July 2002

doc.: IEEE 802.11-02/144r4

IEEE P802.11
Wireless LANs

Proposed TGi D2.2 Clause 8 AES-CTR CBC-MAC (CCM) text

Date:
July 11, 2002

Authors:

Onno Letanche

Agere Systems

Zadelstede 1 - 10

3431 JZ Nieuwegein, Netherlands

Phone: +31 30-609-7454

E-mail: oletanche@agere.com

Dorothy Stanley

Agere Systems

2000 North Naperville Rd

Naperville, IL, 60566

Phone: +1 630-979-1572

E-mail: dstanley@agere.com

This document contains text describing the AES Counter Mode with CBC-MAC algorithm. It is based on the proposal documented in IEEE 802.11 document 11-02-001r1-I-AES-CTR-Mode-with-CBC-MAC (March 5 version), by Niels Ferguson, Russ Housley, and Doug Whiting. Some AES algorithm descriptive material was taken from the current working.11i draft, 802.11i-D1.8, edited by Jesse Walker.

8.1 Advanced Encryption Standard (AES) based privacy

8.1.1 Introduction

A protocol based on the Advanced Encryption Standard (AES) has been adopted to provide wired equivalent privacy in addition to RC4. This protocol is called AES-based privacy, and this clause defines it. AES-based privacy is a protocol that uses the AES algorithm in Counter Mode with CBC-MAC (CCM) mode to provide both privacy and data authenticity.

Clause 8.1.2 discusses features of AES encryption, the underlying cipher used by the AES-based privacy algorithm. Clause 8.1.2.1 describes Counter mode and CBC-MAC mode and how AES is used in these modes. Clause 8.1.2.1.5 gives the MPDU expansion used by the AES-based privacy algorithm. Implementation of AES-based privacy is mandatory in an RSN. Use of AES-based privacy, like any other privacy algorithm, always depends on local policies.

8.1.2 The AES encryption algorithm

The AES encryption algorithm defines the NIST standard for block ciphers. The AES encryption algorithm is based on the iterated block cipher Rijndael. This cipher has both a variable length key and block size. AES keys can consist of 128, 196 or 256 bits. The NIST standard, however, specifies the use of 128-bit blocks only, even though the Rijndael algorithm itself can support 128, 196, and 256 bit blocks. The 802.11 AES-based privacy protocol restricts the use of AES encryption further by using only 128-bit keys with the cipher.

AES is a symmetric key iterated block cipher. Symmetric key means it uses the same key to encrypt and decrypt data. Iterated means it is applied to the same data over and over again to encrypt or decrypt data; 128-bit AES iterates over the data 10 times. A block cipher encrypts or decrypts a well-defined number of bits only; in the case of AES, this is 128-bits.

Every effort has been made to design AES-based privacy so as to maximize the chances of approval, by the U.S. Department of Commerce, of export from the U.S. of products containing an AES implementation. The current export policy may be found at http://www.bxa.doc.gov/Encryption/.

8.1.2.1 AES-CTR Privacy With AES-CBC-MAC (CCM)

The AES encryption algorithm, like any block cipher, must be used with a mode of operation. A mode of operation is an algorithm employing the cipher to produce ciphertext from plaintext, and vice versa. Encryption provides a data privacy function only. In particular, it does not afford any protection against data modification. To provide data authenticity requires the use of a data authenticity mechanism. The standard way to accomplish this is to compute a tag, in the literature called a Message Authentication Code, using a keyed cryptographic function. The tag is transported with the data over an unprotected channel with the data it protects, and its value verified by the receiver, using the same key with the same cryptographic function. Since 802.11 already uses the acronym MAC for Medium Access Control, this specification deviates from established practice and refers to such a code as a Message Integrity Code, or MIC. The industry term “CBC-MAC” is retained, as the meaning of “MAC” is clear when paired with “CBC”.

The AES CCM mode of operation chosen as mandatory for 802.11 is a combination of the Counter (CTR) mode privacy and Cipher Block Chaining Message Authentication Code (CBC-MAC) authentication. These modes have been used and studied for a long time, with well-understood cryptographic properties, and no known patent encumbrances. They provide for good security and performance, whether implemented in hardware or software.

Both CTR mode and CBC-MAC use the same temporal key. The differences in both encryption cycles are due to a different IV generation of CTR and CBC-MAC. Figure 1 shows the key hierarchy and key derivation of the temporal key. [When the complete text is assembled, reference can be made to the appropriate figure number in the key/ re-key section]

[image: image1.wmf]Pair-wise Transient Key (PTK)

384 bits

Pair-wise Master Key

(PMK)

AES

Temporal

Encryption Key

L(TSK, 256, 128)

EAPOL-Key

MIC Key

L(TSK, 0, 128)

EAPOL-Key

Encr. Key

L(TSK, 128, 128)

Figure 1 – CCM Temporal Key Derivation

8.1.2.1.1 Definitions

The following variables are used in the description of the AES-CCM cryptographic mode.

	Name
	Description
	Field Size
	Comments

	C
	Block number “counter” within a packet
	16 bits
	

	Hlen
	Length of unpadded Hdata
	16 bits
	

	Dlen
	Length of the input packet
	16 bits
	Packet size

	L
	Number of bytes in Dlen or C field
	3 bits
	Recommended value: L = 2

	M
	Size (in octets) of MIC “tag”
	3 bits
	Recommended value: M = 8

	Qos-TC
	QoS Traffic Class
	8 bits
	

	PN
	Unique packet number
	48 bits
	Similar to the WEP IV

	Hdata
	Additional authentication data
	24 - 48 octets
	Immutable MAC header contents

	P
	Input packet
	Dlen octets
	Octets p[0], p[1], … , p[L-1]

	A
	Authentication (MIC) value, computed over P
	M octets
	Octets a[0], a[1], … , a[M-1]

	Q
	Output packet
	Dlen+M octets
	Octets q[0], q[1], … , q[L+M–1]

	A1
	Address of the receiving STA
	48 bits
	Octets A1[0], … , A1[5]

	A2
	Address of the transmitting STA
	48 bits
	Octets A2[0], … , A2[5]

	K
	AES Encryption Key
	128 bits
	Octets k[0], k[1], … , k[15]

Table 1– AES-CBC MIC Variable Descriptions
To ensure that the terminology is clear, consider an example of a 128-bit entry. The 128-bit entity can be represented as 16 octets. The 128 bit entities can be represented as 16 octets, where the leftmost (and most significant) octet is sent and received first and the rightmost (and least significant) octet transferred last.
The unique packet number (PN) is a 48-bit sequence counter for each QoS traffic class utilized by this association; the implementation uses each of these to construct unique per-packet nonces.
8.1.2.1.2 AES-CBC-MAC overview

The MIC value is calculated over the length of the MAC header, the MAC header and the data contents of the packet.

The MAC header authentication excludes the mutable Duration field and SequenceControl field. The FrameControl word is included in the authentication, but the retry bit must be forced to zero for this purpose.
Other mutable field like the Duration field and SequnceControl field are excluded from MAC header authentication. The Duration field is excluded to allow for automatic rate adjustment with a retry.
The size of the MAC header part to be authenticated varies between 22 and 30 octets, and the MAC header part must be padded with zeroes to get a length that is a whole multiple of 16 octets. The resulting zero padded MAC header part is 32 octets (what can be extended when additional MAC header fields must be authenticated).
Note that the Hlen field contains the size of the MAC header part (minus Duration and SequenceControl fields) before padding and without the Hlen field itself.

The length of the MIC is set to 64 bits, so the M field value in Table 3 is fixed to 8.

The first AES block of the MIC computation is used to generate the CBC IV. It does not cover any of the packet data, but instead includes the values shown below in Table 2 and Table 3.

	Field
	Description
	Size

	Flag
	Flag byte as defined below (0x59)
	1 byte

	QoS-TC
	QoS Traffic Class
	1 byte

	A2
	MAC header address 2
	6 bytes

	PN
	Unique packet number
	6 bytes

	Dlen
	Length of data part
	2 bytes

Table 2 – MIC Initial Block Fields

	Field
	Bits
	Description
	Size

	Reserved
	7
	Reserved (0)
	1

	Hdat
	6
	Header data field available
	1

	M
	5-3
	MIC length (3 = 8 octets)
	3

	L
	2-0
	Dlen length (1 = 2 octets)
	3

Table 3 – Flag Byte Definition for Initial Block

The Hdat bit signals whether the CBC-MAC calculation is performed over a part of the packet that will remain clear text, i.e. the MAC header part, for 802.11 CCM Hdat always is set to 1.

The shaded fields are retrieved from the MPDU as shown in Figure 2:

[image: image4.wmf]Hlen

MIC

contents

Header part

Data part

Pad

FC

Dur

A1

A2

A3

A4

Qos

Ctl

Packet

number

Data

FCS

Hlen

Dlen

A2

PN

Seq

Ctl

Retry=0

Figure 2 - Plaintext MPDU and MIC Fields

Figure 3 shows the MIC calculation process. The IV is calculated from the fields in Table 4 and the MAC header part is authenticated with 2 or 3 AES encryption cycles. Then the CBC-MAC over the data part of the packet is calculated, where the last data might be padded with zeroes. Since the MIC has a length of 8 octets and the result of the last encryption has a length of 16 octets (128 bits) the MIC consists of the leftmost (most significant) half of the encrypted result. The MIC is encrypted with the very first encryption preload value, where the counterfield is 0000.

[image: image5.wmf]AES_E(K)

AES_E(K)

AES_E(K)

AES_E(K)

AES_E(K)

0 padded

0 padded

CBC-MAC

AES_E(K)

FC

Dur

A1

A2

A3

A4

SC

QC

PN

Data

MIC

Clear text frame

Rty=0

Hlen

Flag

Nonce

Dlen

Dlen

Figure 3 - AES-CBC MIC Calculation Process

8.1.2.1.3 AES-CTR encryption overview

Counter mode encryption requires a counter that is encrypted to produce an output value. The encrypted output is exclusive-ored with the clear text data to produce encrypted data. AES-CTR mode has the property that only AES encryption is used, for both encryption and de-cryption of data. Also, the output data length does not need to be a whole multiple of the encryption block size (i.e. 16 bytes).

The first step in counter mode encryption consists of setting the counter plaintext preload value similar to the first step of the CBC-MAC. The initial counter values are determined as follows:

	Field
	Description
	Size

	Flag
	Flag byte as defined below (0x01)
	1 byte

	QoS-TC
	QoS Traffic Class
	1 byte

	A2
	MAC header address 2
	6 bytes

	PN
	Unique packet number
	6 bytes

	C
	Counter (0x0000)
	2 bytes

Table 4 – Encryption Initial Block Fields

	Field
	Bits
	Description
	Size (bits)

	Rsv
	7
	Reserved (0)
	1

	Rsv
	6
	Reserved (0)
	1

	
	5-3
	0
	3

	L
	2-0
	Counter length (1 = 2 octets)
	3

Table 5 – Flag Byte Definition for Initial Block

The shaded fields are retrieved from the MPDU in its encrypted form as shown in Figure 4.

For encryption of the data part the C field is initially set to 0x0001 and is incremented by 1 at every next block that must be encrypted using counter mode. Depending on the amount of data, C ranges from 1 – 145 (0 – 2304 octets of data). The C field value 0x0000 is dedicated to the encryption of the MIC and is not used for data encryption.

[image: image7.wmf]MIC

FC

Dur

A1

A2

A3

A4

Qos

Ctl

Packet

number

Data

FCS

A2

PN

C= 1

C=2

C=n-1

C=0

Seq

Ctl

Hlen

Header part

C=n

Figure 4 - Plaintext MPDU and AES-CTR Initial Block Value

8.1.2.1.4 AES-CCM

Figure 5 gives an overview of how a transmit MPDU is authenticated and encrypted. Note that both the header and the data part are padded with zeroes for authentication and that the upper 64 bits of the CBC-MAC calculation are used for the MIC.

[image: image8.wmf]Clear text frame

FC

Dur

A1

A2

A3

A4

SC

QC

PC

Data

MIC

AES_E(K)

AES_E(K)

AES_E(K)

AES_E(K)

AES_E(K)

CBC-MAC

AES_E(K)

AES_E(K)

FC

Dur

A1

A2

A3

A4

SC

QC

PC

Data

MIC

Pl(2)

Pl(1)

Counter preload

Transmitted

encrypted frame

IV

AES_E(K)

FCS

0 padded

0 padded

Flag

Nonce

Dlen

Flag

Nonce

Cnt

Hlen

AES_E(K)

Pl(C)

AES_E(K)

Pl(0)

Figure 5 – AES CCM Encryption and Authentication

Figure 6 shows how the decryption and authentication of a received MPDU is performed. The decryption uses the encryption counter scheme, since only the AES generated random string is exclusive-ored with the data to either encrypt or decrypt. The clear text data is authenticated and the calculated MIC is compared with the received, and decrypted, MIC.

[image: image10.wmf]Decrypted frame

FC

Dur

A1

A2

A3

A4

SC

QC

PC

Data

AES_E(K)

AES_E(K)

AES_E(K)

AES_E(K)

AES_E(K)

0 padded

CBC-MAC

AES_E(K)

AES_E(K)

FC

Dur

A1

A2

A3

A4

SC

QC

PC

Data

MIC

Pl(2)

Pl(1)

Counter preload

Received

encrypted frame

IV

AES_E(K)

MIC

check

FCS

Flag

Nonce

Dlen

Flag

Nonce

Cnt

Hlen

AES_E(K)

Pl(C)

AES_E(K)

Pl(0)

Figure 6 - AES CCM Decryption and Authentication
8.1.2.1.5 AES-CCM MPDU format

Figure 7 shows the encrypted MPDU when using AES-based privacy.

[image: image12.wmf]IV / KeyID

4 octets

Data

>= 0 octets

MIC

8 octets

Encrypted (note)

Note:

The encipherment process has expanded the original MPDU size by 16 octets, 4 for the IV / Key ID field, 4 for the

extended IV field and 8 for the Message Integrity Code (MIC).

Extended IV

4 octets

IV0

b4

b5

b6

b7

b3

b0

IV1

Rsvd

IV5

IV4

IV3

IV2

Rsvd

Key

ID

Rsvd

Ext

IV

Figure 7 - Construction of Expanded AES MPDU

The AES-based privacy mechanism is invisible to entities outside the 802.11 MAC data path.

Bit 5 of the Mode field is used to signal an Extended Packet number field of 6 octets. For standard length Packet number/ IV fields (as with basic WEP, TKIP and AES-OCB) this bit is set to zero, for extended packet number field the bit must be set to one.

8.1.2.1.6 Key Derivation and Usage

Each pair of stations in the network that desire to communicate will have a unique pair wise key. A new key will also need to be negotiated prior to the exhaustion of the packet number field. With a 44 bit effective packet number size 16 Terra packets have to be transferred before exhausting the packet number space.

 [Do we require unique pair wise keys with AES? Or will assemblage keys be supported for broadcast traffic and unicast traffic]

8.1.2.1.7 Implementation Notes and Options

Note that the upper 64 bits of the AES input blocks do not change during the lifetime of the connection. The purpose of these “salt” bits is to minimize the impact of certain classes of attacks (e.g., Hellman80, Biham96). For 802.11i, we have chosen them as addresses. Another approach would have been to choose these salt bits at random when the connection is established, possibly by hashing connection attributes, such as the receiver/transmitter addresses. These salt bits do not have to remain secret.

Annex A provides test vectors for verification of the correct implementation; annex B shows sample source code.

8.1.2.1.8 Security proof

Jakob Jonsson from RSA Laboratories is working on a security proof of CCM. Work is still in progress, but current results show that CCM is provably secure to the same security bound as OCB mode. The proof is much simpler than the OCB proof of security. We are investigating whether this proof can be extended to prove better security bounds for the authentication.

8.1.2.1.9 Design Rationale of CCM

CCM mode of AES is specified for a wide range of applications beyond wireless LANS, including for example IPSec. Several of the design choices are described here.

The main difficulty in specifying the CCM mode is the trade-off between nonce size and counter size. For a general mode support of large messages is required. Some applications, such as wireless LANs use only small messages, but would rather have a larger nonce. Introducing the L parameter solves this issue. The parameter M gives the traditional trade-off between message expansion and probability of forgery. We recommend choosing the value of M to be at least 8.

The CBC-MAC is computed over a sequence of blocks that encode the relevant data in a unique way. Given the block sequence it is easy to recover PN, M, L, P, and Hdata.

The encryption is a straightforward application of CTR mode. As some implementations will support a variable length counter field, we have ensured that the least significant byte of the counter is at one end of the field. This also ensures that the counter is aligned on the block boundary.

By encrypting MIC we avoid all the collision attacks on CBC-MAC mode. If the block cipher behaves as a pseudo-random permutation then the key stream is indistinguishable from a random string. This implies that the attacker gets no information about the CBC-MAC results. The only avenue of attack that is left is a differential-style attack, which has no significant chance of success if the block cipher is a pseudo-random permutation.

We use the same block cipher key for the encryption and authentication functions. In our implementation this is not a problem. All the encryption inital blocks are different, and they are different from the authentication initial block. If the block cipher behaves like a random permutation, then the outputs are independent of each other, up to the insignificant limitation that they are all different. The only places where the inputs to the block cipher can overlap is an overlap between an intermediate value in the CBC-MAC and one of the other encryptions. As all the intermediate values of the CBC-MAC computation are essentially random (because the block cipher behaves like a random permutation) the probability of such a collision is very small. Even if there is a collision, these values only affect MIC, which is encrypted so that an attacker cannot deduce any information, or detect any collision.

Care has been taken to ensure that the blocks used by the authentication function match up with the blocks used by the encryption function. This should simplify hardware implementations, and reduce the amount of byte-shifting required by software implementations.

Appendix A. Test Vectors

9 Notation

In the examples here, frames are represented as a stream of octets, each octet in hex notation, sometimes with text annotation. The order of transmission for octets is left to right, top to bottom. For example, consider the following representation of a frame:

	Description #1
	00 01 02 03

	
	04 05

	Description #2
	06 07 08

The frame consists of nine octets, represented in hex notation as “00”, “01”, ..., “08”. The octet represented by “00” is transmitted first, and the octet represented by “08” is transmitted last. Similar tables are used for other purposes, such as describing a cryptographic operation.

In the text discussion outside of tables, integer values are represented in either hex notation using an “0x” prefix or in decimal notation using no prefix. For example, the hex notation 0x12345 and the decimal notation 74565 represent the same integer value.

10 AES-CCM encapsulation

The MPDU data, prior to AES-CCM encapsulation, is as follows:

	MPDU data
	aa aa 03 00 00 00 08 00 45 00 00 4e 66 1a 00 00

80 11 be 64 0a 00 01 22 0a ff ff ff 00 89 00 89

00 3a 00 00 80 a6 01 10 00 01 00 00 00 00 00 00

20 45 43 45 4a 45 48 45 43 46 43 45 50 46 45 45

49 45 46 46 43 43 41 43 41 43 41 43 41 43 41 41

41 00 00 20 00 01

The MAC header is as follows:

	MAC header
	08 43 12 34 ff ff ff ff ff ff 00 40 96 45 07 f1

08 00 46 17 62 3e 50 67

The muted MAC header, i.e., the MAC header with mutable fields cleared to 0, is as follows:

	Muted MAC header
	08 42 00 00 ff ff ff ff ff ff 00 40 96 45 07 f1

08 00 46 17 62 3e 00 00

The muting clears: the retry bit, in the second octet (0x43 (0x42); the 16-bit duration field, in the third and fourth octets (0x1234 (0x0000); and the 12-bit sequence number, in the last two octets (0x567 (0x000).

The following parameters are assumed:

· Replay counter value is 21,542,142,465= 0x0504030201 (40 bits).

· QOS traffic class is 4.

· KeyID is 2.

10.1 MIC computation

The MIC is defined using AES-CBC-MAC. It can also be computed using AES-CBC encryption. At the time of this writing, NIST has published test vectors for AES-CBC encryption but not for AES-CBC-MAC. Accordingly, the discussion here describes the MIC computation using AES-CBC encryption.

The discussion here represents an AES-CBC encryption using a table that shows the key, IV input, plaintext input, and ciphertext output. For reference, here is a table that describes the test case “CBC-AES128.Encrypt” in Appendix F.2 of [NIST Special Publication 800-38A, 2001 Edition].

	Key
	2b 7e 15 16 28 ae d2 a6 ab f7 15 88 09 cf 4f 3c

	IV
	00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f

	Plaintext
	6b c1 be e2 2e 40 9f 96 e9 3d 7e 11 73 93 17 2a

ae 2d 8a 57 1e 03 ac 9c 9e b7 6f ac 45 af 8e 51

30 c8 1c 46 a3 5c e4 11 e5 fb c1 19 1a 0a 52 ef

f6 9f 24 45 df 4f 9b 17 ad 2b 41 7b e6 6c 37 10

	Ciphertext
	76 49 ab ac 81 19 b2 46 ce e9 8e 9b 12 e9 19 7d

50 86 cb 9b 50 72 19 ee 95 db 11 3a 91 76 78 b2

73 be d6 b8 e3 c1 74 3b 71 16 e6 9e 22 22 95 16

3f f1 ca a1 68 1f ac 09 12 0e ca 30 75 86 e1 a7

The MIC is computed using the following AES-CBC encryption:

	Key
	00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f

	IV
	59 04 00 40 96 45 07 f1 05 04 03 80 02 01 00 6e

	Plaintext
	00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 18 08 42 00 00 ff ff ff ff ff ff 00 40 96 45

07 f1 08 00 46 17 62 3e 00 00 00 00 00 00 00 00

aa aa 03 00 00 00 08 00 45 00 00 4e 66 1a 00 00

80 11 be 64 0a 00 01 22 0a ff ff ff 00 89 00 89

00 3a 00 00 80 a6 01 10 00 01 00 00 00 00 00 00

20 45 43 45 4a 45 48 45 43 46 43 45 50 46 45 45

49 45 46 46 43 43 41 43 41 43 41 43 41 43 41 41

41 00 00 20 00 01 00 00 00 00 00 00 00 00 00 00

	Ciphertext
	64 da d9 ad c1 5a 28 bf 0f 76 6e 37 56 0a 93 09

e7 f9 35 ea b8 7b c8 ad be fc 80 56 6c 48 bc 78

04 91 c6 0f c6 96 88 bc bf 63 b8 d3 41 5e 5c c2

cd 23 ab ca 6b 40 c9 b9 9c 47 bb 08 a5 13 13 a5

24 23 d8 d0 ad 6a 7e b2 bc 72 22 dd 64 cc 57 82

7f df bf 93 d9 41 e8 c1 84 2f 8f b0 2c 2a bf cb

5f 09 ca 9a 7d 2b 92 db 8d ac 38 79 dc 5f 65 18

5c 15 36 1f b5 42 49 0a 32 7e 83 b9 73 88 1c e9

22 68 e8 9f 4e a0 68 c0 44 d2 a3 29 68 55 b9 f1

The IV consists of 16 octets. The first octet of the IV is “0x59”; this is a fixed value for AES-CCM encapsulation in 802.11. The upper nibble of the second octet is 0. The lower nibble of the second octet is the QOS traffic class. The next six octets of the IV are address 2 of the MAC header. The next six octets of the IV are the packet number (see below). The last two octets of the IV show the sum of the lengths of the MAC header and the MPDU data; in this example, the value is 24 + 86 = 110 = 0x006e.

The packet number consists of six octets. Octets one, two, three, five and six are the 40-bit replay counter. Octet four is the concatenation of the 2-bit keyID value and six 0-bits.

The plaintext is constructed as follows.

· The first 16 octets of the plaintext are zero. The reason for this is a slight difference in the definition of CBC encryption versus that of CBC-MAC. In CBC encryption, the first ciphertext block c1 is computed as c1 = AES(IV ^ p1), where p1 is the first plaintext block and “^” means exclusive or; subsequent blocks are computed as cn = AES(cn-1 ^ pn) for n > 1. In CBC-MAC, the zeroth ciphertext block is computed as c0 = AES(IV), with subsequent blocks computed as cn = AES(cn-1 ^ pn) for n > 0. Thus, CBC-MAC can be computed using CBC encryption by inserting a block of zeroes at the start of the plaintext.

· The next two octets of the plaintext consist of the length of the muted MAC header. In this example, the length is 24 = 0x18.

· The next octets of the plaintext are the muted MAC header.

· The MAC header is followed by 0 to 15 octets of zero, as needed to get to 16-octet alignment. In this example, 6 octets of zero are needed.

· The next octets of the plaintext are the MPDU data.

· The MPDU data is followed by 0 to 15 octets of zero, as needed to get to 16-octet alignment. In this example, 10 octets of zero are needed.

The MIC consists of the last block of ciphertext, truncated to 8 octets. That is, the MIC value is

	MIC
	22 68 e8 9f 4e a0 68 c0

10.2 Encapsulation

The MPDU and MIC data are encapsulated using AES-CTR encryption. The discussion here represents an AES-CTR encryption using a table that shows the key, initial counter input, plaintext input, and ciphertext output. For reference, here is a table that describes the test case “CTR-AES128.Encrypt” in Appendix F.5 of [NIST Special Publication 800-38A, 2001 Edition].

	Key
	2b 7e 15 16 28 ae d2 a6 ab f7 15 88 09 cf 4f 3c

	Init. Counter
	f0 f1 f2 f3 f4 f5 f6 f7 f8 f9 fa fb fc fd fe ff

	Plaintext
	6b c1 be e2 2e 40 9f 96 e9 3d 7e 11 73 93 17 2a

ae 2d 8a 57 1e 03 ac 9c 9e b7 6f ac 45 af 8e 51

30 c8 1c 46 a3 5c e4 11 e5 fb c1 19 1a 0a 52 ef

f6 9f 24 45 df 4f 9b 17 ad 2b 41 7b e6 6c 37 10

	Ciphertext
	87 4d 61 91 b6 20 e3 26 1b ef 68 64 99 0d b6 ce

98 06 f6 6b 79 70 fd ff 86 17 18 7b b9 ff fd ff

5a e4 df 3e db d5 d3 5e 5b 4f 09 02 0d b0 3e ab

1e 03 1d da 2f be 03 d1 79 21 70 a0 f3 00 9c ee

AES-CTR encryption is performed on the MPDU, as follows:

	Key
	00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f

	Init. Counter
	01 04 00 40 96 45 07 f1 05 04 03 80 02 01 00 00

	Plaintext
	22 68 e8 9f 4e a0 68 c0 XX XX XX XX XX XX XX XX

aa aa 03 00 00 00 08 00 45 00 00 4e 66 1a 00 00

80 11 be 64 0a 00 01 22 0a ff ff ff 00 89 00 89

00 3a 00 00 80 a6 01 10 00 01 00 00 00 00 00 00

20 45 43 45 4a 45 48 45 43 46 43 45 50 46 45 45

49 45 46 46 43 43 41 43 41 43 41 43 41 43 41 41

41 00 00 20 00 01

	Ciphertext
	48 90 95 62 25 60 e3 b2 f3 bb 96 b5 41 cd 6e 6b

99 f6 31 09 22 86 21 dc 37 b5 ee 56 59 b5 d2 22

b2 41 b8 fe 54 8c 0d 93 9b f7 c7 0a e8 b8 88 ff

20 26 f3 31 6b 79 01 90 04 e9 52 fb 61 fe eb e0

1c ef fc b5 bc b3 ba 8c e5 c3 99 cd 43 8d b7 67

dc 72 ad c4 c4 56 e4 d9 af 98 c6 ec 85 22 4e 3f

14 60 7a b8 9c 99

The key is the same as used for the MIC calculation. The initial counter value is nearly the same as the IV used for the MIC calculation, the difference being that the first octet is replaced by “01” and the last two octets by “00 00”; these are fixed values for AES-CCM encapsulation in 802.11.

The first eight plaintext octets consist of the MIC value. The next eight octets of the plaintext are arbitrary values; the corresponding ciphertext is not used. The remaining octets of the plaintext consist of the MPDU data.

The expanded MPDU, after AES-CCM encapsulation, is as follows:

	Packet number
	05 04 03 80 02 01

	MPDU data
	99 f6 31 09 22 86 21 dc 37 b5 ee 56 59 b5 d2 22

b2 41 b8 fe 54 8c 0d 93 9b f7 c7 0a e8 b8 88 ff

20 26 f3 31 6b 79 01 90 04 e9 52 fb 61 fe eb e0

1c ef fc b5 bc b3 ba 8c e5 c3 99 cd 43 8d b7 67

dc 72 ad c4 c4 56 e4 d9 af 98 c6 ec 85 22 4e 3f

14 60 7a b8 9c 99

	MIC
	48 90 95 62 25 60 e3 b2

The packet-number field consists of the 6-octet packet number. The MPDU and MIC fields consist of those portions of the ciphertext corresponding to the MPDU and MIC data, respectively. Note that the order of the MPDU and MIC fields is different in the encapsulated MPDU than in the ciphertext.

Appendix B. Test Vector Generation Source Code

TBA

Submission
page 15
O. Letanche, D. Stanley, Agere

_1087274607.vsd

_1087283482.vsd

_1087912456.vsd

_1087274685.vsd

_1087281322.vsd

_1087274635.vsd

_1077391819.vsd

_1087273166.vsd

_1076388222.vsd

_1076997552.vsd

_1076999035.vsd

_1076237625.vsd

