November 2001

doc.:IEEE 802.11-01/573r0

IEEE P802.11
Wireless LANs

Authenticated Key Exchange at the MAC Layer

Date:
November 9, 2001

Author:

Nancy Cam-Winget

Atheros Communications

529 Almanor Ave, Sunnyvale, Ca 94085

Phone: +1 408 773 5317

e-mail: nance@atheros.com

Russ Housley

RSA Laboratories

918 Spring Knoll Drive, Herndon, Va 20170

Phone: +1 703-435-1775

e-mail: rhousley@rsasecurity.com

and

Jesse Walker

Intel Corporation

2211 NE 25th Avenue, Hillsboro, Oregon 97124

Phone: +1 503 712 1849

Fax: +1 503 712 2026

e-mail: jesse.walker@intel.com
1 Abstract

The current TGi draft introduces the use of sequence spaces and their use for replay protection and alludes to the notion of rekeying these keys before these counters wrap. Many discussions have been held over the last few months revolving the need to include rekeying as part of the Enhanced Secure Network solution. This paper describes a proposal for the framework and protocol in which keys can be updated securely and in synchrony.

2 Definitions

Base Key: the key derived when security association is established. This key is used to compute the temporal encryption keys.

Enable exchange: the first phase in the rekey protocol that allows peers to synchronize to the next temporal encryption key.

Master Key: the key acquired from an external source to the MAC layer. This key is used to compute the base key.

Rekey Coordinator: a member of the WLAN that coordinates the rekeying and its associated state.

Rekey Participant: is a STA that responds to the transition request when rekeying key-map keys or uses the rekey information element in the beacon to synchronize its clock and drive it’s default key update.

Security Association: a new service that enforces the defined security policy.

Temporal key: the key used for providing confidentiality and data integrity. If two keys are required the temporal key is partitioned into two keys, one used for confidentiality and one used for data integrity.

Transition exchange: the second phase in the rekey protocol that allows the new temporal encryption key to be in full effect.

3 Overview

A framework from which keys can be established and managed must first be defined before details of how keys are updated can begin. This section provides an overview of the context from which keys can be updated.

3.1 Data Protection Station Services

To ensure protection of user traffic, an Enhanced Security Network (ESN) employs the following services:

1. association

2. authentication

3. master key distribution

4. privacy

5. data authentication

6. replay protection

7. security association

Association is used to establish the cipher suite required to provide privacy and data authentication.

Authentication is used instead of the wired media physical connection to regulate access.

Master Key distribution is used to acquire the shared master key and thus establish and manage the protection of subsequent data. If Upper Layer Authentication (ULA) is chosen, the ULA may also distribute the master key.

Privacy is used to provide confidentiality of user data.

Data authentication and replay protection are used together to prevent the use of network bandwidth by outsiders..

Security association is used to enforce the defined security policy.

3.2 Security Association

A security association is a cooperative relationship between two or more entities that is formed by sharing of cryptographic keying material and associated attributes. The attributes specify the manner that the cryptographic keying material will be used to provide security services, such as confidentiality, data integrity, or data origin authentication.

A security association is established when two or more stations (where an access point is treated as a station) have the same encryption key, authentication key, and attributes associated with these keys. A security association used to protect user traffic (as opposed to key management traffic) is established after the stations associated and authenticated. First, using ULA, the Master Key is established. Then, the Base Keys and Temporal Keys are derived from the Master Key. These key derivations are described in Section 3, but they cannot be correctly accomplished without agreement on the cryptographic algorithms that will be used to provide confidentiality and data integrity.

User traffic security associations have one of two possible contexts. In one context, one of the four possible Default Key identifiers names the security association. In the other context, a Key-Mapping Key identifies the security association.

Operations such as rekeying is infeasible without the existence of a security association. A security association must be successfully established between communicating peers to properly protect data traffic throughout the life of the security association, failure to do so revokes security guarantees.

A security association is terminated when the cryptographic keying material is no longer shared. This can happen in an abrupt manner when one station discards the cryptographic keying material, perhaps due to a crash or power failure. However, security association termination is generally cooperative. A user traffic security association must be terminated, usually being replaced by a new one, when the replay detection sequence number reaches its maximum value.

3.3 Relation to Other Station Services

The security association service and state relies on information that is obtained during the association, authentication states and key distribution service. Before a security policy can be enforced, the communicating peers must first agree on a shared master key and cipher suite to be used for protecting communication. The relationships between these services are shown in Figure 1.

[image: image1.wmf]State 1:

Unauthenticated,

Unassociated,

Invalid Security Association

State 2:

Authenticated,

Unassociated,

Invalid Security Association

State 3:

Authenticated,

Associated,

Invalid Security Association

State 4:

Unauthenticated,

Associated,

Invalid Security Association

Deauthentication

Notification

Disassociation

Notification

Successful

Authentication

Deauthentication

Notification

ULAP Authentication

Authenticated Key

Exchange

Authenticated Key

Exchange

State 6:

Authenticated,

Associated,

Valid Security Association

State 5:

ULA authenticated,

Associated,

Invalid Security Association

Disassociation

Notification

Figure 1 Relationships between state variables and services

3.4 Security Association and Keys

A security association protects communications between peers. One of the policies enforced by the security association service is the refreshment of keys used to protect data traffic, e.g. the encryption keys. 802.11 defines two types of encryption keys: default keys and key-mapping keys. Thus a security association is always framed within the context of either using a default key or a key-mapping key for encryption.

Further, a security association is a part of a key hierarchy, which facilitates the rekeying of either default or key-mapping keys. The key hierarchy as described in Section 3 allows for the keys to be multually independent, and thus they can be precomputed at any state prior to a rekey. This feature allows for the default keys to be rekeyed and provides a computational advantage when rekeying key-map keys. Finally, a security association makes the key type distinction only at the encryption key level. That is, security associations are not affected by Master key type; its context only depends on whether the encryption key is a default key or a key-map key.

3.5 Operation with Key-mapping Keys

By definition, a key-mapping key is a key unique to a particular link, i.e., no other security association is known a priori to be based on the same key.

When a key is used this way, the data flow over the link drives the management of the security association. Each STA (including AP) monitors the number of protected MSDUs it sends under the security association. When this number reaches a low water mark, the STA must initiate a rekey to establish a followon security association. If the number of protected MSDUs passes a high water mark, then the STA must halt further transmission of data protected by the security association, until establishment of the followon security association completes. Maximum values for the low and high water mark are cipher-suite specific, although local policy can prescribe lower values. The mechanism for identifying the low water mark is implementation specific.

This type of security association relies on an explicit exchange of 802.11 management messages to effect a rekey. The goal of the exchange is to establish a security association. The scheme employs WEP KeyIDs to identify keys. The scheme utilizes a WEP KeyID, called the last KeyID, to identify both the old and the new key when only one key is active. However, an auxiliary KeyID identifies the new key during the rollover from old to new key, that is, during the time interval when both the old and the new keys are active.

This convention does not conform to legacy Basic WEP KeyID usage. In existing implementations, a key-mapping key is always used whenever one exists, regardless of the WEP KeyID reported in the WEP header. The legacy scheme does not permit rekey because there is no way to designate which of the two or more keys is in use. A security association, however, always uses the WEP KeyID to explicitly name the key protecting the MSDU data. This change does not lead to interoperability problems. Conformant implementations that do not use the WEP KeyID in the new way also lack the notion of a security association, and do not implement the rekey protocol to manage the security association; similarly, conformant implementation must use the legacy Basic WEP KeyID rules when using Basic WEP.

The management message exchange effecting rekey consists of a 2-phase commit protocol, which coordinates the orderly transition from the old key to the new key. The first phase of the 2-phase commit protocol is called an Enable exchange, and the second phase a Transition exchange. The full key rollover can consume five messages, but it optimizes to four and even three messages. By separating the Enable and Transition exchanges, a greater degree of flexibility regarding error recovery is achieved over an atomic commit protocol, and peers are able to rekey several security associations simultaneously.

The Rekey Coordinator and the Rekey Participant are the two distinguished protocol roles; this terminology is derived from the theory of 2-phase commit protocols. Either role may initiate a rekey by sending an Enable message to its peer, but the Rekey Coordinator initiaties the Transition exchange. In a BSS, an AP always plays the role of the Rekey Coordinator. In an IBSS, the Rekey Coordinator is the STA with the largest MAC address, ordered lexicographically. Note that in an IBSS a STA may be Rekey Coordinator for one security association but a Rekey Participant for another.

The Enable exchange consists of one or two messages, called the Enable Request and Enable Response messages. The purpose of the Enable exchange is to reserve the auxiliary KeyID for identifying the new key. This reservation supports implementations where the auxiliary KeyID is a scarce resource at the Rekey Coordinator, and it might not be available when one of the peers wishes to begin a rekey operation. The Enable Request message instructs the Rekey Participant to reserve the auxiliary KeyID for the follow on security association. The Enable Response message signals that the Rekey Participant has reserved the auxiliary KeyID. If the Rekey Coordinator initiates the Enable exchange, then both Enable Request and Response are required. If the Rekey Participant initiates the exchange, then only the Enable Response message is required.

After receiving the Enable Response, the Rekey Coordinator may begin using the new key to protect data traffic.. Once it begins using the new key, identified by the auxiliary KeyID, it must never employ the old key to protect any further MSDUs. However, the old key, identified by the original KeyID, may still be used to process remaining MSDUs in the transmit queue as well as received MSDUs.

The Transition exchange consists of two or three messages, called the Transition Request, Transition Response, and Transition Confirm messages. The purpose of the Transition exchange is to coordinate the transition of the last KeyID from the old key to the new key.

The Rekey Coordinator initiates the Transition exchange by sending a Transition Request message to its peer, the Rekey Participant. It sends the Request only after it has transmitted any MSDUs protected under the old key. The Transition Request represents the Rekey Coordinator’s promise that it has no more MSDUs protected under the old key, so the Rekey Participant will no longer need the old key to process received MSDUs; thus, the message says that the auxiliary KeyID henceforth identifies the new key, and this key is used to protect data messages from the Coordinator to the Participant. It is also the Rekey Coordinator’s signal that it is ready to receive MSDUs protected under the auxiliary KeyID, i.e. protected by the new key, as well as the last KeyID.

After receiving the Transition Request, the Rekey Participant must never protect new MSDUs with the old key. It instead uses the new key and the auxiliary KeyID to protect new MSDUs. As soon as it has no more MSDUs protected under the old key to transmit, the Rekey Participant replies to the Transition Request by sending the Transition Response. This is a promise that the Rekey Participant will never use the old key again. This means the last KeyID can now be used to identify the new key on the trafficfrom the Participant to the Coordinator, thus freeing the Coordinator’s auxiliary KeyID for other purposes.

The Rekey Coordinator responds to the Transition Response message in one of two ways. If it has data to send, then it simply uses the new security association, identified by the last KeyID, to protect the traffic. This is an implicit confirm message. If the Coordinator does not have data traffic to send immediately, it instead transmits a Transition Confirm message. In either case, the action frees the auxiliary KeyID at the Participant, completing the security association transition. This last step is essential for the correct operation of the protocol in an IBSS.

Since every key has its own sequence space and replay window, this protocol has the following implications. A security association need maintain only a single sequence space for transmission, as the protocol guarantees that a particular sender has only one key-mapping key active at any moment. However, a security association must maintain two replay windows during the rollover period, as it can receive MSDUs protected under both the old and the new keys during this period.

The protocol uses timeouts and retry counts to guarantee liveness. The Rekey Coordinator maintains a retransmission timer and retry count to bound the wait for Enable Response and Transition Response messages. The Rekey Consumer uses a retransmission timer and retry count to bound the wait for the Transition Request and Confirm messages.

3.6 Operation with Default Keys

A default key is a key shared among a group of STAs, i.e., more than one security association is known a priori to be based on this single key. A default key may be used to protect traffic sent to a single STA, the AP, or broadcast/multicast traffic.

When a key shared by a group of stations is to derive a default key, the protocol utilizes a shared notion of time to drive the rekey. The 802.11 Beacon provides the notion of synchronized time. Each Beacon also conveys a counter called the rekey count, and a period called the rekey period. The rekey count indicates the number of Beacons remaining before the next rekey. The rekey period indicates the total number of beacons between each successive rekey. This scheme is called the countdown scheme, because the rekey counter is decremented by one in each successive Beacon; when the rekey count reaches zero, its value is reset to the rekey period and the process begins over again. The rekey count is always a positive number, less than or equal to the rekey period, and every STA using a default key rekeys when it should receive a Beacon with the rekey count equal to the rekey period.

Like the message-based rekey scheme for key-mapping keys, the countdown scheme uses two WEP KeyIDs, but it uses them exactly as defined by Basic WEP. The countdown scheme ping-pongs between the two KeyIDs. One KeyID is called the active KeyID, and identifies the active key. The other KeyID is called the invactive KeyID and identifies the previous key. The Beacon always conveys the inactive KeyID. The protocol uses the inactive KeyID to identify the next key as well as the previous key.

Also like the message-based scheme, the countdown scheme uses a Rekey Coordinator and a set of Rekey Participants. The Rekey Coordinator is responsible for generating the Beacons. This means it must be the access point in a BSS. In an IBSS, it is the STA that initiates the security service for its ad hoc network. This STA may hand off this function to another STA, but such transfers are outside the scope of this specification.

The protocol has three operations: generate a Beacon, resynchronize state using the latest Beacon, and rekey. The protocol also has a sequence space high water mark it applies to the MSDUs it protects.

Only the Rekey Coordinator generates Beacons. It generates the Beacon at a periodic interval. The Rekey Coordinator tracks the current KeyID and rekey count. To generate a beacon, the Rekey Coordinator first decrements the rekey count; if this becomes zero, the Rekey Coordinator resets its value to that of the rekey period.

Only Rekey Participants receive Beacons and use the information conveyed to resynchronize with the Rekey Coordinator. The Beacon indicates the community time, the rekey count, and the next KeyID. The Rekey Participant verifies that it has the correct values for each of these parameters.

When it is time to send or receive a Beacon that should report a rekey count equal to the rekey period it is time to rekey. The Rekey Coordinator and all the Rekey Participants perform the following actions at this time:

1. First, it discards any unsent MSDUs protected under the previous key associated with the inactive KeyID.

2. Next, if it has not already done so, it replaces the previous key by the next key.

3. Finally, it swaps the values of the active KeyID and the inactive KeyID. This reclassifies the old active key as the previous, and the previous key as the active key.

STAs must use only the active key to protect new MSDUs, so a STA need only maintain a single sequence space. At the appointed rekey time, they begin to use the new active key. If the sequence space for the new key crosses the high water mark prior to the rekey time, a STA must halt data traffic until the next rekey time.

STAs may receive protected MSDUs on both the active KeyID and the inactive KeyID. This means they must maintain replay windows for both keys.

4 Key Hierarchy

To facilitate the update of keys used for confidentiality and data integrity, the submission defines a key hierarchy. The key hierarchy contains four levels. The top of the hierarchy is the Master Key. The Master Key is the shared master secret established outside the scope of the proposed protocol. Subordinate levels are the Base Key, the Temporal Key, and the Per-packet Key. The Master Key is required to establish liveness between communicating peers as well as establishing a Base Key that is in turn used to derive the temporal key which is used as the key to provide confidentiality and data integrity. This submission breaks the keys into this hierarchy to allow for the precomputation of the temporal keys. The key hierarchy is illustrated in Figure 2.

[image: image2.png]Master Key

Master
Authentication
Key

Master
Key-Derivation
Key

Base
Default
Key

Base
Key-Mapping
Key

Temporal
Key-Mapping
Auth. Key

Temporal
Key-Mapping
Encr. Key

Temporal
Default

Encr. Key

Temporal
Default

Auth. Key

Perpacket
Key-Mapping
Encr. Key

Perpacket
Default

Encr. Key

Figure 2 Four-Tier Key Hierarchy
4.1 Master Key

Distribution of the Master Key is outside the scope of this document. Generally, the Master Key will be established using 802.1X, but other key establishment approaches are possible. For example, the Master Key might be derived from a password typed by the human operator. The Master Key has an indeterminate lifetime.

The Master Key is comprised to two parts: the key-derivation key and the authentication key. Each part of the Master Key is 128 bits. The Master Key-Derivation Key is used to compute subordinate Base Keys. The Master Authentication Key is used to provide integrity and authentication of rekey protocol data units.

The Master Key could be shared by two stations (for example, one STA and one AP), but many stations can share the Master Key. When 802.1X is employed, one likely configuration shares the Master Key between one station, all of the access points in a domain, and an authentication server.

The Master Security Association exists between the group of stations that share the Master Key and the context in which the Master Key-Derivation Key and Master Authentication Key will be used. The Master Security Association has an indeterminate lifetime.

4.2 Base Key

The Base Key is computed using AES-CBC-MAC with the Master Key-Derivation Key. The Base Key is used to reduce the number of cryptographic operations required to derive each Temporal Key. The Base Key is a 128-bit AES key. The Base Key has an indeterminate lifetime, but it shall not be longer than the associated Master Key.

There are two types of Base Key: Base Key-Mapping Key and Base Default Key. Eack type is derived from the Master Key in a different manner. The Base key type is derived from the temporal (encryption) key type; it is independent of the Master Key’s key type.

4.2.1 Base Key-Mapping Key

The Base Key-Mapping Key is computed using AES-CBC-MAC with the Master Key-Derivation Key, and inputs include the MAC addresses of the two parties, nonces from each of the parties, and the cipher suite. The Base Key-Mapping Key will be used to derive Temporal Key-Mapping Keys.

The Base Key-Mapping Security Association exists between two stations, identified by the two MAC addresses that go into the computation of the Base Key-Mapping Key. These two stations, usually one STA and one AP, share the Base Key-Mapping Key, and the context in which it will be used. The Base Key-Mapping Association has an indeterminate lifetime, but it shall not be longer than the associated Master Security Association.
4.2.2 Base Default Key

The Base Default Key is computed using AES-CBC-MAC with the Master Key-Derivation Key, and inputs include the BSSID, the beacon rekey nonce, and the cipher suite. The Base Default Key will be used to derive Temporal Default Keys.

The Base Default Security Association exists between the group of stations that share the Base Default Key and the context in which it will be used. The Base Default Security Association has an indeterminate lifetime, but it shall not be longer than the associated Master Security Association.
4.3 Temporal Key

The Temporal Key is computed using AES with the Base Key, and the inputs include a sequence number. The sequence number is reset whenever the Base Key is changed. The Base Key-Mapping Key is used to derive Temporal Key-Mapping Encryption Keys and Temporal Key-Mapping Authentication Keys. The Base Default Key is used to derive Temporal Default Encryption Keys and Temporal Default Authentication Keys. The Temporal Key lifetime depends on the algorithm associated with the key:

· 40-bit RC4 key lifetime shall not be more than <TBD> packets.

· 104-bit RC4 key lifetime shall not be more than<TBD> packets.

· 128-bit RC4 key lifetime shall not be more than 65,536 packets.

· 128-bit AES key lifetime shall not be more than<TBD> packets.

When the Temporal Key is a 128-bit RC4 Key, it is not used to encrypt and decrypt packets; rather the 128-bit RC4 Key is used to derive a sequence of per-packet keys. Other types of Temporal Keys are used to directly encrypt and decrypt packets.

The Temporal Key-Mapping Security Association exists between two stations, identified by the two MAC addresses that go into the computation of the Base Key-Mapping Key. These two stations share the Temporal Key-Mapping Encryption Key, Temporal Key-Mapping Authentication Key, and may share a series of Per-packet Encryption Keys; the two stations also share the context in which these keys will be used. The Temporal Key-Mapping Association has a specific lifetime, based on the cipher suite in use.

The Temporal Default Security Association exists between the group of stations that share the Base Default Key. These stations share the Temporal Default Encryption Key, Temporal Default Authentication Key, and may share a series of Per-packet Encryption Keys; these stations also share the context in which these keys will be used. The Temporal Default Security Association has a specific lifetime, based on the cipher suite in use.

4.4 Per-packet Key

When the Temporal Key is a 128-bit RC4 key, a separate RC4 encryption key is derived for each packet. This per-packet key is computed using the two-phase hash function described in 802.11-01/550, and the inputs include the transmitter address and the 16-bit packet sequence number. The resulting Per-packet Encryption key is comprised of a 24-bit initialization vector (IV) and 104-bit key. The IV is transferred in plaintext from the encryptor to the decryptor.
4.5 Cryptographic Operations

Key derivation and authenticity functions are presented to allow for the computation of the base key, temporal encryption keys and the rekey information element MIC. All of the presented cryptographic functions are based on the AES algorithm. The motivations for using AES for all these functions include:

1. Minimization of cryptographic algorithms required to rekey

2. Suitability of algorithm to provide pseudorandom values (for keys) and authenticity (for MIC)

3. Accepted standard in the cryptography community

4. Provides reasonable performance in both software and hardware environments

4.5.1 Base Key

To derive the temporal encryption keys, the base key must first be computed. The base key is computed as follows; here let K denote the 128 lsb of the Master Key:

For key-map keys:

base_key-map_key (AES-CBC-MACK (Initiator MAC address || Responder MAC address || Initiator nonce || Responder nonce || Cipher suite)
For default keys:

base_default_key (AES-CBC-MACK (BSSID || Rekey Coordinator’s nonce || Cipher Suite)

Temporal Keys

Once the base key has been derived, the temporal keys, Ki, can be computed as follows:

Key Sequence # (Key Sequence # + 1

Ki (Truncate(AESbase_key(Key Sequence #))

 base_perlink_key for key-map temporal keys

where base_key =

 base_shared_key for default temporal keys

and where Truncate(() discards least significant bits if more than needed are generated.

If more than 128-bits are needed for a temporal key:

Key Sequence # (Key Sequence # + number-of-128-bit-blocks

Key (NULL

 for j = 1 to number-of-128-bit-blocks

Key (Key || AESbase_key (Key Sequence # + j)

end

 Ki (Truncate (Key)

 base_perlink_key for key-map temporal keys

where base_key =

 base_shared_key for default temporal keys
4.5.2 Constructions with Short Master Keys

The rekey mechanism requires a master key consisting of 256 bits, or 32 octets. However, many legacy systems only support shorter 40-bit or 104-bit keys. This section adapts the above algorithms to these systems.

This specification uses AES-CBC-MAC to expand a short Master Key, S into a 256-bit master key M.

In addition to the short Master Key, S, this scheme uses a salt s and a counter c.

· In a BSS, the salt s is the BSSID, represented in the usual manner.

· In an IBSS, the salt s is the IBSS ID.

Thus, the salt s is always a 48-bit quantity.

The counter c is a 32-bit integer, represented as a little-endian value. It is initialized to the value 1.

This algorithm operates in three steps. First, it constructs an encryption key K, then it iteratively constructs a plaintext to encrypt, and finally it outputs the expanded key.

Step 1. Construct an intermediate key:

If the short master key S input consists of exactly 128-bits, this becomes the algorithm encryption key K.

If the short master key S input consists of greater than 128-bits, the algorithm encryption key K is ther 128 most signnifcant bits.

If the short master key S input consists of less than 128-bits, K is S with enough trailing zero pad to make it 128-bits.

Step 2. iteratively construct a plaintext Pi

The first plaintext P0 is 128-bit zero string, concatenated with the salt s, the counter 1, and another 48-bit zero string:

P0 (0128
where 0n denotes n zero bits. Then for i = 1, 2, increment c, then concatenat s || c || 048 to Pi–1, and compute the CBC-MAC of the result to obtain the next plaintext Pi:

c (c + 1

P1 (AES-CBC-MACK(P0 || s || c || 048)

c (c + 1

P2 (AES-CBC-MACK(P1 || s || c || 048)
Step 3. construct the final master key K

The master key M is the concatenation of P1 and P2: M = P1 || P2. Thus, the 128 most significant bits of M is P1, and the 128 least significant bits of M is P2.

5 Protocol Events

This submission defines a procedure for establishing and updating keys used for encryption, i.e. rekeying the temporal keys. Further, the defined protocols support rekeying of either default or key-mapping keys at the MAC layer. Two protocols are proposed and defined in this section: (1) a message-based protocol suitable for updating key-mapping keys and (2) a countdown protocol suitable for updating default keys.

Both protocols are based on the 2-phase commit protocol: the first phase is used to alert of an upcoming change while the second phase is used to commit that change. The two phases in this submission are identified as the enable exchange and the transition exchange.

The enable exchange allows the peers to compute the new temporal key, Ki, and initiate the synchronization of its use while the transition sequence allows the peers to securely obsolete the old key and safely switch to use new key, Ki.

The separation of the protocol into two sequences allows the message-based scheme to multiplex rekeying, since the Rekey Coordinator will have to rekey with more than one Rekey Participant. Depending on the capabilities of a particular implementation, either or both the enable exchange and the transition exchange can be multiplexed. Since temporal keys are mutually independent, they can be precomputed far in advance of the actual triggering of the enable exchange. Since this is implementation specific, the enable exchange performance can vary greatly depending on when the temporal keys are computed; e.g. they can be precomputed well before or at the actual enable request. Further, since the message-based scheme utilizes an auxiliary location to hold the new key while the peers are flushing their queues, the transition exchange may also be multiplexed. Note however that multiplexing the transition exchange is implementation dependent.

Whether running in a legacy or in a QoS environment, packets are not guaranteed to arrive in any particular order, preventing the use of implicit heuristics to determine when the new key has taken full effect.

The submission also defines a Rekey Coordinator as the member of the WLAN that coordinates the update or rollover of the temporal key and its associated state. In a BSS, the Rekey Coordinator is always the AP. In an IBSS, the type of key determines the Rekey Coordinator. If a security association uses key-mapping keys, the Rekey Coordinator is the STA with the larger MAC Address, where the MAC addresses are represented as little-endian integers. If a security association instead uses default keys, the RekeyCoordinator is the first STA to offer security services via the default key. It is not feasible to provide security without a Rekey Coordinator. The Rekey Coordinator for a default key must be unique in any BSS or IBSS.

A Rekey Coordinator for a key-mapping key has one responsibility, to initiate the Transition Exchange. For a default key, a Rekey Coordinator has two responsibilities:

1. First, it admits other members to the WLAN.

2. Second, it generates Rekey Beacons to cause all the members of the WLAN to roll over to the next default temporal key, along with its associated state.

As a practical matter, if more than one default key is in use in an IBSS, the same STA should be the Rekey Coordinator for each. The reason is it is necessary to prevent WEP KeyID collisions among the various potential coordinators.

A Rekey Participant is a STA that is not a Rekey Coordinator for a particular key. For a key-mapping key a participant is the responder in the transition exchange, and for a default key the participant uses the rekey beacon for clock synchronization, which drives key rollover.

Note that in an IBSS, it is feasible for a STA to be Rekey Coordinator for one key but a Rekey Participant for another.

The security association service provides the required infrastructure for establishing and maintaining the keys as described in the key hierarchy by both the Rekey Coordinator and Rekey Participant(s). Further, the security association manages the state for rekeying and thus allows either the message-based protocol for rekeying key-mapping keys or the countdown-based protocol for rekeying default keys. A security association request/response exchange is used to establish a valid security association state. The details of these protocols are described further in subsequent sections.
5.1 Establishing a Valid Security Association

Both the Rekey Coordinator and the Rekey Participant must establish a valid Security Association state. To accomplish this, each peer must execute a 2-way request-response handshake called the Security Association Exchange. This 2-way handshake allows each STA (or AP) to verify that its peer is both alive and authentic, and to securely synchronize packet sequence spaces and replay detection windows. The security association exchange will not complete until both peers have the same Master Key configured. This can be a statically configured key, configured by Upper Layer Authentication (ULA), or by another means. Protection of data packets cannot commence unless the Security Association succeeds. The security association exchange enables each peer to establish the base key as well as the first temporal encryption key and first temporal authentication key.

IEEE 802.11 security classifies all keys as default keys or key-mapping keys that in turn are used to provide privacy and integrity of data packets. Key-mapping keys are assumed to be unique between pairs of communicating peers, while default keys are group keys. The techniques used to establish either are similar, but the details differ. Both require a pair of two-way handshakes between the peers establishing the session, each being called a Security Association Exchange.

Note: Some 802.11 implementations support per-association default keys. From the viewpoint of the rekey protocol, this usage is identical to key-mapping keys, as it results in unique per-link keys. This submission treats default keys in such implementations as key-mapping keys, not as default keys.

When using key-mapping keys, the security association exchange allows both peers to exchange nonces and assure liveness. The security association exchanges allow both peers to acquire the other’s nonce as well as ensuring that their keys are synchronized. Each security association request and security association response includes a rekey information element containing the nonce, a KeyID and Key Sequence Value (described in Section 4.1.1.1). The security association request includes the requestor’s nonce while the security association response includes the nonces from both peers. Nonces should not be reused by the same STA twice, even across power cycles. One way to accomplish this with high probability, but without saving state, is to generate them pseudo-randomly. This approach requires the construction of a good pseudo-random number generator that doesn’t repeat, even across power cycles.

When using default keys, the Rekey Participant wishing to communicate with the Rekey Coordinator obtains the Rekey Coordinator’s nonce as well as rekey information from the Rekey Coordinator’s beacon frame rekey information element. While the nonce is not used to derive the base key, it is used to assure liveness. As default keys are used for multicast, broadcast, and in multiple point-to-point communications, we must ensure that all STAs using the default key establish a security association with the Rekey Coordinator. This can only be achieved by having the Rekey Participant initiate the security association exchange 2-way handshake that would also trigger the Rekey Coordinator to commence its corresponding security association exchange. The emphasis is on the Rekey Participant initiating the security association exchange as the Rekey Coordinator has no way of really identifying (especially in a broadcast case) which STAs are really listening. Note however that while the Rekey Participant triggers the first security association request, its KeyID values in the security association exchange information element (described in Section 4.1.4) are ignored by the Rekey Coordinator. That is, the Rekey Coordinator is the one to designate which DefaultKeys it uses. This must be the case as any Rekey Participant can secure a security association while the DefaultKey has been in continuous use; more explicitly, when the Rekey Participant initiates a security association with the Rekey Coordinator, the temporal encryption Default key may be beyond the first one.

The predefined cipher suite and key type (e.g. key-mapping or default key) determine the type of temporal encryption key and key sequence increment in a security association. How these values are defined is outside the scope of this protocol but to ensure a valid security association both a cipher suite and key type must be define before a security association exchange can take place. However, the valid cipher suites allowed in a security association are enumerated in Figure 3.

	OID
	Value
	Temporal Key Length
	Description

	00:00:00
	0
	Not used
	Null security (no cipher suite selected)

	00:00:00
	1
	40
	Basic (40-bit) WEP

	00:00:00
	2
	104
	Basic (104-bit) WEP

	00:00:00
	3
	128
	AES-128

	00:00:00
	4
	128 + MIC key length
	RC4 per-packet key (from key mixing) + MIC

	00:00:00
	5-255
	Undefined
	Reserved

	Other
	Other
	Undefined
	Vendor specific

Figure 3 Valid Cipher Suites in a Security Association

The security association is successfully completed when both peers have succeeded with their respective security association exchanges. At this point, the security association is established. That is, when the required information has been securely acquired, the peers can proceed to derive both the base key, first temporal key, and first temporal authentication key based on the chosen key type (e.g. key-mapping or default key), establishing a valid security association state. A security association enables protected communication utilizing the active cipher suite and synchronized temporal key.

5.1.1 Establishing a temporal key-mapping Valid Security Association

The protocol uses the security association exchange to establish a valid security association state that is based on key-mapping keys. Both Rekey Coordinator and Rekey Participant engages in the same security association exchange to establish a valid security association state. The Security association exchange will not complete until both peers have the same master key configured. This can be a statically configured key, configured by Upper Layer Authentication (ULA), or by another means.

When a peer receives a valid MLME.SetKey request it must initiate its security association request. Data cannot be protected by a STA until it has:

1. Received a valid security association response from its peer

2. Received a valid security association request from its peer

3. Respond to its peer’s security association request with a security association response

5.1.1.1 Protocol Messages for establishing a valid temporal key-map security association

Peers engage in two 2-way handshakes to establish a valid security association state. The two management frame messages are termed Security Association Request and Security Association Response. The information required to validate a security association is exchanged in the request and response messages and is defined in the security association information element. The fields and format of this element is the same for both peers be it the Rekey Coordinator or the Rekey Participant as well as the request and response messages. The information element is depicted in Figure 4.

	Octets: 16
	4
	2
	1
	1
	4
	4
	4
	4
	8

	Nonce
	Cipher suite
	Version Number
	KeyIDping
	KeyIDpong
	Key Sequence #
	Max Packet Count
	Rekey Count
	Rekey Period
	MIC

Figure 4 Security Association Information Element

· The Nonce is a 16-byte random value. If the element is in a security association request message, it is the requestor’s nonce; if it is in a security association response message, the responder must also echo the requestor’s nonce, failure to do so mean an unsuccessful security association.

· The Cipher Suite is a 4-byte field that denotes the cipher suite enforcing this rekey protocol. This value is determined prior to establishing a valid security association as it is required to determine the length of the temporal encryption key. The cipher suite must be one of the cipher suites described in Figure 3.

· The Version Number is a 2-byte field that denotes the version of this protocol. The value of this field shall be 0.

· The KeyIDping defines the first index used in rekeying. The subscript ping is either 0, 1, 2 or 3. The KeyIDping value is an identifier that indicates to use the index into the key map table that holds the key-mapping key for the particular AP/STA link. Thus, the logic to first search the key map table remains as described in Clause 8.3.2 in the 802.11-1999 draft and augmented to use the key in actual key map location only when the 2-bit KeyID field in the frame matches KeyIDping.
Note: the KeyIDping value must be mutually agreed upon during the security association exchanges. Since these are 2-way handshakes there is no negation, it must be mutually agreed upon. The AP can ignore this field in the initial enable sequence request sent by the STA, however all other messages must validate this field. The AP ignores this field as it is the AP that dictates this policy for default keys and manages its scarce resource when rekeying key map keys.

· The KeyIDpong defines the auxiliary index used. The subscript pong is either 0, 1, 2 or 3. The KeyIDpong value is an identifier that indicates to use the transitional storage holding the new key for the particular AP/STA link.

Note: he KeyIDpong value must be mutually agreed upon during the security association exchanges. Since these are 2-way handshakes there is no negation, it must be mutually agreed upon. The AP can ignore this field in the initial enable sequence request sent by the STA, however all other messages must validate this field. The AP ignores this field as it is the AP that dictates this policy for default keys and manages its scarce resource when rekeying key map keys.

· The Key Sequence value is a 4-octect identifier that allows peers to synchronize to the appropriate temporal encryption key and temporal authentication key. This value is incremented on every rekey based on the length of key required; e.g. the increment is based on the cipher suite. Thus, if a 128-bit key or smaller is required, the Key Sequence Value in incremented by one; similarly, if a 232-bit key value is required, the Key Sequence Value is incremented by two. Since this is the first establishment of the temporal key, this value must be 1.

· The Max Packet Count is a 4-byte value denoting the high watermark or maximum number of packets that can be transmitted and received by the peers before the temporal key must be obsoleted. If this value is reached before a successful rekey then security has been compromised and an MLME.RevokeKey event should be triggered and traffic flow should halt.
· The Rekey Count indicates the number of beacons (including the current beacon frame) appear before the next rekey will occur. Since key-mapping keys are managed based on traffic flow, this value must be 0.

· The Rekey Period indicates the number of beacon intervals. Since key-mapping keys are managed based on traffic flow, this value must be 0.

· The MIC is the frame’s message integrity check. The128-bit Master authentication key is used to compute the MIC. The message integrity check is computed over the Security Association Information Element and is further described in Section.

The KeyIDping and KeyIDpong values determine the heuristic used for switching keys. KeyIDping is the 2-bit value used to designate that the fixed location storing the key corresponding to the Rekey Coordinator/Rekey Participant link is to be used while KeyIDpong is the 2-bit value used to designate the transitional location storing the new key for the Rekey Coordinator/Rekey Participant link to be used only for the duration of the rekey exchange. The values are not absolute index values into the key map table, but rather distinguishers of when to use the fixed location key versus the transitional key when encrypting or decrypting packets.
5.1.1.1.1 Computing the Security Association’s MIC

The MIC is the integrity check over the Security Association Information Element, the source and destination MAC addresses and the Action header frame contents. The MIC is required to prevent from replays as well as authenticating the message exchanges. The MIC is computed as follows:

Let K denote the 128 lsb of the Master Key. Then

For the Security Association Request message:

MIC (1st 64 bits of AES-CBC-MACK (DA || SA || BSSID || Category Code || Action Code || Activation Delay || Dialog Token || Requestor Nonce || Cipher Suite || Version Number || KeyIDping || KeyIDpong || Key Sequence # || Max Packet Count)

For the Security Association Response message:

MIC (1st 64 bits of AES-CBC-MACK (DA || SA || BSSID || Category Code || Action Code || Activation Specific Status || Dialog Token || Requestor Nonce || Responder Nonce || Cipher suite || Version Number || KeyIDping || KeyIDpong || Key Sequence # || Max Packet Count)

5.1.2 Establishing a temporal default key Security Association

Since default keys are presumed to be shared, the Rekey Coordinator and Rekey Participant roles are established prior to any security association estabishment. That is, the Rekey Coordinator must establish a security association with itself in order to allow Rekey Participants to participate. Thus, establishing a valid security association for default keys is different if a station is a Rekey Coordinator or a Rekey Participant.

However, like key-mapping keys, both the Rekey Coordinator and Rekey Participant must also engage in two 2-way Security Association exchanges to ensure liveness.

5.1.2.1 Establishing a Default Key Security Association at the Rekey Coordinator

The protocol uses an optimized security association exchange at the Rekey Coordinator to establish a valid security association based on default keys. By necessity, the Rekey Coordinator cannot in general initiate a security association. This is because it typically will not know what STAs wish to participate in communications secured under a default key. The protocol accommodates this reality by requiring the peer to initiate the session in every case. A second difference with the key-mapping key case is that none of the Rekey Participants can utilize a default key until the Rekey Coordinator begins operation, but, as already noted, it does not make sense for the MLME-SetKey.request primitive to initiate the Security association exchange. Hence the protocol must also address how the Rekey Coordinator comes on-line.

As with key-mapping keys, the security association exchange is designed so it will not complete until the MAC can be certain that Upper Layer Authentication (ULA) has completed.

The first phase of operation is the establishment of a new default key. The protocol models this as a special security association called a foundation association. A foundation association has only one state: Default Key Active. This is the initial and only state of a foundation association. The Rekey Coordinator uses the foundation association to subsequently provide values for the rekey beacon and also to provide parameters when responding to Security Association Requests it receives from STAs wishing to have its communication protected by the default key.
Once a foundation association is established for a Default Key, the Rekey Coordinator can begin to consume information from it to construct rekey beacons. This causes the Rekey Coordinator to send protected data under the cipher suite and the next temporal key, and to receive all data traffic protected under the current or next temporal key; unprotected received data traffic is discarded.

Note: This implies that ULA cannot execute until after establishing a security association. This is appropriate, given that a default key that is not pre-shared among all the members of a group does not make sense.

After it begins sending Rekey Beacons, STAs can initiate the Security association exchange, to petition to secure their communication under the default key. The Security association exchange causes the Rekey Coordinator to create a new STA-specific security association. Thus, the Rekey Coordinator maintains a unique security association for each STA utilizing the default key to protect its traffic, in addition to the foundation association.

5.1.3 Establishing a Rekey Participant’s Default Key Security Association

The process for establishing a security association based on a default key is identical to that for key-mapping keys. However, the event processing details are different. By necessity, a Rekey Participant takes the session parameters suggested by the key’s Rekey Coordinator. This is because a Rekey Participant is a member of a group sharing a single default key, and every STA using the key needs to use identical parameters, because the Rekey Coordinator handles messages to and from each STA uniformly.

5.1.4 Protocol Messages for establishing a valid temporal default key security association

Both Rekey Coordinator and Rekey Participant engage in two 2-way handshakes to establish a valid security association state. However, unlike the temporal key-map security association, the Rekey Participant will always intiate the first security association request when creasing a security association.

The 2-way Security association exchange is the same as that used in the key-mapping case. The two management frame messages are termed Security Association Request and Security Association Response. The information required to validate a security association is exchanged in the request and response messages and is defined in the security association information element. The fields and format of this element is the same for both peers be it the Rekey Coordinator or the Rekey Participant as well as the request and response messages. The information element is depicted in Figure 4.

	Octets: 16
	4
	2
	1
	1
	4
	4
	4
	4
	8

	Nonce
	Cipher suite
	Version Number
	KeyIDping
	KeyIDpong
	Key Sequence #
	Max Packet Count
	Rekey Count
	Rekey Period
	MIC

Figure 5 Security Association Information Element

· The Nonce is a 16-byte random value. The Rekey Coordinator always specifies the nonce. That is, the Rekey Coordinator must generate a new nonce during its foundation association and include it in the rekey beacon’s Rekey Information Element. This nonce value must match between the Rekey Coordinator and Rekey Participant at all times during the session. Thus, the Rekey Participant must obtain this value from the Rekey Coordinator’s beacon before it can initiate its security association request
· The Cipher Suite is a 4-byte field that denotes the cipher suite enforcing this rekey protocol. This value is determined prior to establishing a valid security association as it is required to determine the length of the temporal encryption key. The cipher suite must be one of the cipher suites described in Figure 3.

· The Version Number is a 2-byte field that denotes the version of this protocol. The value of this field shall be 0.

· The KeyIDping defines the first index used in rekeying. The subscript ping is either 0, 1, 2 or 3. The KeyIDping value corresponds to the default key index used for the very first key and subsequent odd Key Sequence values.
Note: the KeyIDping value must be mutually agreed upon during the security association exchanges. Since these are 2-way handshakes there is no negation, it must be mutually agreed upon. The AP can ignore this field in the initial enable sequence request sent by the STA, however all other messages must validate this field. The AP ignores this field as it is the AP that dictates this policy for default keys and manages its scarce resource when rekeying key map keys.

· The KeyIDpong defines the auxiliary index used. The subscript pong is either 0, 1, 2 or 3. The KeyIDpong value corresponds to the default key index used for the second key and subsequent even Key Sequence values.

Note: the KeyIDpong value must be mutually agreed upon during the security association exchanges. Since these are 2-way handshakes there is no negation, it must be mutually agreed upon. The Rekey Coordinator can ignore this field in the security association request sent by the Rekey Participant, however all other messages must validate this field.

· The Key Sequence value is a 4-octect identifier that allows peers to synchronize to the appropriate temporal key. This value is incremented on every rekey based on the length of key required; e.g. the increment is based on the cipher suite. Thus, if a 128-bit key or smaller is required, the Key Sequence Value in incremented by one; similarly, if a 232-bit key value is required, the Key Sequence Value is incremented by two. Since this is the first establishment of the temporal encryption key, this value must be 1.

· The Max Packet Count is a 4-byte value denoting the high watermark or maximum number of packets that can be transmitted and received by the peers before the temporal key must be obsoleted. If this value is reached before a successful rekey then security has been compromised and an MLME.RevokeKey event should be triggered and traffic flow should halt.
· The Rekey Count indicates the number of beacons (including the current beacon frame) appear before the next rekey will occur. The Rekey Count is analogous to the DTIM Count as it indicates how many beacons appear before the next rekey beacon is transmitted. A Rekey Count of 0 indicates the current beacon to be the rekey beacon. As the Rekey Coordinator manages the rekey interval, it is the Rekey Coordinator that sets this value and is an unused value when the Rekey Participant sends its security association request (i.e. it is ignored by the Rekey Coordinator).

· The Rekey Period indicates the number of beacon intervals. The Rekey Period is analogous to the DTIM Period as it indicates the number of beacon intervals between rekey beacons. A Rekey Period of 1 indicates that all STAs must rekey on every beacon, e.g. every beacon frame is a rekey beacon. As the Rekey Coordinator manages the rekey interval, it is the Rekey Coordinator that sets this value and thus this field is ignored by the Rekey Coordinator when the Rekey participant sends its security association request.
· The MIC is the frame’s message integrity check. The 128-bit Master authentication key is used to compute the MIC. The message integrity check is computed over the Security Association Information Element and is further described in Section 4.1.4.1.1.

5.1.4.1.1 Computing the Security Association’s MIC

The MIC is the integrity check over the Security Association Information Element, the source and destination MAC addresses and the Action header frame contents. The MIC is required to prevent from replays as well as authenticating the message exchanges. The MIC is computed as follows:

Let K denote the 128 lsb of the Master Key. Then

For the Security Association Request message:

MIC (1st 64 bits of AES-CBC-MACK (DA || SA || BSSID || Category Code || Action Code || Activation Delay || Dialog Token || Rekey Coordinator’s Nonce || Cipher Suite || Version Number || KeyIDping || KeyIDpong || Key Sequence # || Max Packet Count)

For the Security Association Response message:

MIC (1st 64 bits of AES-CBC-MACK (DA || SA || BSSID || Category Code || Action Code || Activation Specific Status || Dialog Token || Rekey Coordinator’s Nonce || Cipher suite || Version Number || KeyIDping || KeyIDpong || Key Sequence # || Max Packet Count)

5.1.5 No matching session

A STA must silently discard any Security association message it receives from a peer with which it shares no master key. This is because it cannot validate the MIC, so cannot determine whether the message is valid.

Similarly, if a STA is currently using the Security association exchange to establish a new security association with a peer, then a Security association message from the peer that conveys a different nonce than one the peer has already specified is a protocol error and must be silently discarded. The implication of this rule is that two peers can negotiate at most one security association with a peer simultaneously.

5.2 Rekeying temporal Key-mapping keys

Once a Security Association is successfully established, temporal keys can be used to protect communications between peers using the attributes maintained by the security association. One of the main goals of the protocol is to effect a smooth and interoperable transition from old to new temporal keys. Thus, the protocol employs a transitional key to allow for the depletion of traffic queues using the old key before the new key takes effect.

Key-mapping keys are updated through the message-based protocol. Message-based rekeying is triggered by events requiring a new temporal key. These events include:

1. Initiatization of a session following a successful initialization of the Security Association state.

2. Refresh of the Master key caused by an MLME.RevokeKey followed by an MLME.SetKey.

3. The Rekey Coordinator determines when a temporal encryption key needs to be refreshed.

4. The packet sequence space for the chosen cipher suite is exhausted.

Figure 6 demonstrates the flow of the message-based rekey procedure. The figure and explanation use the term KeyID3 to denote the auxiliary KeyID used only for the duration of the rekey protocol. The subscript does not imply it is an index into the key map table; it is a value that is agreed by both peers at Security Association state to indicate that it is the auxiliary key location to be used for decrypting with the new key, Ki and is meant to be used only for the duration of this rekey protocol instance. Similarly, KeyIDAP/STA denotes the fixed key location holding the old key corresponding to the AP to STA link. The subscript AP/STA is also a value that is agreed by both peers at initiate encryption state. Both indeces must be one of 0, 1, 2, 3 as they are the possible values in the packets KeyID fields. However, these values in the keyID field only distinguish between fixed and auxiliary locations and do not in any way imply that they are absolute indeces into the default keys or key map table.

Figure 6 Message-based rekeying
When the first key must be refreshed, both the enable and transition sequences must be completed. As shown in Figure 6 the message-based rekey procedure begins by the Rekey Coordinator sending the enable request message to the Rekey Participant. The message is a request for the Request Participant to accept packets encrypted using a new key, Ki, that is stored in KeyID3. The Rekey Participant must ensure liveness and synchronicity of key, Ki​ and its ability to use KeyID3 as the transitional key location. Once the Rekey Participant has updated its KeyID3 to hold Ki, it sends the enable response message. On receipt of the response, the Rekey Coordinator can send encrypted packets using either the new key, Ki stored in KeyID3 or the old key, Ki-1 stored in KeyIDAP/STA while it expects to only receive packets using KeyIDAP/STA. Meanwhile, the Rekey Participant can receive packets using either KeyID3 or KeyIDAP/STA and transmit packets using only KeyIDAP/STA.

On a succesful completion of the enable exchange, the Rekey Coordinator can begin to send new packets using KeyID3 while its queue(s) continue to empty packets using the old key stored in KeyIDAP/STA. At the point in which the Rekey Coordinator knows it has only KeyID3 encoded packets, it can initiate the transition sequence by updating it’s KeyID3 to store Ki and triggering the transition request message. On receipt of the request, the Rekey Participant must ensure that its queues no longer hold packets using the old key, Ki-1 in KeyIDAP/STA in order to avoid packet loss. It can also begin transmitting using the new key stored in KeyID3 but only until it is ready to send the transition response, otherwise some packet loss can occur. The Rekey Participant then updates its KeyIDAP/STA to store Ki so it can transmit and receive with the new key, Ki stored in KeyIDAP/STA and send the transition response message. At this state, both peers are using Ki only. When the Rekey Coordinator receives the transition response it can safely update KeyIDAP/STA to store Ki and switch its packets from KeyID3 to KeyIDAP/STA. It now transmits and receives solely with KeyIDAP/STA. Since we know that the Rekey Participant is no longer using KeyID3 to transmit, the Rekey Coordinator can also release use of KeyID3. However the Rekey Participant does not know when the Rekey Coordinator is ready to receive with the new key on KeyIDAP/STA unless a transition confirm is sent. The protocol allows for the optimization and omission of the transition confirm if the Rekey Coordinator can guarantee that it can start receiving packets with the new key Ki in KeyIDAP/STA at the time it receives the transition response. The messages used for the key-mapping protocol are described in Section 4.2.1.

The 5-message exchange can be optimized and shortened down to a 3-message exchange by omitting the enable request and the transition confirm messages (shown in Figure 7). However, the following conditions must hold for the 3-message exchange:

1. If the Rekey Participant initiates the enable exchange, it must do so by first storing the new key, Ki in the agreed upon auxiliary KeyID3 and be ready to receive and decrypt packets using this new key with the designated auxiliary KeyID3. This condition must be conformed prior to the Rekey Participant’s transmission of an enable response message (i.e. it does not send an enable request). If the Rekey Participant does initiate the exchange, it must allot a sufficiently long timeout to allow for the Rekey Coordinator to allocate the auxiliary KeyID to rekey this peer-to-peer link.

2. If the Rekey Coordinator can begin decrypting at the instant it receives a valid transition response using the KeyIDAP/STA as its designation (versus KeyID3) and the Rekey Participant has no more packets to transmit under the new key in KeyID3, the transition confirm can be obviated.

Figure 7 Optimized message-based rekey protocol
Timeout values must be included to assure successful completion of rekeying. Max retry and timeout values are required in both the enable and transition sequences. While the protocol can use the default max retry count, new MIB variables and states are included to account for when either enable response and transition response are never received. If any of the messages fails the an MLME.RevokeKey event must be triggered.

On any failure, the rekeying must fallback to an MLME.RevokeKey event to assure that a reauthentication occurs so that the temporal encryption keys can be re-initialized.
5.2.1 Rekeying key-mapping keys protocol messages

The enable exchange is a 2-way handshake comprised of an enable request and an enable response message. While either peer can initiate this exchange, the Rekey Coordinator always initiates with an enable request. The Rekey Participant must always transmit an enable response regardless of whether the Rekey Coordinator iniated this phase of whether the Participant iniates the enable exchange.

The transition exchange is either a 2-way or 3-way handshake. If the condition as stated in Section 4.2 is conformed, then the transition confirm message can be omitted and a 2-way transition exchange can be executed. The 2-way handshake is comprised of a short transition request and a short transition response. The 3-way transition exchange is comprised of a transition request, a transition response and a transition confirm. These messages are distinct so as to alert each peer as to whether the transition exchange is a 2-way or 3-way handshake.

The messages are management frames as described in Section 4.4. Each management frame includes the information required to securely synchronize an encryption in a rekey information element. The rekey information element contents is constant and the same for all of the messages used in both the enable and transition exchanges. The rekey information element is described below:

	Octets: 16
	4
	2
	4
	1
	4
	4
	8

	Nonce
	Cipher suite
	Version Number
	Key Sequence #
	KeyID
	Rekey Count
	Rekey Period
	MIC

Figure 8 Key-map Rekey Information Element

· The Nonce is a 16-byte nonce. If the element is in a request message, it is the responder’s nonce; if it is in a response message, it is the requestor’s nonce.

· The Cipher Suite is a 4-byte value denoting the cipher suite enforcing this rekey protocol. This must be the same as in the Security Association exchange. The cipher suite is determined prior to establishing a security association and its definition is outside the scope of this protocol. However, the valid cipher suites for this protocol are described in Figure 3.

· The Version Number is a 2-byte field that denotes the version of this protocol. The value of this field shall be 0.

· The KeyID is a 1-byte field that indicates the agreed upon auxiliary index used for this rekeying. That is, it indicates the auxiliary key buffer (e.g.0, 1, 2, or 3) used as the temporary storage location for Ki.
· The Key Sequence Value is a 4-byte value that allows the base key to rekey up to 232 - 1 temporal keys. The Key Sequence Value must never wrap; if this value is exhausted, the security association must be terminated and an MLME.revokekey event triggered. The Key Sequence Value also serves as a replay protector when refreshing keys. If a request to rekey is initiated either through the Rekey Participant’s Enable response or Rekey Coordinator’s Enable request, the key sequence value must be greater than the previous, otherwise it is considered a replay.
The amount in which the Key Sequence Value increases depends on the key length required during the computation of the temporal key. For example, if 232 bytes is required (say for 104-bit RC4 and 128-bit MIC), then two iterations of the temporal key derivation function (described in Section 3.5.2X) must be performed. To achieve this, the Key Sequence Value is incremented after each AES computation is completed. Thus in this example, the Key Sequence Value is increased by 2.

· The Rekey Count indicates the number of beacons (including the current beacon frame) appear before the next rekey will occur. This value must be zero when rekeying key-map keys.

· The Rekey Period indicates the number of beacon intervals. This value must be zero when rekeying key-map keys.

· The MIC is the frame’s message integrity check. The key used to compute the MIC corresponds to a 128bit value obtained (or derived) from the Master authentication key. The message integrity check is computed over the Rekey Information Element. The MIC is computed as follows:

Let K denote the 128 lsb of the Master Key. Then

For the Security association Request message:

MIC (1st 64 bits of AES-CBC-MACK (DA || SA || BSSID || Category Code || Action Code || Activation Delay || Dialog Token || Requestor Nonce || Cipher Suite || KeyID || Key Sequence #)

For other Request/Response messages:

MIC (1st 64 bits of AES-CBC-MACK (DA || SA || BSSID || Category Code || Action Code || Activation Specific Status || Dialog Token || Requestor Nonce || Responder Nonce || Cipher suite || KeyID || Key Sequence #)

5.3 Rekeying Default keys

Default keys are typically shared between two or more peers and thus a scheme allowing for all the peers to (almost) simultaneously switch to a new key is required. This submission presents a countdown-based protocol that allows for the synchronization of the switch with minimal traffic disruption. The countdown-based rekeying relies on two available DefaultKey storage locations to switch to the new key. By having two KeyID locations, peers can derive and store the next coming key onto the next KeyID to be used while maintaining traffic flow of the old key in a different KeyID.

Figure 9 and the subsequent description of the countdown scheme uses KeyID1 and KeyID2 as the two agreed on DefaultKeys dictated by the Rekey Coordinator. In this example, KeyID1 is used to hold all the odd temporal encryption default keys while KeyID2 is used to hold all the even temporal encryption default keys. The STA must obtain this information from the Rekey Coordinator during the security association exchange so that the STA can store the next key in the correct default key index by the time the rekey beacon is received.

Rekeying using the countdown-based protocol relies on a valid security association be established between the Rekey Coordinator and a Rekey Participant as described in Sections 4.1.2 and 4.1.3. Once a valid security association is established the Rekey Coordinator manages the rekeying of default keys through the beacons frames while the Rekey Participant must rely on the beacons to include its rekey information element for synchronization of the next key.

The rekey information element in the beacon announces which keyed and key sequence value is currently in use ans well as the key’s remaining time expectancy before the next one is activated. The rekey beacon is defined as the first beacon that updates keyID and key sequence value, thus triggering the switch. As shown in Figure 9, only one implicit message is used. It is implicit because beacons are transmitted regardless of whether you need to rekey or not; thus peers can choose to listen and look for the rekey information element or not. The transitional flow is all based on the rekey interval time. Once the rekey interval time is set by the Rekey Coordinator, it is up to each Rekey Participant to ensure it can meet that time constraint. It has rekey interval time to validate, compute and store the next key, Ki into the designated KeyID.

Walking through the flow of Figure 9, the enable sequence is implicitly achieved through the rekey interval specification. There is no negotiation or agreement, all peers must compute and store the new key Ki into the next KeyID2 before the next rekey beacon is sent. Failure to do this causes a disruption in trafflic flow, as there is no messages exchanged to validate the switch, this responsibility falls to every single peer. That is, each peer must ensure it can rekey at the designated rekey interval; failure to do so should force an MLME.RevokeKey event.

The rekey beacon acts as the transition request. Once the rekey beacon is received all peers must switch to the designated Ki in KeyID2. Implicitly it must also obsolete use of the previous key, Ki-1 in KeyID1 to allow for the next key, Ki+1 to be plumbed into KeyID1. Since the transition request is the only message triggered by the Rekey Coordinator and there is no exchange, the transition request must also act as the transition confirm and must reject packets received using the old KeyID1. All Rekey Participants must ensure packets using the old key have been flushed once the rekey beacon is received as the old key will be discarded. Continued use of the old key at the rekey beacon interval can compromise security as the sequence counters can wrap.

Figure 9 Countdown-based rekeying

Since the countdown protocol is based entirely on a rekey interval based on time, the Max Packet Count specified in the security association sequence exchange is used as the high watermark to guard the event that a burst in traffic causes the maximum packet count to be reached prior to the rekey interval being reached.

When the Rekey Coordinator invokes a new rekey beacon element, it signals the end of the previous key’s use. That is, no more packets will be either transmitted or received under the old key.

5.3.1 Rekeying default keys protocol message

There is only one message used by the Rekey Coordinator to allow Rekey Participants to synchronize to the currently active default key. The message is a beacon frame message that includes one rekey information element for each default key (pair) it is managing. The rekey information element is described below:

	Octets: 16
	4
	2
	4
	1
	4
	4
	8

	Nonce
	Cipher suite
	Version Number
	Key Sequence #
	KeyID
	Rekey Count
	Rekey Period
	MIC

Figure 10 Default key Rekey Information Element

· The Nonce is a 16-byte nonce. This is always the Rekey Coordinator’s nonce.

· The Cipher Suite is a 4-byte value denoting the cipher suite enforcing this rekey protocol. This must be the same as in the Security Association exchange. The cipher suite is determined prior to establishing a security association and its definition is outside the scope of this protocol. However, the valid cipher suites for this protocol are described in Figure 3.

· The Version Number is a 2-byte field that denotes the version of this protocol. The value of this field shall be 0.

· The KeyID is a 1-byte value that signifies the new KeyID location to switch to at the time the rekey beacon is transmitted. This implies that all Rekey Participants under this default key must switch to both transmitting and receiving under the new key in KeyID when the rekey beacon is transmitted. Thus, there is potential for some traffic disruption to those STAs who can not ensure their queues are flushed of packets encrypted under the old key in addition to ensuring that the new key is secured in the new KeyID location by the time the rekey beacon is transmitted.Valid KeyID values are either 0, 1, 2 or 3; it is the index into the default keys.

· The Key Sequence Value is a 4-byte value that allows the base key to rekey up to 232 - 1 temporal encryption keys. The Key Sequence Value must never wrap; if this value is exhausted, the security association must be terminated and an MLME.revokekey event triggered. The Key Sequence Value also serves as a replay protector when refreshing keys. If a request to rekey is initiated either through the Rekey Participant’s Enable response or Rekey Coordinator’s Enable request, the key sequence value must be greater than the previous, otherwise it is considered a replay.
The amount in which the Key Sequence Value increases depends on the key length required during the computation of the temporal encryption key. For example, if 232 bytes is required (say for 104-bit RC4 and 128-bit MIC), then two iterations of the temporal encryption key derivation function (described in Section 3.5.2) must be performed. To achieve this, the Key Sequence Value is incremented after each AES computation is completed. Thus in this example, the Key Sequence Value is increased by 2.

· The Rekey Count is a 4-byte value that indicates the number of beacons (including the current beacon frame) appear before the next rekey beacon is transmitted. A Rekey Count of 0 indicates this frame to be the rekey beacon.
· The Rekey Period is a 4-byte value that indicates the number of beacon intervals between rekey beacons. A Rekey Period of 1 indicates that all STAs must rekey on every beacon, e.g. every beacon frame is a rekey beacon.

· The MIC is the frame’s message integrity check. The key used to compute the MIC corresponds to a 128bit value obtained (or derived) from the Master authentication key. The message integrity check is computed over the Rekey Information Element. The MIC is computed as follows:

Let K denote the 128 lsb of the Master Key. Then

MIC (1st 64 bits of AES-CBC-MACK (DA || SA || BSSID || Rekey Coordinator’s Nonce || Cipher suite || Version Number || KeyID || Key Sequence # || Rekey Count || Rekey Period)

5.4 Protocol Management Messages

While we could easily augment information elements to existing management frames, it is more appropriate to create a security management frame for acquiring and negotiating all the information and state required to assure a Security Association. The message-based procedure used to rekey key-mapping keys uses the generic Action management frames as defined in the TGe draft. Clause 7.2.3.12 is extracted from the TGe draft and quoted in this submission:

7.2.3.12 {generic} Action frame format

The frame body of a management frame of subtype {generic} Action consists of a 4-octet fixed portion that identifies as functional category and a specific management action, followed by a variable-length portion that is interpreted in the context of that category and action. The fields in the fixed portion of an Action request are shown in Figure 11, and the fields in the fixed portion of an Action response are shown in Figure 12
	OCTET: 1
	1
	1
	1
	0-2300

	Category Code
	Action Code (even)
	Activation Delay
	Dialog Token
	Action-specific fixed fields and/or elements

Figure 11 {generic} Action request frame body

	octets:1
	1
	1
	1
	0-2300

	Category Code
	Action Code (odd)
	Action-specific status
	Dialog Token
	Action-specific fixed fields and/or elements

Figure 12 {generic} Action response frame body

The Category Code field is a single octet whose value identifies a group of actions for a particular function,or,for administrative ease,a group of actions defined by a single task group.Category code assignments are defined in Figure 13.In the remainder of this document,Action frames of a given category are referred to as <category name>Action frames.For example,frames in the "Security"category are called "Security Management,""Security Management Requests,"or "Security Management Responses."ESTAs that receive an Action frame with a category code that they do not understand discard the frame without reporting an error.

	code
	mEANING

	0
	Reserved

	1
	QoS management (includes BSS overlap mitigation)

	2
	Security management

	3
	Distribution System (DS) management

	4
	Spectrum management (DFS/TPC)

	5-255
	Reserved

Figure 13 Category Codes

The Action Code field is a single octet whose value specifies a particular management action in the context of the category code.There is no requirement for uniqueness nor uniformity of action code assignments between categories.There is a requirement that all advisory actions (which generate no response)and request actions (which solicit a response)use even action code values;while response actions (generated pursuant to a request action)use the request code value plus 1 as the response code value.ESTAs that receive an Action frame with a recognized category code but an unrecognized request action code return a response action frame using the request action code plus 1,and a status code value of 1, meaning "unrecognized action."ESTAs that receive an Action frame with a recognized category code but an unrecognized response action code discard the frame without reporting an error. The action codes defined for Security management are defined in Figure 14
	Action Code Value
	Action Code Description

	0
	Security Association Request

	1
	Security Association Response

	2
	Enable Request

	3
	Enable Response

	4
	Transition Request

	5
	Transition Response

	6
	Transition Confirm

	7
	Unused Request

	8
	Short-Transition Request

	9
	Short-Transition Response

	10
	Terminate Request

	11
	Terminate Response

	12-255
	Reserved

Figure 14 Security Management Action Codes

The Activation Delay field is a single octet,present only in Action request frames.The activation delay value is interpreted as an unsigned integer.Action requests received with an activation delay of 0 are processed immediately.Action requests received with an activation delay greater than zero are processed after the specified number of TBTTs have occurred (e.g. an activation delay of 1 delays the action until after the next TBTT,and activation delay of 2 delayes the action until after the second TBTT,etc.).A given Action request frame starting with an activation delay greater than zero will ordinarily be repeated during successive superframes,with its activation delay value decremented by 1 for each superframe until the activation delay reaches 0.Non-zero activation delays may only be used with action codes that are specified to permit or to require such use.

The Dialog Token field is a single octet whose value is copied from each Action request frame into the corresponding Action response frame,but is otherwise ignored.The dialog token may be useful in the implementation of ESTAs that may issue multiple,concurrent Action requests,to simplify the matching of Action responses with particular,outstanding Action requests.

The Status field is a single octet,present only in Action response frames,which indicates the completion status of the corresponding Action request.The status values are interpreted in the context of the category and action codes. There is no requirement for uniqueness nor uniformity of status value assignments between categories. However, there are, predefined status values:
Status =0:Action completed successfully
Status =1:Unrecognized Action code

Status codes relevant to the submitted rekey protocol are described in Figure 15:

	Status Code
	Description

	2
	Invalid Cipher Suite

	3
	Invalid Nonce

	4
	KeyID is not available

	5
	Invalid Rekey period

	6
	Invalid Rekey count

	7
	Transition Sequence rejected

	8
	Invalid Security Association Sequence

Figure 15 Security Management Status Codes

Note: Activation Delay can be non-zero for the enable exchange but MUST be zero for transition sequence; you can queue up next key derivation but not the switchover as the transition KeyIDn use must be minimized.

5.5 Closing a Security Association

A security association is terminated when any of the following events occur:

1. Associate

2. MAC sub-layer Authenticate

3. Deauthenticate

4. Disassociate

5. Reassociate

6. Explicit closing a security association by the invocation of an MLME-RevokeKey.request.

7. Establishment of a new security association with the peer, i.e., completion of the Security Association Exchange with it. This establishes a new pair of nonces that identify the security association, and terminates any prior security association between the two peers that still exists at one or the other or both.

6 Management Interface

6.1 Secure Session Invocation

This mechanism supports the process of establishing the security service of a STA.

6.1.1 MLME-SetKey.request

6.1.1.1 Function

This primitive requests the creation of a new security association.

6.1.1.2 Semantics

The primitive parameters are as follows:

MLME-SetKey.request(

Peer,

MasterKey,

DefaultFlag,

CipherSuite

RolloverKeyID,

LastKeyID

)

	
	Type
	Valid Range
	Description

	Peer
	802 MAC Address
	
	Identifies the peer for this security association. This may be a multicast address or NULL for a default key at a Rekey Coordinator, but otherwise must be a unicast address

	MasterKey
	256-bit string
	Uniformly distributed
	The master key used to derive the keys for the base security association and the temporal security association

	DefaultFlag
	Boolean
	TRUE, FALSE
	TRUE if the resulting security association represents a default key, and FALSE otherwise

	CipherSuite
	OUI
	AES, WEP2
	AES means to use the AES cipher suite. WEP2 means to use the WEP2 cipher suite

	RolloverKeyID
	Integer
	0-3, NULL
	The initial value for the subsequent temporal key identifier. Must be different from the LastKeyID value. May be NULL for a default key at a rekey consumer

	LastKeyID
	Integer
	0-3, NULL
	The initial value for the current temporal key identifier. Must be different from the RolloverKeyID. May be NULL for a default key at a rekey consumer.

6.1.1.3 When Generated

This primitive is generated by the MLME when it wants to initiate a security association.

6.1.1.4 Effect of Receipt

This primitive causes the STA to attempt to instantiate a new security association.

6.1.2 MLME-SetKey.confirm

6.1.2.1 Function

This primitive reports the ultimate disposition of the matching MLME-SetKey.request primitive.

6.1.2.2 Semantics

The primitive parameters are as follows:

MLME-SetKey.confirm(

Peer,

MajorStatusCode,

MinorStatusCode

)

	
	Type
	Valid Range
	Description

	Peer
	802 MAC Address
	
	Identifies the peer for this security association as specified by the matching request.

	MajorStatusCode
	ENUMERATED
	SUCCESS, PARAMETER, DUPLICATE, TIMEOUT, PEER-PARAMETER
	Indicates whether the request primitive succeeded or failed, and if failed, the nature of the error.

	MinorStatusCode
	ENUMERATED
	
	When the MajorStatusCode is PEER-PARAMETER, this reports the status code returned by the peer in an Enable Response message.

6.1.2.3 When Generated

The MAC generates this primitive when the ultimate disposition of the corresponding request primitive is known.

6.1.2.4 Effect of Receipt

This notifies the MLME entity about the ultimate disposition of a request.

6.2 Secure Session Termination

This mechanism supports the process of terminating the security service of a STA.

6.2.1 MLME-RevokeKey.request

6.2.1.1 Function

This primitive requests the destruction of all security associations established with a peer. There can be more than one security association when an MLME-SetKey.confirm primitive has not yet been received for an outstanding MLME-SetKey.request primitive.

6.2.1.2 Semantics

The primitive parameters are as follows:

MLME-RevokeKey.request(

Peer

)

	
	Type
	Valid Range
	Description

	Peer
	802 MAC Address
	
	Identifies the peer for this security association as specified by previous MLME-SetKey.request. This may be a multicast address or NULL for a default key at a Rekey Coordinator, but otherwise must be a unicast address.

6.2.1.3 When Generated

This primitive is generated by the MLME when it wants to terminate a security association.

6.2.1.4 Effect of Receipt

This primitive causes the STA to end any security associations it has with the indicated peer. Note that at a Rekey Coordinator for a default key, revoking the peer address identifying the foundation session terminates all secure sessions with all Rekey Consumers using the key.

6.2.2 MLME-RevokeKey.indication

6.2.2.1 Function

This primitive reports that the peer has had to ended a security association.

6.2.2.2 Semantics

The primitive parameters are as follows:

MLME-SetKey.indication(

Peer,

MajorStatusCode,

MinorStatusCode

)

	
	Type
	Valid Range
	Description

	Peer
	802 MAC Address
	
	Identifies the peer for this secure session as specified by the matching request.

	MajorStatusCode
	ENUMERATED
	TIMEOUT
	Indicates the nature of the error terminating the session.

6.2.2.3 When Generated

As noted above, whenever a MLME-RevokeKey.request is received from the peer in a security association.

6.2.2.4 Effect of Receipt

This notifies the MLME entity that a security association has ended, so that it is no longer safe to send or receive data traffic when the policy requires that data be protected.

7 Acknowledgements

The authors would like to express their gratitude to Greg Chesson for his invaluable expertise and insights to the protocol innards. Similarly, we would like to thank Marty Lefkowitz whose persistence and guidance helped us polish the finer details of the protocol.

Implicitly done, no message sent

Implicitly done, no message sent

KeyID1 is implicitly discarded when the next key Ki+1 is stored in KeyID1

Validate rekey beacon and Ki

Receive on KeyID1 or KeyID2; Send on KeyID2

Beacon rekey information element must be prepared

Send on KeyID2

Receive on KeyID1 or KeyID2

Rekey time coming soon, need to load new key

Old key Ki-1 in KeyID1

Update next KeyID2 (Ki

Receive on KeyID1; Send on KeyID1

Rekey time coming soon, need to load new key

new key (Ki

Update next KeyID2 (Ki

Send on KeyID1; Receive on KeyID1

Rekey Participant

Rekey Coordinator

State when response is received:

Ki on KeyID3

Ki on KeyIDAP/STA

Send of KeyIDAP/STA

Receive on KeyID3 or KeyIDAP/STA

State after response is received:

KeyID3 no longer in use, rekey done

Ki on KeyIDAP/STA

Send of KeyIDAP/STA

Receive on KeyIDAP/STA

Transition Exchange

Enable Exchange

State after request is processed:

Ki-1 on KeyIDAP?STA

Send on KeyIDAP/STA

Receive on KeyIDAP/STA

Request to start rekeying

Validate Ki and KeyID3 availability

State when rekey event triggers:

KeyID3 not used for this rekey

�Ki-1 on KeyIDAP/STA

Send on KeyIDAP/STA

Receive on KeyIDAP/STA

State after request is processed:

Ki-1 on KeyIDAP?STA

KeyID3 (Ki

Send on KeyIDAP/STA

Receive on KeyID3 or KeyIDAP/STA

Validate Ki and KeyID3 availability

State when request is received:

KeyID3 not used for this rekey

�Ki-1 on KeyIDAP/STA

Send on KeyIDAP/STA

Receive on KeyIDAP/STA

State after response is processed:

Ki-1 on KeyIDAP/STA

KeyID3 (Ki

Send on KeyID3

Flush or wait till Queues deplete pkts using KeyIDAP/STA

Receive on KeyID3 or KeyIDAP/STA

State when response is received:

KeyID3 not used for this rekey

�Ki-1 on KeyIDAP/STA

Send on KeyIDAP/STA

Receive on KeyIDAP/STA

State after request is processed:

Ki on KeyID3

KeyIDAP/STA (Ki

Send on KeyIDAP/STA

Receive on KeyID3 or KeyIDAP/STA

Flush or wait till Queues deplete pkts using KeyIDAP/STA

State when request is received:

Ki on KeyID3

�Ki-1 on KeyIDAP/STA

Send on KeyIDAP/STA

Receive on KeyID3 or KeyIDAP/STA

State when response is received:

Ki on KeyID3

�Ki-1 on KeyIDAP/STA

Send on KeyID3

Receive on KeyID3 or KeyIDAP/STA

State after response is processed:

KeyID3 no longer in use for this rekey

�KeyIDAP/STA (Ki

Send on KeyIDAP/STA

Receive on KeyIDAP/STA

transition response

transition request

enable response

enable request

transition confirm

rekey beacon with new rekey information element msg

Not applicable

Rekey Participant

Rekey Coordinator

Rekey Participant

Rekey Coordinator

Transition Exchange

Enable Exchange

State before message is sent:

Ki-1 on KeyIDAP?STA

KeyID3 (Ki

Send on KeyIDAP/STA

Receive on KeyID3 or KeyIDAP/STA

STA wants to initiate rekey

State before rekey is required:

KeyID3 not used for this rekey

�Ki-1 on KeyIDAP/STA

Send on KeyIDAP/STA

Receive on KeyIDAP/STA

State after response is processed:

Ki-1 on KeyMapAP/STA

KeyID3 (Ki

Send on KeyID3

Flush or wait till Queues deplete pkts using KeyIDAP/STA

Receive on KeyID3 or KeyIDAP/STA

State when response is received:

KeyID3 not used for this rekey

�Ki-1 on KeyIDAP/STA

Send on KeyIDAP/STA

Receive on KeyIDAP/STA

State after request is processed:

Ki on KeyID3

KeyIDAP/STA (Ki

Send on KeyIDAP/STA

Receive on KeyID3 or KeyIDAP/STA

Flush or wait till Queues deplete pkts using KeyIDAP/STA

State when request is received:

Ki on KeyID3

�Ki-1 on KeyIDAP/STA

Send on KeyIDAP/STA

Receive on KeyID3 or KeyIDAP/STA

State when response is received:

Ki on KeyID3

�Ki-1 on KeyIDAP/STA

Send on KeyID3

Receive on KeyID3 or KeyIDAP/STA

State after response is processed:

KeyID3 no longer in use for this rekey

�KeyIDAP/STA (Ki

Send on KeyIDAP/STA

Receive on KeyIDAP/STA

transition response

transition request

enable response

� See RFC 1750: “Randomness Recommendations for Security” by Donald Eastlake, Steve Crocker, and Jeff Schiller, written in December 1994.

Submission
page 1
Cam-Winget, Housley, Walker

_1066548156.vsd

_1065939094.bin

