October 2001

doc.:IEEE 802.11-01/550r0

IEEE P802.11
Wireless LANs

Temporal Key Hash

Date:
October 19, 2001

Authors:

Russ Housley

RSA Laboratories

918 Spring Knoll Drive

Herndon, Virginia 20170

Phone: +1 703-435-1775

E-mail: RHousley@rsasecurity.com

and

Doug Whiting

Hifn

5973 Avenida Encinas, Suite 110

Carlsbad, California 92008

Phone: +1 760-827-4502

E-mail: DWhiting@hifn.com

Abstract

As part of an overall solution to the many security problems with WEP, this paper describes a proposal for processing of a temporal key to derive a per-packet key. The process is divided into phases. To improve performance, implementations are likely to cache the output of the first phase.

1 Motivation

IEEE Std 802.11-1999 is a wireless LAN standard. The standard includes a security protocol called WEP that is intended to provide security equivalent a wired LAN. Unfortunately, WEP includes many flaws. This proposal is intended to address two of the flaws:

· The reuse of IV values, which leads to the reuse of RC4 key streams, which leads to a data recovery attack.

· A correlation between the combination of the IV and RC4 key with the first RC4 key stream byte, which leads to a key recovery attack.

In WEP, it is necessary to generate a different RC4 key for each packet from a shared key. WEP concatenates the IV and the key. The key-scheduling algorithm of RC4 is too lightweight for this purpose, particularly when the initial few bytes of plaintext are easily predictable (as is the case when SNAP/SAP is used to carry IP datagrams). Ron Rivest, the author of RC4, suggested two solutions to the weaknesses in the RC4 key-scheduling algorithm. He recommends discarding the first 256 output bytes of the pseudo-random generator before beginning encryption. Alternatively, he recommends strengthening the key-scheduling algorithm by preprocessing the key and the IV by passing them through a hash function such as MD5. Discarding the first 256 output bytes is expensive, and it is impossible for some implementations.

One-way hash functions, such as SHA-1 and MD5, are too expensive. This paper proposes a much simpler hash function. The proposed hash function has two phases. To improve performance, implementations are likely to cache the output of the first phase.

2 Introduction

Before discussing the details of the temporal key hash function, it is useful to define the context in which this mechanism must work. The following requirements must be met:

· The encryptor and decryptor must share a 128-bit secret key. This key is called the temporal key (TK). The TK may be common among many parties. The management of this key is not discussed in this document.

· The encryptor and decryptor must use the RC4 stream cipher.

· Each party must ensure that no initialisation vector (IV) value is used more than once with each TK. We expect the IV to be implemented as a 16-bit counter, starting with zero. Implementations must ensure that the TK is updated before the full 16-bit IV space is exhausted.

The transmitter address (TA) is mixed into the TK to ensure that the various parties encrypting with the TK use different key streams. This property is important in all networks. Consider the simple case where a station communicates only with an access point (AP). Data sent by the station to the access point and data sent by the access point to the station will be encrypted with the same TK. The station and access point the will both begin their IV counters at zero. Thus, if the TA were not mixed with the TK, the same series of RC4 key streams used by both the station and the access point, enabling a data recovery attack.

3 Temporal Key Hash Function

Other portions of the overall WEP security upgrade are defining the mechanisms to manage temporal keys. This paper specifies the two-phase processing of the temporal key to determine the per-packet encryption key. The first phase mixes the temporal key (TK) with the high order 32 bits of the transmitter address (TA). The output of this phase will likely be cached; it can be reused to process subsequent packets associated with the same TK and same high order 32 bits of the TA. The second phase mixes the output of the first phase with the low order 16 bits of the TA and the initialisation vector (IV). The IV must be different for each packet encrypted under the TK. The per-packet key (PPK) can be computed well before it is used. The two-phase process may be summarized as:

TTAK = Phase1 (TK, TA)

PPK = Phase2 (TTAK, IV)

Phase 1 is somewhat simpler than Phase 2. This simplicity is possible because the output of Phase 1 is not used directly as an RC4 key.

3.1 Phase 1

The inputs to the first phase of the temporal key hash function are the temporal key (TK) and the transmitter address (TA). The TK is 128 bits. The output, called TTAK, is 128 bits. All of these values are treated as arrays of 16-bit values, with the octets in network order: TK[0..7], TTAK[0..7].

An S-box is used in both Phase 1 and Phase 2. The S-box substitutes one 16-bit value with another 16-bit value. This function is a non-linear substitution, and it is implemented as a table look up.

The TTAK array values are computed as follows:

TTAK[7] = S[TK[7] (TA[1]]

TTAK[6] = S[TK[6] (TA[2] (TTAK[7]]

TTAK[5] = S[TK[5] (TA[0] (TTAK[6]]

TTAK[4] = S[TK[4] (TA[1] (TTAK[5]]

TTAK[3] = S[TK[3] (TA[2] (TTAK[4]]

TTAK[2] = S[TK[2] (TA[0] (TTAK[3]]

TTAK[1] = S[TK[1] (TA[1] (TTAK[2]]

TTAK[0] = S[TK[0] (TA[2] (TTAK[1]]
3.2 Phase 2

The inputs to the second phase of the temporal key hash function are the output of the first phase (TTAK) and the initialisation vector (IV). The TTAK is 128 bits. The IV is 16 bits. The output is a per-packet key, called PPK, is 128 bits. PPK has an internal structure to conform to the WEP specification. That is, the first 24 bits will be transmitted in plaintext. As such, they are used to convey the IV from the encryptor to the decryptor. The TTAK and PPK are treated as arrays of 16-bit values, with the octets in network order: TTAK[0..7], PPK[0..7]. The IV is treated as scalar 16-bit value.

Three functions are used. The first function, ROTATE_LEFT_1BIT, rotates the 16-bit input value one bit to the left. Thus, the most significant bit becomes the least significant bit. The second function, LOW_8BITS, references the least significant 8 bits of the 16-bit input value. The third function, HIGH_8BITS, references the most significant 8 bits of the 16-bit value.

Three variables are employed: H0, H1, and TEMP. All three variables are treated as scalar 16-bit values. A loop counter, called i, is also employed.

The second phase is comprised of three steps. The first step is a Feistel-like mixing function, employing an S-box. The second step performs additional mixing, employing rotate and addition operations. Finally, the third step assigns the 24-bit WEP IV value.

The PPK array values are computed as follows:

STEP1:

H0 = IV

H1 = 0x0000

FOR i = 0 to 7

BEGIN

H0 = H0 (TTAK[i]

TEMP = S[H0]

H0 = TEMP (H1

H1 = TEMP

PPK[i] = H0

END

STEP2:

TEMP = TTAK[0]

FOR i = 7 to 1

BEGIN

TEMP = ROTATE_LEFT_1BIT[TEMP] + PPK[i]

PPK[i] = TEMP

END

STEP3:

HIGH_8BITS[PPK[0]] = 0xA5

LOW_8BITS[PPK[0]] = HIGH_8BITS[IV]

HIGH_8BITS[PPK[1]] = LOW_8BITS[IV]

4 Key Caching

The transmitter address (TA) is mixed into the temporal key (TK) in the first phase of the hash function. Implementations can achieve a significant performance improvement by caching the output of the first phase. Consider the simple case where a station communicates only with an access point (AP). The station will perform the first phase using its own address, and it will be used to encrypt traffic sent to the access point. The station will perform the first phase using the access point address, and it will be used to decrypt traffic received from the access point. When more than two parties use the TK, as is the case with TKs associated with broadcast and multicast traffic, implementations must be prepared to mix more than two TAs with the TK.
5 Initialization Vector Management

Each party must ensure that it does not encrypt more than one packet under a given temporal key (TK) with the same initialisation vector (IV) value. We expect the IV to be implemented as a 16-bit counter, starting with zero.

While the management of TKs is not within the scope of this document, implementations must ensure that the TK is updated before the full 16-bit IV space is exhausted. If a new TK cannot be obtained, then encrypted communications must cease. Reuse of an IV will result in the reuse of the associated RC4 key stream, enabling a data recovery attack.

Submission
page 2
Housley & Whiting

