January 2002

doc.:IEEE 802.11-02/-115r0

IEEE P802.11
Wireless LANs

Updated Normative Text for Section 7.5

Date:
January 24,, 2002

Author:
John M. Kowalski

Sharp Laboratores of America



5750 NW Pacific Rim Blvd.



Camas, WA 98607

Phone: (360) 817 7520

Fax: (360) 834-8696

e-Mail: kowalskj@sharplabs.com

Abstract

Enclosed below is an updated draft of section 7.5 incorporating changes reflecting ballot comments made on letter ballot from Draft 2.0, and incorporating changes made in Draft 2.0a

MAC-Level FEC and FEC frame formats 

MAC-Level FEC is an option that may be used to reduce both the frequency of retransmissions and the MSDU loss rate for transfers via the WM.  The following conditions apply to the use of MAC-Level FEC:

 -
MAC-level FEC may be used in conjunction with parameterized QoS, where FEC is enabled for MSDUs belonging to a given TS by setting the FEC bit (bit 4) of the TS Info field of the TSPEC for that TS.  However, MAC-Level FEC is a separate option from the QoS facility, the support for which is indicated by a separate bit in the Capability Information field,  The use of MAC-Level FEC may be negotiated between QSTAs when desired, and may be used for transfers with no QoS delivery requirements.  Note that an support for the QoS facility is a prerequisite to support for MAC-Level FEC, because the indication that an MPDU has been FEC-encoded is bit 15 of the Frame  Control field, and this field is only present in QoS data-type- frames and only exchanged by QSTAs in a QBSS. The TSPEC in Add-TS-Request may have  FEC bit set to 1 and ack-policy set to immediate acknowledgement. If the requested QSTA can handle FEC decoding of any data frame before sending immediate ack can accept this combination. Otherwise the requested QSTA can set FEC bit to zero in the TSPEC of Add-TS-Response to indicate its inability to do so. The requestor may either not use FEC or retry the request with FEC set to 1 and ack-policy set to burst-ack or no-ack in the TSPEC of Add-TS-request for the traffic stream.

· The MAC FEC operation allows for  error detection  to take longer than a SIFS interval. FEC-capable QSTAs that are unable to distinguish receptions with uncorrectable errors from receptions with correctable errors or no errors within a SIFS interval may require that all FEC-encoded frames be sent to them using an acknowledgment policy that does not include immediate acknowledgment.  The non-use of immediate acknowledgement is negotiated as part of the TSPEC signaling, and is selected by a non-zero value in the Ack Policy field (bits 2-3) of the TS Info field of the TSPEC.  Responses to FEC frames may be made using either the Burst Acknowledgement, or, if the receiver is capable, after a SIFS or AIFs  

Note: in any practical implementation of the FC, the RxTXTurnaroundTime happens during the decoding process, and so medium sensing can be done even while the FEC frame is being decoded.

 -
A valid FCS check is required in order to forward an MSDU containing error-corrected data to higher layers.  When the post-correction FCS check fails, the MAC shall not indicate the erroneous MSDU to at the MAC SAP.

Any encryption  that may be done on the frame  shall be performed prior to FEC encoding

· Stream-based negotiation provides the means for determining if receiving stations are capable of accepting FEC encoded frames.  

· The FEC bit in the Frame Control Field should be used exclusively by receiving stations to determine if a frame is FEC encoded.

MAC-Level FEC is performed on a given traffic stream.  STAs announce their FEC capability by setting bit 9 of the Capability Information Field (7.3.1.4 and Figure 27) to 1. FEC is enabled for MPDUs belonging to a specific TS to/from a FEC-capable QSTA by defining a TSPEC for that TS which has bit 4 of its TS Info field set to 1.  This TSPEC may be defined either by the local MLME, using an MLME-ADDTS.request; or by the MLME at the peer QSTA, using an Add TS request QoS Action frame.
QSTAs that are not capable of FEC decoding will still be able to read the MPDU, since the code is a systematic code, and, via management frames, the receiving station is made aware of the flow’s encoding.  A non-FEC capable QSTA can therefore interpret the MAC header and FCS, and can ignore erroneous frames based on the FCS result   Unicast MPDUs directed to a non-FEC-capable QSTA shall not contain FEC encoded data. It is up to the implementation whether a non-FEC-capable QSTA shall discard or receive FEC encoded multicast MPDUs directed to it. In the latter case, the QSTA shall interpret the MPDU according to the FEC frame format, receiving the data and ignoring the parity check fields.

The format of MAC-Level FEC MPDUs is given in Figure 42.19.  The MAC-Level FEC uses a (224,208) Reed-Solomon code for decoding the MPDUs, which is a shoretened version of the (255,239) code over GF(256).  FEC coding is performed on successive 208-octet blocks of the MPDU.  The FEC coding adds 16 parity octets per block.  This code is capable of correcting up to 8 octet errors per block.  The MAC header is encoded using a (48,32) Reed-Solomon code, which is a shortened version of the (255, 239) code.  For QoS data frames of types that do not utilize an Address 4 field, in order to facilitate decoding and separation of the header from the frame body, a 6-octet pad of zeros is inserted between the Sequence Control field and the QoS Control field.  The security header and ICV (if present) and MSDU or fragment thereof, as well as the FCS are all encoded within the frame body.  The presence of the Frame Control field of the corrected MAC header can be used to determine whether the security header is the first 4 or 32 octets of the frame body.  This allows non-FEC capable QSTAs to recognize the header and FCS. If the unencoded frame body is not an integral multiple of  208 octets, then the last block of the frame body is encoded with (208-m) zeros of virtual padding at the beginning of the block. The encoded MPDU includes 16 octets of parity following each 208-octet data block.  The ICV, in the last block, is coded as part of the frame body.  Also, in order for STAs and non-FEC capable QSTAs to perform validate the received MPDU (in order to use information from fields in the MAC header), the MPDU FCS is calculated on the encoded MPDU, including all Reed-Solomon parity octets.  

During FEC encoding, a second FCS is calculated on the non-parity octets in the MPDU.  The resulting 4-octet FEC FCS is appended to the last coded data block. (denoted “MSDUN  + ICV + ‘FEC FCS’” in Figure 42.19). The receiving QSTA can recalculate the FEC FCS on the corrected MPDU, to determine whether the error correction has recovered the original frame contents.  If the FEC FCS check is invalid for a received, corrected MPDU, that MPDU is discarded due to an uncorrectable error.  Both the FEC FCS and the MPDU FCS are computed, and transmitted in the bit order, specified in 7.1.3.8.

Note: One method for handling the decoding procedure of an FEC frame is as follows.: First the outer FCS is performed. If that is in error, then the MAC header may be RS-decoded.  Depending on the results of the header decoding, the MAC frame may either be discarded, or RS-decoding may continue on the rest of the frame.  This method (there may be others, and the implementer is free to use whatever other methods may exist) allows for determining whether a frame’s FEC bit is correctly set or not.

The RS encoding and decoding on the MAC header is done as follows:  The received header is treated as though it were the first 32 octets of a 239 octet block.  The remaining octets are assumed to be zeros, but they are not transmitted.  This 208-octet sequence is encoded using a shortened version of the  (255, 239) Reed-Solomon code, and decoded appropriately.

	MAC Header
	Frame Body
(1-10 blocks)
	FCS

	Header
	Header FEC
	Security IV  +
DATA1+ ICV
	FEC
	DATA2 
	FEC
	DATAN  + ICV + “FEC FCS”
	FEC
	FCS

	32
	16
	208
	16
	208
	16
	4 to 208


	16
	4


Figure 42.19 FEC frame format

All the FEC computations are based on the polynomial operations in GF(2) and GF(256). Both the  RS (224, 208) and RS (48, 32) used are shortened versions of the RS (255, 239) code over GF(256). In addition, the GF(256) is generated by a polynomial f(x) in GF(2).  The polynomial f(x)  for the GF(256)  is:

f(x) = x8 + x4 + x3 + x2 + 1 

Each code (a code space with collection of all code words) contains a unique nonzero code word of smallest degree polynomial with the coefficient of highest degree equal to 1. This polynomial is called generator polynomial. All code words can be constructed using generator polynomial for the Reed-Solomon code:
2t                           2t

g(x) =  ( (x - (i) =  (  g j * xj
  i=1                        j= 0

t =  the number of correctable errors

n = the size of code block

( = roots of g(x) on (primitive elements of)  GF(256)

The generator polynomial's coefficiencts are given by the following, with am as primitive roots of f(x):

g15  : a121
g14  : a106
g13  : a110
g12  : a113
g11  : a107
g10  : a167
g9  : a83
g8  : a11
g7  : a100
g6  : a201
g5  : a158
g4  : a181
g3  : a195
g2  : a208
g1  : a240
g0  : a136
The decimal values of the roots of g(x) are given in Table 20.3. 

Table 20.3.  Roots of Reed-Solomon Polynomial g(x)

	Primitive Roots am represented as a[m]
	Decimal  Value

	a[121]
	118

	a[106]
	 52

	a[110]
	103

	a[113]
	 31

	a[107]
	104

	a[167]
	126

	a[ 83]
	187

	a[ 11]
	232

	a[100]
	 17

	a[201]
	 56

	a[158]
	183

	a[181]
	 49

	a[195]
	100

	a[208]
	 81

	a[240]
	 44

	a[136]
	 79


To obtain the parity check octets, the MAC header or the message block is represented as a polynomial c(x) over GF(256), with the rightmost octet corresponding to the coefficient of x0 in c(x). The remainder polynomial b(x) is formed by dividing x16c(x) by

the generator polynomial g(x). The 16 parity check octets are the coefficients of the remainder polynomial b(x), with the rightmost parity check octet corresponding to the coefficient of x0 in b(x).

Insert after 7.5 the following new subclause, including the table therein, renumber items as appropriate:

Submission
page 1
John Kowalski, Sharp Laboratories of America


