time when one or more keys are to be set in the MAC.

8.3.2.3.8.2.1.1.4 Effect of Receipt

Receipt of this primitive causes the MAC to set the appropriate keys and to begin using them as indicated. If the AES-based privacy algorithm is being used for unicast traffic over this association, the MAC derives the keys as specified in 8.3.2.3.4.

8.3.2.3.8.2.1.2 MLME-SETKEYS.confirm

8.3.2.3.8.2.1.2.1 Function

This primitive confirms that the action of the associated MLME-SETKEYS.request has been completed.

8.3.2.3.8.2.1.2.2 Semantics of the service primitive

This primitive has no parameters.

8.3.2.3.8.2.1.2.3 When Generated

This primitive is generated by the MAC in response to receipt of a MLME-SETKEYS.request primitive. This primitive is issued when the action requested has been completed.

8.3.2.3.8.2.1.2.4 Effect of Receipt

The SME is notified that the requested action of the MLME-SETKEYS.request is completed.

8.3.2.3.8.2.1.3 MLME-SETKEYS.indication

8.3.2.3.8.2.1.3.1 Function

This primitive reports that the Tx or Rx PSC for one or more keys has reached their threshold or if the dot11KeyTx is reset when the dot11KeyQueue reaches zero. The threshold for each key is set in the MIB. The MIB contains the maximum possible PSC depending on the cipher suite selected.

8.3.2.3.8.2.1.3.2 Semantics of the Service Primitive

The primitive parameters are as follows:

MLME-SETKEYS.indication 
(
Keylist
)

	Name
	Type
	Valid range
	Description

	Keylist
	A set of KeyIdentifiers
	N/A
	The list of keys to be used by the MAC.


Each KeyIdentifier consists of the following elements:

	Name
	Type
	Valid range
	Description

	TableIndex
	Integer
	N/A
	The index in the Key MIB for the key.


8.3.2.3.8.2.1.3.3 When Generated

This primitive is generated by the MLME when one or more key PSCs reaches their threshold.

8.3.2.3.8.2.1.3.4  Effect of Receipt

The SME is notified that one or more key PSCs have reached their threshold.

[The MIB discussion immediately below belongs in Annex D, not in Clause 8. It is included here to remain faithful to the Key Hierarchy consensus document, but this text will move to Annex D in the draft.]

8.3.2.3.8.3 Cipher suite MIB variables

Enable the key owner to find out the unicast and multicast cipher suites that will be used so the key owner can optimize the size of the derived TSKs. This is done using two MIB variables added to the Station Configuration table.

// Modify Dot11StationConfigEntry

Dot11StationConfigEntry ::= SEQUENCE {

dot11StationID



MacAddress,

dot11MediumOccupancyLimit


INTEGER,

dot11CFPollable



TruthValue,

dot11CFPPeriod



INTEGER,

dot11CFPMaxDuration



INTEGER,

dot11AuthenticationResponseTimeOut
INTEGER,

dot11PrivacyOptionImplemented

TruthValue,

dot11PowerManagementMode


INTEGER,

dot11DesiredSSID



OCTET STRING,

dot11DesiredBSSType



INTEGER,

dot11OperationalRateSet


OCTET STRING,

dot11BeaconPeriod



INTEGER,

dot11DTIMPeriod



INTEGER,

dot11AssociationResponseTimeOut

INTEGER,

dot11DisassociateReason


INTEGER,

dot11DisassociateStation


MacAddress,

dot11DeauthenticateReason


INTEGER,

dot11DeauthenticateStation


MacAddress,

dot11AuthenticateFailStatus

INTEGER,

dot11AuthenticateFailStation

MacAddress,
dot11UnicastCipher



Integer,

dot11BroadcastCipher



Integer

}

dot11BroadcastCipher OBJECT-TYPE

SYNTAX INTEGER { TKIP (1), AES (2) }

MAX-ACCESS read-only

STATUS current

DESCRIPTION

"Specifies the broadcast cipher suite being used to this station"

::= { dot11StationConfigEntry 2 }
dot11UnicastCipher OBJECT-TYPE

SYNTAX INTEGER { TKIP (1), AES (2) }

MAX-ACCESS read-only

STATUS current

DESCRIPTION

"Specifies the unicast cipher suite being used to this station"

::= { dot11StationConfigEntry 2 }
8.3.2.3.8.4 Key types supported MIB variables

These MIB variables allow the Key Owner rekeying function to find out the supported key types.

// Dot11KeyTypes

Dot11KeyTypes ::= SEQUENCE {

dot11KeyTypeDyad

TruthValue,

dot11KeyTypeAssemblage
TruthValue

}

dot11KeyTypeDyad OBJECT-TYPE

SYNTAX TruthValue

MAX-ACCESS read-only

STATUS current

DESCRIPTION

"True if Dyad keys are supported"

::= { dot11KeyTypes 2 }
dot11KeyTypeAssemblage OBJECT-TYPE

SYNTAX TruthValue

MAX-ACCESS read-only

STATUS current

DESCRIPTION

"True if Assemblage keys are supported"

::= { dot11KeyTypes 2 }
8.3.2.3.9 Temporal keys processing rules

IEEE 802.1X has a controlled and an uncontrolled port. The 802.11 MAC must in it’s transmit and receive paths understand the packets that are allowed in the uncontrolled port since in an RSN the uncontrolled packets must be allowed to be transmitted when no keys are available. By default 802.1X packets shall be allowed via the uncontrolled port.

Note: Text in 1.8 should reflect that in an RSN all packets via the controlled port shall be encrypted, packets via the uncontrolled port may or may not be encrypted.

The rules for processing in the various conditions of temporal keys are as follows:

1. Data packets are encrypted when temporal keys are configured and not encrypted when temporal keys not configured.

2. IEEE 802.1X uncontrolled messages (including 802.1X packets) are always allowed without temporal keys because station can’t get keys until authentication occurs but IEEE 802.1X uncontrolled messages are encrypted and integrity checked when temporal keys are configured.

3. Association of stations to RSN APs without temporal keys being configured is allowed, so stations can associate, authenticate and then be given keys.

4. A station should ignore IEEE 802.1X messages except EAPOL-Key messages after a re-association until it receives either an EAPOL-Key message or it receives a disassociate message.

5. An AP should disassociate a station on receiving an IEEE 802.1X authFail event for the station.

6. On associate and re-associate all temporal keys are deleted but not the DMK. The EAPOL-Key exchange is required on re-association to configure the temporal keys regardless of whether IAPP is used or not.

7. When a keys PSC space is exhausted the temporal key is deleted. There is no reason to keep the temporal key, and the station shouldn’t reuse it because then the previous encrypted data becomes insecure. It’s preferable to send in clear than reuse the key.

8.3.2.3.9.1 Tx pseudo-code

[Need to resolve issues between this and AES-OCB transmission]

if dot11PrivacyInvoked is “false”

the MPDU is transmitted without encryption

else if RSN association

if no entries in dot11KeysEntry and packet is not an uncontrolled packet

discard the MSDU and generate an

MA-UNITDATA-STATUS.indication primitive to

notify LLC that the entire MSDU was undeliverable

due to NoKeys

else

if (the MPDU has an individual RA and there is one or more entries in  dot11KeysEntry of KeyType Dyad and KeyAddress is for that TA) or (the MPDU has a group RA and there is one or more entries in dot11KeysEntry of KeyType Assemblage)

if a matching entry has KeyTx set to “true”

if that entry contains a key that is null

discard the MSDU and generate an

MA-UNITDATA-STATUS.indication primitive to

notify LLC that the entire MSDU was undeliverable

due to a null key

else

encrypt the MPDU using that entry’s key, setting

 the keyed subfield of the IV field to KeyIndex

else

the MPDU is transmitted without encryption

else

the MPDU is transmitted without encryption

else

if (the MPDU has an individual RA and there is an entry in dot11WEPKeyMappings for that RA)

if that entry has WEPOn set to “false”

the MPDU is transmitted without encryption

else

if that entry contains a key that is null

discard the entire MSDU and generate an

MA-UNITDATA-STATUS.indication primitive to

notify LLC that the MSDU was undeliverable due to

a null WEP key

else

encrypt the MPDU using that entry’s key, setting the KeyID

subfield of the IV field to zero

else

if (the MPDU has a group RA and the Privacy subfield of the Capability Information field in this BSS is set to 0)

the MPDU is transmitted without encryption

else

if dot11WEPDefaultKeys[dot11WEPDefaultKeyID] is null

discard the MSDU and generate an

MA-UNITDATA-STATUS.indication primitive to

notify LLC that the entire MSDU was undeliverable

due to a null WEP key

else

encrypt the MPDU using

dot11WEPDefaultKeys[dot11WEPDefaultKeyID],

setting the KeyID subfield of the IV field to dot11WEPDefaultKeyID

endif

8.3.2.3.9.2 Rx pseudo-code

[Need to resolve issues between this and AES reception]

if RSN association

if the WEP subfield of the Frame Control Field is zero

if aExcludeUnencrypted is “false” or (dot11KeyEntrys is empty and packet is an uncontrolled packet)

receive the frame without decryption 

else

discard the frame body without indication to LLC and increment

dot11WEPExcludedCount

else

if dot11PrivacyOptionImplemented is “true”

if (the MPDU has individual RA and there is an entry in dot11KeyEntrys of KeyType Dyad and KeyAddress matching the MPDU’s TA and with the KeyIndex  matching the KeyID) or (the MPDU has a group RA and  there is an entry in dot11KeyEntrys of KeyType Assemblage and with  the KeyIndex matching the KeyID)

if that entry contains a key that is null

discard the frame body and increment

dot11WEPUndecryptableCount

else

attempt to decrypt with that key, incrementing

dot11WEPICVErrorCount if the ICV check fails

else

discard the frame body and increment dot11WEPUndecryptableCount

else

discard the frame body and increment dot11WEPUndecryptableCount

endif

else 

if the WEP subfield of the Frame Control Field is zero

if aExcludeUnencrypted is “false”

receive the frame without decryption 

else

discard the frame body without indication to LLC and increment

dot11WEPExcludedCount

else

if dot11PrivacyOptionImplemented is “true”

if (the MPDU has individual RA and there is an entry in

 dot11WEPKeyMappings matching the MPDU’s TA)

if that entry has WEPOn set to “false”

discard the frame body and increment dot11WEPUndecryptableCount

else

if that entry contains a key that is null

discard the frame body and increment

dot11WEPUndecryptableCount

else

attempt to decrypt with that key, incrementing

dot11WEPICVErrorCount if the ICV check fails

else

if dot11WEPDefaultKeys[KeyID] is null

discard the frame body and increment

dot11WEPUndecryptableCount

else

attempt to decrypt with dot11WEPDefaultKeys[KeyID],

incrementing dot11WEPICVErrorCount if the ICV check fails

else

discard the frame body and increment dot11WEPUndecryptableCount

endif

endif

8.3.2.3.10 PRF

The PRF is used in a number of places in this document. Depending on its use it may need to output 128bits, 192bits, 254bits, 384bits or 512bits. This section defines five functions PRF-128 which outputs 128bits, PRF-192 which outputs 192bits, PRF-256 which outputs 256bits, PRF-384 which outputs 384bits and PRF-512 which outputs 512 bits.

A shall be a unique label for each different purpose of the PRF; Y is a single octet contain 0 and X is a single octet containing the parameter.

H-SHA-1(K, A, B, X) = HMAC-SHA-1(K, A | Y | B | X)

PRF-128(K, A, B) = PRF(K, A, B, 128)

PRF-192(K, A, B) = PRF(K, A, B, 192)

PRF-256(K, A, B) = PRF(K, A, B, 256)

PRF-384(K, A, B) = PRF(K, A, B, 384)

PRF-512(K, A, B) = PRF(K, A, B, 512)

PRF(K, A, B, Len)

{

octet i;

for (i = 0; i < (Len+159)/160; i++) {

R = R | H-SHA-1(K, A, B, i)
}

L(R, 0, Len)

}

8.3.2.3.11 EAPOL-KEY description

Key Descriptor packet carrying a Descriptor Type of 802.11 Key Descriptor are constructed and interpreted as given below. The Descriptor Type field is in the EAPOL-Key header. It is assumed that when a Key Descriptor packet is received, the client can derive the appropriate set of keys.
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Figure 28—EAPOL-Key descriptor

8.3.2.3.11.1 EAPOL-KEY information

This field is two octets and carries the information about the key.
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Figure 29—Key information bit layout

· Bits 1-3 contain a Key descriptor version number.

1. This shall contain 1 when the EAPOL-Key MIC is HMAC-MD5 using the EAPOL-Key MIC Key and the encryption is RC4 using the EAPOL-Key Encryption Key.

2. This shall contain 2 when the EAPOL-Key MIC is AES-CBC-MAC using the EAPOL-Key MIC Key and the encryption uses AES-CBC using the EAPOL-Key Encryption Key.

· Bit 4 is key type flag. The key is a dyad key if the flag is 1 and an assemblage key if the flag is set to 0.

· Bits 5 and 6 contain the key index for the temporal key to be calculated from the message.

· Bits 7 and 8 contains key index to be used for transmit.

· Bit 9 is set if an EAPOL-Key message is required in response to this message. The response shall use the same replay counter as in the outgoing message.

· Bit 10 is set if a MIC is in this EAPOL-Key message.

· Bit 11 is set if the Dyad or Assemblage key owner hands off to the other owner.

· Bits 12-16 are reserved, the sender should set them to 0 and the receiver should ignore these bits.

8.3.2.3.11.2 EAPOL-KEY length

This field is two octets in length, taken to represent an unsigned binary number. The value defines the length of the key in octets. For example, a value of 32 in this field indicates a 256 bit key.

8.3.2.3.11.3 EAPOL-KEY replay counter

This field is eight octets in length, taken to represent an unsigned binary number and is initialized to 0. It carries a sequence number, used to detect and prevent replay of key messages. 

8.3.2.3.11.4 EAPOL-KEY dyad nonce

This field is twenty four octets in length. It contains the KONonce or SNonce value.

8.3.2.3.11.5 EAPOL-KEY assemblage nonce

This field is twenty four octets in length. It contains the ANonce value; it shall be set to 0 if a Dyad key is being sent.

8.3.2.3.11.6 EAPOL-KEY MIC

This field is sixteen octets in length when the Key Descriptor Version field is 1 or 2. The EAPOL-Key MIC is a MIC of the EAPOL packet, from and including the EAPOL protocol version field, to and including the EAPOL-Key Material field with the EAPOL-Key MIC field set to 0 after any key material field is encrypted.

Key Descriptor Version 1: HMAC-MD5 using EAPOL-Key MIC Key.

Key Descriptor Version 2: AES-CBC-MAC using EAPOL-Key MIC Key.

8.3.2.3.11.7 EAPOL-KEY material length

This field is two octets in length, taken to represent an unsigned binary number. This two octet value defines the length of the Key Material field in octets.

8.3.2.3.11.8 EAPOL-KEY material

For Dyad Keys this field is empty and the Key Material Length must be set to 0. For Assemblage TKs this field contains the encrypted Assemblage TK. 

Key Descriptor Version 1: RC4 is used to encrypt the Key Material field using the EAPOL-Key encryption key. No padding shall be used. The first 256 bytes of the RC4 stream encryption shall be discarded following RC4 stream cipher initialization with the EAPOL-Key encryption key. 

Key Descriptor Version 2: AES-CBC is used to encrypt the key material field with the EAPOL-Key Encryption key. The key material is padded with 0’s to a length that is an integral number of 16 byte blocks if required.

8.3.2.3.12 Glossary for Rekeying

[The information in this section belongs in Clause 3. It will be moved there from here when this is incorporated into the draft.]

AP Radio MAC Address: the MAC address of the radio in the AP.  This MAC address is used as one of the inputs to the PRF that derives the Dyad Transient Keys (DTK).

Assemblage: an assemblage of entities into a wireless network; an AP and associated stations, or all the stations in an IBSS network. Used to describe the key hierarchies for keys that are shared among all the entities in an assemblage.

Assemblage Master Key (AMK): the key that is used as one of the inputs into the PRF to derive the Assemblage Transient Keys (ATK).

Assemblage Nonce (ANonce): Nonce used to derive ATK

Assemblage Ping (APing): one of the two key indexes that are used during the changing of the Assemblage temporal keys, the other key index is called APong.  The active assemblage key index is switched between APing and APong.

Assemblage Pong (APong): see Assemblage Ping

Assemblage Transient Key (ATK): a value that is derived from the PRF using the ANonce, and is split up into as many as three keys (Temporal Encryption Key, two Temporal MIC Keys) for use by the rest of the system.

BSS network: a network consisting of an AP and it’s associated stations. Compare to IBSS network.

Dyad: two entities that is associated with each other; an AP and one associated station, or a pair of stations in an IBSS network, used to describe the key hierarchies for keys that are shared only between the two entities in a dyad.

Dyad Master Key (DMK): the key that is generated on a per-session basis and is used as one of the inputs into the PRF to derive the Dyad Transient Keys (DTK).  For EAP-TLS authentication, the Dyad Master Key is the key from the RADIUS MS-MPPE-Recv-Key attribute.  For Pre-Shared Key authentication, the Dyad Master Key is the Pre-Shared Key.

Dyad Ping (DPing): one of the two key indexes that are used during the changing of the Dyad temporal keys, the other key index is called DPong.  The active dyad key index is switched between DPing and DPong.

Dyad Pong (DPong): see Dyad Ping

Dyad Transient Key (DTK): a value that is derived from the PRF using the SNonce and KONonce, and is split up into as many as five keys (Temporal Encryption Key, two Temporal MIC Keys, EAPOL-Key Encryption Key, EAPOL-Key MIC Key) for use by the rest of the system.

EAPOL-Key Encryption Key: Key used to encryption the Key Material field in an EAPOL-Key Message.

EAPOL-Key Key: Combination of EAPOL-Key Encryption key and EAPOL-Key MIC Key.

EAPOL-Key MIC Key used to integrity check an EAPOL-Key Message.

IBSS Network: a network consisting of a set of stations, all of which are peers of one another.  Contrast to BSS networks.

Key Counter: a 192 bit (24 octets) counter that is used in the PRF as a nonce to derive TSKs.  There is a single Key Counter per station (AP or station) that is global to that station across all key hierarchies that it is the Key Owner for.  The Key Counter is initialized with the following: the most significant 64 bits (8 octets) is initialized with NTP formatted time, the middle 64 bits (8 octets) is initialized with a random value (that shall not be 0), and the least significant 64 bits (8 octets) is initialized to 0.  Each time the Key Counter is used, it shall be incremented. (All 192 bits shall be part of the increment).  At no time shall the Key Counter be allowed to wrap to the initialization value.

Key Owner: the entity that is driving the key derivation process.  For the standard infrastructure network the AP will be the key owner for both dyad and assemblage keys.  For IBSS networks, each pair of stations will have a dyad key owner for dyad keys; this is defined to be the station with the lower MAC address.  For IBSS networks for assemblage keys, the assemblage key owner will be the station that is currently the beacon generator; as the beacon generator moves, the assemblage key owner will move with it.

KONonce: Key owner nonce

Message Integrity Code (MIC): Integrity check to protect against changes in the message.

Michael: Integrity check for TKIP

Nonce: Number once, number that should only be used one.

Per-Packet Encryption Key

Per-Packet Sequence Counter: For TKIP, the counter that is used as the nonce in the derivation of the Per-Packet Encryption Key; for AES the Per-Packet IV.  For TKIP, the Per-Packet Sequence Counter is 2 octets (16 bits) in length; in AES the Per-Packet Sequence Counter is 4 octets (32 bits) in length.  For TKIP, the Per-Packet Sequence Counter is initialized to 0 when a new Temporal Key starts to be used, and is incremented for each packet that is sent using that Temporal Key.  For AES, the Per-Packet Sequence is initialized to 0 for the AP and 1 for the Station, and is incremented by two for each packet that is sent using that Temporal Key.  The Per-Packet Sequence Counter must never be allowed to wrap back to the initialization value before the Temporal Key is changed; for TKIP this allows 216 = 65,536 packets, for AES this allows 231 = 2,147,483,648 packets before the Temporal Key must be changed.

Pre-Shared Key: A key that is distributed to the units in the system by manual means.  Legacy WEP systems without authentication used Pre-Shared Keys as the WEP keys.  The RSN specification allows a system to use a Pre-Shared Key if there is no other authentication method available, but using a Pre-Shared Key is not as secure.

Pseudo Random Function (PRF): a function that hashes various inputs and derives a pseudo random value.  To add livens to the pseudo random value, a nonce should be one of the inputs; in our case the Key Counter is that nonce.

Robust Security Network (RSN) (Formerly known as ESN)

SNonce: Nonce supplied by non key owner.

Station MAC Address: The MAC address of the station, used as one of the inputs to the PRF that derives the Dyad Transient Keys (DTK).

Temporal Encryption Key: Key used to encrypt data packets.

Temporal Key: Combination of temporal encryption key and temporal MIC key.

Temporal Key Integrity Protocol (TKIP)

Temporal MIC Key: Key used to integrity check data packets.

Transfer DMK: DMK that can be transferred to another AP on roaming.

[There is no longer a explicit clause on termination. If there were, it would be clause 8.3.2.4]
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�

N*Timeout�

Send Dis-associate�

KOAOInit  and AssemblageKO == 1 and DAKeys == 0�

KOAInit�
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Calculate DTK1 for DPing using next Key Counter (KONonce1) and SNonce�

Set Temporal Encryption and MIC Keys from DTK1 in Key index DPing for Rx�

Calculate DTK1 using KONonce1 and SNonce�

EAPOL-Key* (0, 1, 1, Tx Key Index DPong, Key Index DPong, D, KONonce0, 0, MIC0, 0)�

Set Temporal Encryption and MIC Keys from DTK0 in Key index DPong for Tx/Rx�

Set Temporal Encryption and MIC Keys from DTK0 in Key index DPong for Tx/Rx�

EAPOL-Key (0, 1, 0, Tx Key Index DPong, Key Index DPing, D, KONonce1, 0, MIC0, 0)�

Set Temporal Encryption and MIC Keys from DTK0 in Key index DPong for Tx/Rx
(This step is redundant, but fits into rekeying)�

Calculate DTK2 for DPong using next Key Counter (KONonce2) and SNonce�

EAPOL-Key* (0, 0, 1, Tx Key Index DPong, Key Index DPong, D, KONonce0, 0, 0, 0)�

Calculate DTK0 for Pong using KONonce0 and SNonce�

EAPOL-Key* (0, 1, 0, 0, 0, D, SNonce, 0, MIC0, 0)�

Calculate DTK0 for DPong using KONonce0 and SNonce�

KONonce0 = Get next Key Counter�

EAP-Success�

Key mapping init�

SNonce = Get next Key Counter�

EAPOL-Key (0, 1, 0, Tx Key Index DPong, 0, 0, SNonce, 0, MIC0, 0)�

Repeat until reply received�
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Dyad Key Owner�
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Encrypted data flowing, using Key DPong for Tx/Rx�

Encrypted data flowing, using Key DPong for Tx/Rx�

Calculate DTKn+2 for DPing using next Key Counter value (KONoncen+2)�

Set Temporal Encryption and MIC Keys from DTKn in Key index DPing for Tx/Rx�

Set Temporal Encryption and MIC Keys from DTKn+2 in Key index DPing for Rx�

Calculate DTKn+2 using KONoncen+2 and SNonce�

TX or Rx IV Space for Key DPong Nearing Exhaust�

Set Temporal Encryption and MIC Keys from DTKn in Key index DPing  for Tx/Rx�

EAPOL-Key (0, 1, 0, Tx Key Index DPing, Key Index DPong, D, KONoncen+1, 0, MICn, 0)�

Set Temporal Encryption and MIC Keys from DTKn+1 in Key index DPong for Tx/Rx�

Set Temporal Encryption and MIC Keys from DTKn+1 in Key index DPong for Rx�

Calculate DTKn+1 using KONoncen+1 and SNonce�

EAPOL-Key (0, 1, 0, Tx Key Index DPong, Key Index DPing, D, KONoncen+2, 0, MICn+1, 0)�

Set Temporal Encryption and MIC Keys from DTKn+1 in Key index DPong for Tx/Rx�

TX or Rx IV Space for Key DPing Nearing Exhaust�

Wait until all queued DPong encrypted messages have gone and been acked�

All queued messages encrypted with DPong have to be gone before IV space is exhausted�

Wait until all queued DPing encrypted messages have gone and been acked�

All queued messages encrypted with DPing have to be gone before IV space is exhausted�

Calculate DTKn+3 for DPong using next counter value (KONoncen+3)�

Key mapping re-keying�

Encrypted data flowing, using Key DPing for Tx/Rx�

Encrypted data flowing, using Key DPing for Tx/Rx�

Encrypted data flowing, using Key DPong for Tx/Rx�

Encrypted data flowing, using Key DPong for Tx/Rx�
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802.11 Station
802.1X Supplicant
�

802.11Access Point
802.1X Authenticator
Assemblage Key Owner�

�

Calculate ATK1 for APing using next Key Counter value (ANonce1)�

Decrypt ATK1 and set Temporal Encryption and MIC Keys from ATK1 in Key index APing for Rx�

If current KONonce != last KONonce then 
calculate new DTK using current KONonce �

EAPOL-Key (0, 1, 0, 0, Key Index APong, A, Current KONonce, ANonce0, MIC, ATK0)�

Set Temporal Encryption and MIC Keys from ATK0 in Key index APong for Tx/Rx�

Decrypt ATK0 and set Temporal Encryption and MIC Keys from ATK0 in Key index APong for Rx�

If current KONonce != last KONonce then
calculate new DTK using current KONonce�

EAPOL-Key (0, 1, 0, 0, Key Index APing, A, current KONonce, ANonce1, MIC, ATK1)�

Calculate ATK2 for APong using next Key Counter value (ANonce2)�

Default init with key mapping�

Calculate ATK0 for APong using next Key Counter value (ANonce0)�
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802.11 Station
802.1X Supplicant
�

802.11Access Point
802.1X Authenticator
Assemblage Key Owner�

�

Encrypted data flowing, using Key APong for Tx/Rx�

Encrypted data flowing, using Key APong for Tx/Rx�

Calculate ATKn+2 for APing using next Key Counter value (ANoncen+2)�

Set Temporal Encryption and MIC Keys from ATKn in Key index APing for Tx/Rx�

Decrypt ATKn+2 and set Temporal Encryption and MIC Keys from ATKn+2 in Key index APing for Rx�

TX IV Space for Key APong Nearing Exhaust�

EAPOL-Key (0, 1, 0, 0, Key Index APong, A, Current KONonce, ANoncen+1, MIC, ATKn+1)�

Set Temporal Encryption and MIC Keys from ATKn+1 in Key index APong for Tx/Rx�

Decrypt ATKn+1 and set Temporal Encryption and MIC Keys from ATKn+1 in Key index APong for Rx�

EAPOL-Key (0, 1, 0, 0, Key Index APing, A, current KONonce, ANoncen+2, MIC, ATKn+2)�

TX IV Space for Key APing Nearing Exhaust�

Wait until all queued APong encrypted messages have gone and been acked�

If current KONonce != last KONonce then
Calculate new DTK using current KONonce value�

Calculate ATKn+3 for APong using next Key Counter value (ANoncen+3)�

Default�

If current KONonce != last KONonce then
Calculate new DTK using current KONonce value�

Encrypted data flowing, using Key APing for Tx/Rx�

Wait until all queued APing encrypted messages have gone and been acked�

Encrypted data flowing, using Key APing for Tx/Rx�

Encrypted data flowing, using Key APong for Tx/Rx�

Encrypted data flowing, using Key APong for Tx/Rx�
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802.11 Station
802.1X Supplicant
�

802.11Access Point
802.1X Authenticator
Assemblage Key Owner�

�

Calculate ATK1 for APing using next Key Counter (ANonce1)�

Decrypt and set Temporal Encryption and MIC Keys  from ATK1 in Key index APing for Rx�

If current KONonce != last KONonce then 
calculate new DTK using current KONonce�

EAPOL-Key* (0, 1, 1, Tx Key Index APong, Key Index APong, A, KONonce0, ANonce0, MIC, ATK0)�

Set Temporal Encryption and MIC Keys from ATK0 in Key index APong for Tx/Rx�

Decrypt and set Temporal Encryption and MIC Keys from ATK0 in Key index APong for Tx/Rx�

EAPOL-Key (0, 1, 0, Tx Key Index APong, Key Index APing, A, current KONonce, ANonce1, MIC, ATK1)�

Calculate ATK2 for APong using next Key Counter (ANonce2)�

EAP-Success�

Default only�

EAPOL-Key* (0, 0, 1, Tx Key Index DPong, Key Index DPong, D, KONonce0, 0, 0, 0)�

Calculate DTK0 using KONonce0 and SNonce�

EAP_OL-Key* (0, 1, 0, 0, 0, D, SNonce, 0, MIC, 0)�

Calculate DTK0 using KONonce0 and SNonce�

KONonce0 = Get next Key Counter value�

Calculate ATK0 for APong using next Key Counter (ANonce0)�

SNonce = Get next Key Counter value�

EAPOL-Key (0, 1, 0, Tx Key Index APong, 0, A, SNonce, 0, MIC, 0)�

Repeat until reply received�
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Encrypted data flowing, using Key APong for Tx/Rx�

Encrypted data flowing, using Key APong for Tx/Rx�

Calculate ATKn+2 for APing using next Key Counter value (ANoncen+2)�

Set Temporal Encryption and MIC Keys from ATKn in Key index APing for Tx/Rx�

Decrypt ATKn+2 and set new Temporal Encryption and MIC Keys from ATKn+2 in Key index APing for Rx�

TX or Rx IV Space for Key APong Nearing Exhaust�

EAPOL-Key (0, 1, 0, Tx Key index APing, Key Index APong, A, current KONonce, ANoncen+1, MIC, ATKn+1)�

Set Temporal Encryption and MIC Keys from ATKn+1 in Key index APong for Tx/Rx�

Decrypt ATKn+1 and set new Temporal Encryption and MIC Keys from ATKn+1 in Key index APong for Rx�

EAPOL-Key (0, 1, 0, Tx Key Index APong, Key Index APing, A, current KONonce, ANoncen+2, MIC, ATKn+2)�

TX or Rx IV Space for Key APing Nearing Exhaust�

Wait until all queued APong encrypted messages have gone and been acked�

If current KONonce != last KONonce then 
calculate new DTK using current KONonce�

Calculate ATKn+3 for APong using next Key Counter value (ANoncen+3)�

Default only rekeying�

If current KONonce != last KONonce then 
calculate new DTK using current KONonce�

Set Temporal Encryption and MIC Keys from ATKn+1 in Key index APong for Tx/Rx�

Set Temporal Encryption and MIC Keys from ATKn in Key index APing for Tx/Rx�

Encrypted data flowing, using Key APong for Tx/Rx�

Encrypted data flowing, using Key APing for Tx/Rx�

Encrypted data flowing, using Key APing for Tx/Rx�

Wait until all queued APing encrypted messages have gone and been acked�

Encrypted data flowing, using Key APong for Tx/Rx�

�
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802.11 Station
Dyad Key Owner�

802.11 Station 
Assemblage Key Owner�

�

Calculate ATK1 for APing using next Key Counter value (ANonce1)�

Decrypt ATK1 and set Temporal Encryption and MIC Keys from ATK1 in Key index APing for Rx�

If current KONonce != last KONonce then 
calculate new DTK using current KONonce �

EAPOL-Key (0, 1, 0, 0, Key Index APong, A, Current KONonce, ANonce0, MIC, ATK0)�

Set Temporal Encryption and MIC Keys from ATK0 in Key index APong for Tx/Rx�

Decrypt ATK0 and set Temporal Encryption and MIC Keys from ATK0 in Key index APong for Rx�

If current KONonce != last KONonce then
calculate new DTK using current KONonce�

EAPOL-Key (0, 1, 0, 0, Key Index APing, A, current KONonce, ANonce1, MIC, ATK1)�

Calculate ATK2 for APong using next Key Counter value (ANonce2)�

Default init with key mapping when DTSK Owner != STSK Owner�

Calculate ATK0 for APong using next Key Counter value (ANonce0)�

Dyad Key Initialization�

�

�

802.11 Station
Dyad Key Owner�

802.11 Station
Assemblage Key Owner�

�

Calculate ATK1 for APing using next Key Counter value (ANonce1)�

Decrypt and set Temporal Encryption and MIC Keys from ATK1 in Key index APing for Rx�

EAP_OL-Key* (0, 1, 1, Tx Key Index APong, Key Index APong, A, SNonce, ANonce0, MIC, ATK0)�

Decrypt and set Temporal Encryption and MIC Keys from ATK0 in Key index APong for Tx/Rx�

Set Temporal Encryption and MIC Keys from ATK0 in Key index APong for Tx/Rx�

EAPOL-Key (1, 1, 0, Tx Key Index APong, Key Index APing, A, SNonce, ANonce1, MIC, ATK1)�

Calculate ATK2 for APong using next Key Counter value (ANonce2)�

IBSS - Default only when STSK key owner != DTSK key owner�

Set Temporal Encryption and MIC Keys from ATK0 in Key index APong for Tx/Rx
(This step is redundant, but fits into the rekeying process)�

EAPOL-Key* (0, 0, 1, Tx Key Index DPong, Key Index DPong, D, KONonce, 0, 0, 0)�

Calculate DTK0 using KONonce0 and SNonce�

EAPOL-Key* (0, 1, 0, 0, 0, D, SNonce0, 0, MIC, 0)�

Calculate DTK0 using KONonce0 and SNonce�

KONonce0 = Get next Key Counter value�

Calculate ATK0 for APong using next Key Counter value (ANonce0)�

SNonce = Get next Key Counter value�

EAP-Success�

EAPOL-Key (0, 1, 0, Tx Key Index APong, 0, 0, KONonce, 0, MIC, 0)�

Repeat until reply received�

EAP_OL-Key* (1, 1, 0, 0, 0, A, 0, 0, MIC, 0)�

SNonce = Counter++�

KONonce = Counter++
N=1
Send EAPOL(N, N)�

EAPOL-Key* (N, N, D, KONonce0, 0, 0, 0)�

�

Station Dyad state machine�

Key owner dyad state machine�

�

�

�

Calc DTK(N, KONonce)
Send EAPOL(0, 0)�

EAPOL-Key* (0, 0, D, SNonce, 0, MIC0, 0)�

Send EAPOL(N, N)
Set TK(N) - Tx/Rx�

Check MIC
Set TK(N) - Tx/Rx
Send EAPOL(0, 0)�

EAPOL-Key* (N, N, D, KONonce0, 0, MIC0, 0)�

Check MIC
Set TK(M) - Tx/Rx
Calc DTK(N, KONonce)
Set TK(N) - Rx�

EAPOL-Key (0, 0, 0, SNonce, 0, MIC0, 0)�

Timeout�

Check MIC
M=N, N=!N
KONonce = Counter++
Calc DTK(N, KONonce)
Send EAPOL(M, N)
M=N, N=!N
Send EAP-Success
Dyad Complete
KONonce = Counter++
Calc DTK(N, KONonce)�

Remove TK(N)�

�

�

�

EAPOL-Key (M, N, D, KONonce1, 0, MIC0, 0)�

�

Set TK(M) - Tx/Rx�

Send EAPOL(M, N)
M=N, N=!N
KONonce = Counter++
Calc DTK(N, KONonce)�

�

Tx/Rx IV exhaustion N�

�

Wait for N queue Flush�

EAPOL-Key (M, N, D, KONonce1, 0, MIC0, 0)�

Calc DTK(N, KONonce)
Check MIC�

Association
Re-association complete�

RADIUS Accept
Re-association complete�

If Check MIC fails -> disassociate�

Timeout�

Dis-associate�

�

N*Timeout�

N*Timeout�

Set ATK(M)�

N=1
ANonce = Counter++
Calc ATK(N, ANonce)
Send EAPOL(N)�

EAPOL-Key (N, N, A, Current KONonce, ANonce0, MIC, ATK0)�

Send EAPOL(N)
M=N, N=!N
ANonce = Counter++
Calc ATK(N, ANonce)�

Station Assemblage state machine�

Key owner Assemblage state machine�

�

M=N, N=!N
ANonce = Counter++
Calc ATK(N, ANonce)
Set ATK(M)
Send EAPOL(N)
M=N, N=!N
ANonce = Counter++
Calc ATK(N, ANonce)�

Check MIC
Set ATK(N) - Rx�

EAPOL-Key (N, N, A, Current KONonce, ANonce0, MIC, ATK0)�

�

�

EAPOL-Key (N, N, A, Current KONonce, ANonce0, MIC, ATK0)�

�

�

Wait for N queue Flush�

Tx IV exhaustion N�

Dyad complete�

If Check MIC fails -> disassociate�

Association/Re-association complete�

SNonce = Counter++�

KONonce = Counter++
N=1
Send EAPOL(N, N)
ANonce = Counter++
Calc ATK(N, ANonce)�

EAPOL-Key* (N, N, D, KONonce0, 0, 0, 0)�

�

Station Assemblage only state machine�

Key owner Assemblage only state machine�

�

Calc DTK(KONonce)
Send EAPOL(0, 0)�

EAPOL-Key* (0, 0, D, SNonce, 0, MIC0, 0)�

Send EAPOL(N, N)
Set ATK(N) - Tx/Rx�

Check MIC
Set ATK(N) - Tx/Rx
Send EAPOL(0, 0)�

EAPOL-Key* (N, N, A, KONonce0, ANonce0, MIC, ATK0)�

EAPOL-Key (N, 0, A, SNonce, 0, MIC, 0)�

Check MIC
M=N, N=!N
ANonce = Counter++
Calc ATK(N, ANonce)
Send EAPOL(M, N)
M=N, N=!N
Send EAP-Success
ANonce = Counter++
Calc ATK(N, ANonce)�

Remove TK(N)�

�

�

�

�

Check MIC
Set ATK(M) - Tx/Rx
Set ATK(N) - Rx�

EAPOL-Key (M, N, A, current KONonce, ANonce1, MIC, ATK1)�

�

Set ATK(M) - Tx/Rx�

Send EAPOL(M, N)
M=N, N=!N
ANonce = Counter++
Calc ATK(N, ANonce)�

�

Tx/Rx IV exhaustion N�

�

Wait for N queue Flush�

EAPOL-Key (M, N, A, current KONonce, ANoncen+2, MIC, ATKn+2)�

Timeout�

Calc DTK(KONonce)
Check MIC�

�

Association
Re-association complete�

Association
Re-association complete�

If Check MIC fails -> disassociate�

�

Timeout�

Dis-associate�

�

N*Timeout�

N*Timeout�

EAPOL-Key (H, M, A, N1, N2, T, KONonce, ANonce, MIC, ATK)
and ((T==D and DyadKO ==0) or (T==A and AssemblageKO ==0))�

STATIONEAPOL
State = Unknown
If MSK == 0
	MSK = get MSK from EAP
If(M == 1) {
	if(Check MIC(DTK[N1]) fails)
		State = Failed
	else
		State = MICOK
}
If(T == D) {
	if((State == MICOK) && (N1 != N2))
		if(Set TK(N1, Tx/Rx, 0) fails)
			State = Failed
	If(State != Failed) {
		if(CKONonce[N2] != KONonce) {
			DTK[N2] = Calc DTK(KONonce, SNonce)
			CKONonce[N2] = KONonce
		}
		if(State == MICOK) {
			if(Set TK(N2, Rx, DTK[N2]) fails)
				State = Failed
		}
		TxN = N1
	}
}
else if(State == MICOK) { // T==A
	If(N1 != N2)
		if(Set ATK(N1, Tx/Rx, 0) fails)
			State = Failed
	if no ATK and H == 1
		KOAOInit event
	else if((ATK[N2] = Decrypt ATK) succeeds) {
		if H == 1 and DyadKO == 1
			802.1X::Send EAP-Success
		if(Set ATK(N2, Rx, ATK[N2]) fails)
			State = Failed
	}
	else
		State = Failed
}
else
	State = Failed
If(State == Failed)
	Send Disassoicate
else If(A == 1)
	Send EAPOL(0, 1, 0, 0, 0, T, SNonce, 0, MIC(DTK[TxN]), 0)�

�

SINIT�

�

UCT�

1 bit
Key Type�

2 bits
Tx Key Index�

3 bits
Key Descriptor Version�

5 bits
Reserved�

2 bits
Key Index�

1 bit
Key Ack�

1 bit
Key MIC�

1 bit
Key handoff�

EAPOL-Key (I, M, A, N1, N2, T, KONonce, ANonce, MIC, ATK)

Parameters are:
	I: Dyad to Assemblage or vice-versa handoff
	M: MIC is available in message
	A: Response is required to the message
	N1: Tx/Rx Key Index
	N2: Rx Key Index
	T: Key type - D (Dyad), A (Assemblage)
	KONonce/SNonce: Key Owner Nonce/Station Nonce
	ANonce: Assemblage Nonce
	MIC: Integrity check
	ATK: Assemblage temporal key�

Send EAPOL(0, 0, 1, 0, 0, D, KONonce, 0, 0, 0)�

ATK[AN] = Calc ATK(ANonce)�

�

SetAKeys  and AssemblageKO == 1 and DAKeys==0�

�

Timeout�

EAPOL-Key* (0, 1, 0, 0, 0, D, SNonce, 0, MIC0, 0) and T==D and DyadKO ==1 and DAKeys==0�

Remove ATK(AN)
Send EAPOL(0, 1, 1, AN, AN, A, KONonce, ANonce, MIC(DTK[0]), ATK[AN])
Set ATK(AN, Tx/Rx, ATK[AN])�

N*Timeout�

EAPOL-Key (0, 1, 0, 0, 0, A, SNonce, 0, MIC, 0) and T==D and AssemblageKO ==1 and DAKeys==0�

Check KeyType == A
Check MIC(DTK[0])
AM=AN, AN=!AN
ANonce = Counter++
ATK[AN] = Calc ATK(ANonce)
Send EAPOL(0, 1, 0, AM, AN, A, KONonce, ANonce, MIC(DTK[0]), ATK[AN])
AM=AN, AN=!AN
if DyadKO == 1
	802.1X::Send EAP-Success
ATKInitOnly Event
ANonce = Counter++
ATK[AN] = Calc ATK(ANonce)�

�

�

Send EAPOL(0, 1, 0, AM, AN, A, KONonce, ANonce, MIC(DTK[0]), ATK[AN])
If all stations send ATK
	AKeysSent Event�

�

Check KeyType == D
DTK[0] = Calc DTK(KONonce, SNonce)
Check MIC(DTK[0])
if AssemblageKO == 1
	KOAOInit event
else
	Send EAPOL(1, 1, 0, 0, 0, A, 0, 0, MIC, 0)�

�

DyadKO == 1 and DAKeys == 0�

If Check MIC fails -> disassociate�

�

Timeout�

Send Dis-associate�

�

N*Timeout�

Send Dis-associate�

KOAOInit  and AssemblageKO == 1 and DAKeys == 0�

KOAInit�

Send EAPOL(0 ,0 , 1, N, N, D, KONonce, 0, 0, 0)�

Key owner dyad state machine�

EAPOL-Key* (0, 1, 0, 0, 0, D, SNonce, 0, MIC0, 0) and T==D and DyadKO ==1 and DAKeys==1�

Remove DTK(N)
Send EAPOL(0, 1, 1, N, N, D, KONonce, 0, MIC(DTK[N]), 0)
Set DTK(N, Tx/RX, DTK[N])�

�

EAPOL-Key (0, 1, 0, 0, 0, D, SNonce, 0, MIC0, 0) and T==D and DyadKO ==1 and DAKeys==1�

Check MIC(DTK[N])
M=N, N=!N
KONonce = Counter++
DTK[N] = Calc DTK(KONonce, CSNonce)
Send EAPOL(0, 1, 0, M, N, D, KONonce, 0, MIC(DTK[M]), 0)
SetInitAKeys Event
if AssemblageKO == 0
	802.1X::Send EAP-Success
M=N, N=!N
KONonce = Counter++
DTK[N] = Calc DTK(KONonce, CSNonce)�

�

�

Set TK(M, Tx/Rx, DTK[M])�

Send EAPOL(0, 1, 0, M, N, D, KONonce, 0, MIC(DTK[M]), 0)
M=N, N=!N
KONonce = Counter++
DTK[N] = Calc DTK(KONonce, CSNonce)�

�

Tx/Rx IV exhaustion N�

�

Wait for N queue Flush�

DyadKO == 1 and DAKeys == 1�

Timeout�

Send EAPOL(0, 1, 0, AM, AM, A, KONonce, ANonce, MIC(DTK[N]), ATK[AM])
if DyadKO == 1 {
	Send EAPOL(0, 1, 0, AN, AN, A, KONonce, ANonce, MIC(DTK[N]), ATK[AN])
	802.1X::Send EAP-Success
}
else
	Send EAPOL(1, 1, 0, AN, AN, A, KONonce, ANonce, MIC(DTK[N]), ATK[AN])�

CSNonce = SNonce
DTK[N] = Calc DTK(KONonce, CSNonce)
Check MIC(DTK[N])�

�

�

If Check MIC fails -> disassociate�

Timeout�

Send Dis-associate�

�

N*Timeout�

N*Timeout�

�

Send EAPOL(0, 1, 0, AM, AM, A, KONonce, ANonce, MIC(DTK[N], ATK[AM])
If all stations send ATK
	AKeysSent Event�

SetAKeys  and AssemblageKO == 1�

SetInitAKeys and not first Dyad and AssemblageKO == 1 and DAKeys == 1�

KODInit�

If IBSS {
	If this station mac < source mac in probe response
		DyadKO = 1
	If Dyad and Assemblage keys supported
		DAKeys = 1
	KODInit event
	KOAInit event
	802.1X::portMode = Enabled
}�

�

Probe Response�

If IBSS
	AssemblageKO = 0�

�

Beacon�

If IBSS
	AssemblageKO = 1�

�

Beacon generator�

Set ATK(M, Tx/Rx, ATK[AM])�

�

Wait for AN queue Flush�

SetAKeys Event�

Tx IV exhaustion AN�

ATK[AN] = Calc ATK(ANonce)
AM=AN, AN=!AN
ANonce = Counter++
ATK[AN] = Calc ATK(ANonce)
Set ATK(AM, Tx/Rx, ATK[AM])
SetInitAKeys event�

�

�

�

AMSKInitOnly Event�

SetInitAKeys and first Dyad and AssemblageKO == 1�

AM=AN, AN=!AN
ANonce = Counter++
ATK[AN] = Calc ATK(ANonce)�

�

AKeysSent�

REASSOCIATION
MSK = Transfer MSK
KONonce = Counter++
ANonce = Counter++
SNonce = Counter++
N=AN=1
TxN = 0
CSNonce = 0
DTK[0..N] = ATK[0..N] = 0
CKONonce[0..N] = 0
Remove DTK(0..N)
Remove ATK(0..N)
DAKeys = 0
If Dyad and Assemblage keys supported
	DAKeys = 1�

�

Re-association�

ASSOCIATION
KONonce = Counter++
ANonce = Counter++
SNonce = Counter++
N=AN=1
TxN = 0
CSNonce = 0
DTK[0..N] = ATK[0..N] = 0
CKONonce[0..N] = 0
DyadKO = AssemblageKO = 0
DAKeys = 0
If Station == AP
	DyadKO = AssemblageKO = 1
If Dyad and Assemblage keys supported
	DAKeys = 1�

�

Association�

INIT
MSK = 0
802.1X::portMode = Disabled
Remove DTK(0..N)
Remove ATK(0..N)�

�

Dis-association || Init�

�

802.1X::aSuccess
&& DyadKO == 1�

INITMSK
MSK = Radius key�

WAITFOR8021X
802.1X::portControl = Auto
802.1X::portMode = Enabled�

INITPSK
802.1X::portControl = ForceAuthorized
MSK = PSK
802.1X::portMode = Enabled�

�

�

Not PSK�

PSK�

�

UCT to
KODInit
KOAInit
Sinit�

�

UCT to
KODInit
KOAInit
Sinit�

�

UCT to
KODInit
KOAInit
Sinit�

�

DyadKO == 0�

Sinit�

SUCCESS
KeysOK = FALSE;
authSuccess = TRUE;�

SENDSUCCESS
currentId = idFromServer;
txCannedSuccess(currentid);�

IDLE
authStart = FALSE;
reqCount = 0;�

�

�

UCT�

�

aSuccess�

NoKeys || KeysOK�

NoKeys. This variable is set TRUE if keys are not used. The initial value is TRUE.�

KeysOK. This variable is set TRUE when keys are setup correctly.�


_1076328600.vsd
If IBSS {
	If this station mac < source mac in probe response
		DyadKO = 1
	If Dyad and Assemblage keys supported
		DAKeys = 1
	KODInit event
	KOAInit event
	802.1X::portMode = Enabled
}�

�

Probe Response�

If IBSS
	AssemblageKO = 0�

�

Beacon�

If IBSS
	AssemblageKO = 1�

�

Beacon generator�


_1076328632.vsd
Set ATK(M, Tx/Rx, ATK[AM])�

�

Wait for AN queue Flush�

SetAKeys Event�

Tx IV exhaustion AN�

ATK[AN] = Calc ATK(ANonce)
AM=AN, AN=!AN
ANonce = Counter++
ATK[AN] = Calc ATK(ANonce)
Set ATK(AM, Tx/Rx, ATK[AM])
SetInitAKeys event�

�

�

�

AMSKInitOnly Event�

SetInitAKeys and first Dyad and AssemblageKO == 1�

AM=AN, AN=!AN
ANonce = Counter++
ATK[AN] = Calc ATK(ANonce)�

�

AKeysSent�


_1075615801.vsd

_1076151369.vsd
1 bit
Key Type�

2 bits
Tx Key Index�

3 bits
Key Descriptor Version�

5 bits
Reserved�

2 bits
Key Index�

1 bit
Key Ack�

1 bit
Key MIC�

1 bit
Key handoff�


_1075000656.doc


Key mixing







Temporal Key







Reassemble







WEP Seed 







Michael







WEP Decapsulation







TKIP sequence counter







TA







Phase 1 key mixing







Ciphertext MPDU







Plaintext MSDU







Plaintext MPDU







SA + DA + Plaintext MSDU







TTAK Key







WEP IV







MIC Key







Unmix IV







In-sequence MPDU







Out-of-sequence MPDU







MIC







MIC(







MIC = MIC(?







MPDU with failed WEP ICV







MSDU with failed TKIP MIC







Countermeasures












_1075052925.doc


Sizes in Octets











Encrypted



















WEP IV



4







Data



(PDU)



( 0







WEP ICV



4







NOTE: The encapsulation process expanded the original MPDU by up to 16 Octets, 4 for the Initialization Vector (IV) field, 8 for the TKIP MIC, and 4 for the Integrity Check Value (ICV). 
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NOTE: The encipherment process has expanded the original MPDU by 8 Octets, 4 for the Initialization Vector (IV) field and 4 for the Integrity Check Value (ICV).  The ICV is calculated on the Data field only.
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