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Abstract

Symmetric encryption algorithms rely on a shared secret key to enable both the sender and the receiver to encrypt and decrypt the message respectively.  The security of the message relies on the security of the secret shared key.  To publicize the key is to render the encryption algorithm useless.  Current implementations acquire this key either at system configuration or authentication.  However, to further strengthen 802.11’s security, the ESN draft has now delineated two types of keys: a pre-established (during configuration or authentication) key and a second key that is used for encryption and decryption.  This paper describes a proposal for establishing encryption key(s) via a MAC layer authenticated key agreement mechanism.

Motivation for MAC Layer Key Refresh

To further enhance security,  TGi has introduced the notion of Upper Layer authentication (ULA) establishing a key at initial contact  that the MAC subsequently uses to derive encryption keys.  The keys are best described as:

1. Master authentication Key : the key that is established during contact by Upper Layer Authentication.  

2. Encryption key : a key established (for our purposes) per link for WEP and for AES encryption.  Furthermore, for AES, the encryption keys are established per directional link.  The encryption key is derived by using both the master key and key material exchanged between the two peers.  As TGi is defining MAC level encryption, these encryption-keys are construed to be MAC layer keys.

This is an excellent approach but raises interoperability and protocol questions for which the TGi Draft provides no answers.

The first problem in the TGi Draft is the lack of details around reassociation and roaming, especially where keys are concerned. The Draft and the discussion within TGi generally assumes something different than a full authentication occurs with reassociation, but exactly what steps are omitted and what is different is not enumerated in the draft. In particular, there is an implicit assumption that a station maintains its Master Key while roaming from one access point to another, but on the BSS-side the key somehow moves from the station’s first access point to its new one. There is also an assumption that a full reauthentication does not occur on reassociation, but what does happen is never specified and has not been discussed in TGi. Of course, what ULA does in this situation is outside the scope of TGi, but it has an impact on the MAC keying scheme. And what happens for an IBSS is never even addressed.

There is a second problem in that the plumbing of the Master Key into the MAC has not been defined and thus  is not coordinated between peers, and so  introduces a race condition that will undermine interoperability. ULA messages are carried as data frames; if the final message in the exchange is lost, its sender does not know whether to enforce the use of an encryption for all subsequent received messages, or whether it should treat some subsequent messages as retransmitted ULA messages. This synchronization problem introduces the need for a fairly complicated interaction between ULA and the MAC.

Another problem is the undefined nature of Uppler Layer Authentication. Since ULA is outside the scope of TGi, we cannot know the exact semantics of it, but this means on the other hand that we have to guess in what ways the MAC can interact with ULA to affect the needed master key synchronization. Given the complexity of key management around the interaction between ULA and the MAC, it is desirable to let the MAC handle synchronization issues itself in the interest of keeping the interface between the two layers as small as possible.

A fourth problem follows from the WEP deficiencies. WEP really requires frequent key updates to maintain even a semblance of privacy. While it is certainly possible to perform this function with 802.1X, many deployed equipment today do not support the protocol.  Even if we were to devise a rekeying mechanism employing 802.1X,  it would still require us to define the means for which 802.1X can safely and securely plumb the encryption keys at the MAC layer.  More importantly, the mechanism used for rekeying WEP keys must adhere to certain performance criteria that raises the issue of whether it is feasible to employ anything other than in-layer rekeying.

Finally, TGi provides replay protection via a sequence counter that is limited by some precision.  The replay protection value is also used as either the initialisation vector or nonce value during encryption and decryption.  Thus, once the sequence space is exhausted, the derived key is also compromised and must be refreshed.  While today, the AES encryption scheme allows for a long sequence space, WEP does not. Thus a scheme that allows for fast (eventually realtime) rekeying is desirable. In any event, the MAC needs a method to synchronize the counters, and going to ULA to refresh the key in this event adds complexity to the interface between the two, and would require changes to the 802.1X state machine. 

While AES does not currently demand realtime rekeying, it would be advantageous to adopt a single scheme for rekeying that is  independent of the encryption algorithm chosen.

Additionally, exchanges between layers can sometimes be costly if not prohibitive, thus it is beneficial to find a scheme to refresh these MAC-layer keys within the same MAC-layer.  Likewise, since these keys are used for the sole purpose of performing MAC-layer encryption and decryption, there is no need to impose Upper Layers to interact for acquisition of these keys.

This paper presents a new MAC layer key refresh scheme. This is an “entropy-streching” scheme that exists solely to synchronize state and to derive fresh encryption keys from the master key plumbed by ULA. The proposed scheme:

· allows for asynchronous key refresh based on the master authentication key.  Note however, that even in this scheme, one can choose to do serial key update at the MAC .  That is, one can choose to block any traffic to pass between the associated addresses .

· allows for a key update mechanism independent of any concrete authentication method

· allows for a (faster) key update mechanism at the MAC layer

· already deployed SME and SOHO  applications that do not  have upper layer services can use this scheme

· Minimizes interaction between 802.1x and 802.11

Overview

Upper layer key management services exist today.  Mechanisms such as IKE[RFC 2409] and TLS-EAP[RFC 2716] facilitate the determination and distribution of secret keys.  However, these mechanisms lack some of the attributes required to ensure the distribution or derivation while minimizing disruption to the traffic flow.  Thus, this paper proposes a MAC layer authenticated key agreement mechanism that enables synchronized distribution of secret encryption keys.  

The proposal introduces three new management frames to allow for an authenticated key agreement exchange for an established session.  A session is defined as a collection of temporally contiguous associations with systems from the same authorization domain.  An authorization domain is a collection of  systems that can respond to the same set of credentials, and corresponds to an Enhanced Secure Network (ESN).  This implies that whether a session is established from a BSS or IBSS, all peers must authenticate with an AP (in a BSS) or with its STA peer (in an IBSS).

As the current TGi draft employs a replay counter to further protect from replay attacks, so must it provide a means for determining when this counter will wrap or expire.  By definition, the counter expires when either the session is terminated  or when it’s sequence space is exhausted.  To wrap the sequence space without refreshing the encryption key is to greatly improve the chance of collisions in encrypted datagrams and thus compromise security.  While the proposed authenticated key agreement (AKA) can be triggered at any time (and by any layer), this proposal suggests that as the expiration of the replay counter’s space nears, an exchange requiring both a key refresh  and a new synchronized counter initialisation occur.  The proposed exchange ensures an authenticated key distribution mechanism for unicast per link keys; the second is a suggestion for how a broadcast or shared key may be synchronized.

In order to prevent man-in-the-middle attacks and adversaries from gaining information about the encryption keys, the exchange must be authenticated.This paper presents an authenticated exchange for deriving the encryption keys without the need for an Upper Layer Authentication.  Instead, a MAC layer authenticated exchange is proposed:

· to minimize the required communication (packet) exchange to establish the encryption keys

· to ensure that both peers are using the same master authentication key (AK) and master encryption key (MEK)

· to minimize and optimize interactions between the ULA and the MAC layers

· to allow for legacy compatibility in both the acquisition and use of encryption keys

· to diminish if not thwart the possibility of an adversary obtaining the newly derived encryption  key(EK)

· to allow adhoc networks to also establish encryption keys

Since the proposed exchange is authenticated, the new management frames can be transmitted in the clear.  Thus, the same mechanism can be used for both initialising and refreshing the encryption keys.

Succeeding sections describe the protocol  for establishing and updating encryption key(s).  The scheme is a secure, authenticated key agreement (AKA) exchange based on AKEP2[3] used for deriving the unicast encryption keys

The scheme includes  new state and MIB attributes to determine when the encryption keys need to either be initialised or updated.  Some values used by the MIB attributes should be defined during authentication or association; alternately, they could also be (re)negotiated during a key refresh.  Irrespective of configuration details, the following values must be established by the AP or STA (when in adhoc mode) that will manage the key refresh frequency.  The following MIB attributes must be defined prior to using the encryption keys:

· Rekey_frequency : this is the value used to determine when a request to rekey must be initiated. This value is the maximum number of packets sent or received by A and B.  This value can be inferred by the rekey initiator and can thus be hidden or unspecified.  If this value is not exchanged, then the race condition of who initiates the rekey is obviated

· Max_rekey_retries: should the request fail, how many requests should be sent before acknowledging a failure.  If it fails, then a deauthenticate frame should follow.

· Max_refresh_count: this is the maximum number of times an AP or STA may refresh the actual encryption keys before it MUST return to ULA to reauthenticate

The new state allows for the acquisition of the encryption key(s) either during initialisation of a session or when a key may need to be refreshed.  Figure 1 depicts the relationship of the new state relative to authentication and association for when a session is being established.  The new state, State 5 completes the definition for a successful ESN session.  That is, a session has successfully authenticated, associated (for the BSS case) and acquired the encryption keys and can thus begin transmitting and receiving encrypted data.
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Figure 1  Relationships between Authentication, Association and Key Acquisition states

Authenticated Key Agreement (AKA) Protocol

The AKA protocol works best between two peers.  By definition, when peers wish to establish an ESN they must configure their master keys from ULA.  Since encryption keys are derived from the master key which in turn is configured at authentication, the protocol is most effective when applied after an association or reassociation.

When two peers wish to establish an ESN session, both peers must establish the same master key from ULA.   Since a session may be valid even when roaming, the credentials including the master keys must be preserved.  TGf has presented recommendations for how this can be achieved.  The protocol can assume that within a session, the master keys are preserved and synchronized between the two peers at both association and reassociation states.  However, in  the event that they are not, a ULA reauthentication event is triggered to resynchronize the master keys.  The protocol does not make the assumption but rather ensures that the two peers are using the same master keys by including an integrity check in each of the exchanges. 

To also avoid race conditions, it is strongly suggested that only one peer manage the refresh services: the rekey_frequency and the max_refresh_count.  In typical BSS configuration, these duties fall on the AP while on an IBSS these duties can be awarded to the initiating STA.  That is, the STA establishing the IBSS (or direct communication with the peer) shall manage the rekey services.

The proposed scheme for deriving and synchronizing the use of encryption keys (EK) works best for unicast keys.  The AKA exchange involves three new management frames that consequently must be ACK’ed by the MAC layer control frames.  The exchange is best summarized as follows:

1. Refresh request: Initiate the request for a key update (or derivation), exchange key material, key switch synchronization parameters and synchronize replay sequence value

2. Refresh acknowledge: Acknowledge request for a key update, exchange key material, approve of synchronization parameters and replay value as well as authenticate with the requestor

3. Refresh agreement: requestor acknowledges agreement for both key derivation and synchronization

The establishment of the Rekey_frequency , Max_rekey_retries and Max_Refresh_count, for purposes of this proposal  are assumed to be configured prior to entering the logic of the encryption key (re)fresh.  In addition, when a session is initialised (during the authentication state) the encryption key(s) for the link are initialised to some known value (NULL).  This facilitates the state check for when an AKA exchange is triggered to be defined as:

  Initiate an AKA exchange whenever ULA plumbs a new master key for the session or when the Rekey_frequency value check becomes true.
In this manner, we cover not just the transitions from authentication to encryption (for a BSS and an IBSS) but also for the transition from reassociation to encryption.

The AKA exchanges key material that is used to derive the encryption keys.  In addition, the exchange also includes integrity tags as a means of authenticating the master key held by the peer.  The 256bit master authentication key is split in two and used as follows:

· The first 128 msbs are used as the master authentication key used to verify that both peers indeed have the same key

· The second 128 lsbs are used as the master encryption key used to derive the key that is ultimately used when encrypting or decrypting MSDUs

This design treats the master key as an authorization token, and the security model is that any party in possession of the master key is authorized for communication

The requestor not only initiates the exchange for deriving the encryption key but also converys all of the necessary information to:

· Reset the initial replay sequence counter for the newly derived EK

· Determine when the newly derived EK should take effect

· Provide its portion of the key material required for deriving EK

· Authenticate the request by computing an integrity value using one half of the AK as the key into the integrity check algorithm.  This proposal uses of HMAC-MD5 for this purpose.

The responder, upon receipt of the initiating request can not only authenticate the exchange based on the integrity value sent, but can also now fully derive a new EK.  The responder must then agree on the synchronization parameters for when the new EK is to take effect.  Thus it must also convey:

· Its portion of the key material required for deriving EK

· The requestor’s key material value sent

· Its integrity value

· An agreement for when the encryption key takes effect

The final third message is sent by the requestor to both acknowledge receipt of synchronization agreement and key material for deriving the encryption keys as well as sending an integrity tag to authorize the exchange.

A detailed description for the AKA exchange and rekeying model  is included in Appendix A.

Requestor Frame

Encryption Key (re)fresh request:

· Message type: Management

· Message subtype: encryption key (re)fresh request

· Information items:

· Replay counter initialisation value

· Requestor’s nonce or key material used for deriving EK

· AKA_threshold type:  packet count or Sequence Value

· AKA_threshold value : 

· Type = Packet:  two values are provided as the minimum and maximum number of packets (ACK’d) to be transmitted using the old key

· Type = Sequence Value: single value used to discriminate when to switch to the new EK

· AKA_timeout : maximum number of TSF units that should transpire for AKA_threshold to be reached

· Transaction sequence number must be 1

Replay counter initialisation value

The value represents the first or initial value that the receiver should use when using the replay protection.  This value must be (re)synchronized to allow for the flexibility of starting the replay protection at some pseudorandom value other than zero.  In the case where directional encryption keys are used, the initialisation value is used for both directions; that is, each link key must retain its own replay counter and replay check.

Requestor’s Nonce

A 16byte (128bit)  pseudorandom value is provided as the requestor’s contribution towards the derivation of the encryption key(s).

AKA_threshold type and values

 Systems can discriminate when to switch to a new key either by agreeing on a fixed number of  packets that have been ACK’d or when the sequence counter has reached (or exceeded) .   Thus if agreement is based on a fixed number of packets, then the requestor must send a range spanning from minimum to maximum number of packets it can transmit before it switches to the new EK.  Alternately, if sequence value is chosen, the specified value is then used as the maximum sequence value (in the initialisation vector) to check before switching to the EK.  In this case, as packets could get dropped and retries could increase the sequence counter, the check for the maximum sequence value is set to greater than or equal vs. a strict equal to.

When the discriminant is based on packet count, the count is based on the requestor’s ability to transmit the agreed upon packet count.  A packet is accounted for once it is ACK’ed.  Alternately, when the discriminant is based on sequence value, it is based on the requestor’s ability to transmit it’s last packet whose IV sequence value is the agreed upon threshold sequence value.  Note however, as implementations of sequence value counter can vary especially during retries (i.e. the counter is incremented even on retries), the relaxation from a strictly equal to a greater than threshold sequence check be made.  N.B. This implies that implementations should account for the replay counter logic when negotiating the threshold value.

When directional link keys are used, the threshold values are used on the corresponding requestor-to-responder packet count and or threshold value.  However, both directional keys should be plumbed.

AKA_timeout
As packets can get dropped and retried, it is feasible that neither packet count or sequence value be reached.  Whether it is because of true traffic flow conditions, passive or active attacks, a safetyguard based on the clock is used to ensure that if the key (re)fresh transaction can not be completed in the specified number of TSF units then the exchange has failed and a deauthenticate frame must then follow.

Transaction Sequence Number

For the requestor, this value should always be 1.  A transaction sequence number enables the detection of possible concurrent requests between two peers.

The AKA exchange is triggered by a STA composing a Requestor Frame when transmitting data. Figure 2 demonstrate the flow for how a requestor would initiate the AKA exchange.
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Figure 2  AKA requestor flow

Responder Frame

Encryption Key (re)fresh response:

· Message type: Management

· Message subtype: key refresh response

· Information items: 

· The Requestor’s ID : source MAC address used in computation of the integrity tag but not included in the payload (since it is in the header).

· The Responder’s ID: destination MAC address used in computation of the integrity tag but not included in the payload (since it is in the header).

· Replay counter initialisation value

· Requestor’s nonce or key material used for deriving EK

· Responder’s nonce or key material used for deriving EK

· AKA_threshold value: specified only if the requestor chose a threshold type of packet count.

· Transaction sequence number must be 2

· Responder AKA_integrity_tag: HMAC_MD5 hash of the previous items including both the Requestor’s and Responder’s ID.

Replay counter initialisation value

This value should be the same value as that sent by the initiator.  If the value is not the same, then the exchange went awry and a deauthenticate frame should follow.

Requestor’s Nonce

This value should be the same value as that sent by the initiator.  If the value is not the same, then the exchange went awry and a deauthenticate frame should follow.

Responder’s Nonce

A 16byte pseudorandom value is provided as the responder’s contribution towards the derivation of the EK.

AKA_threshold value

This value is only provided if the initiating request provided a minimum and maximum packet count.  The value passed by the responder designates the final packet count that is successfully transmitted and received by the peers prior to switching to the new EK.

Transaction Sequence Number

For the responder, this value should always be 2.

Responder AKA_integrity_tag
Like the requestor, the responder should also authenticate its exchange.  The integrity check is computed as follows:

  Tag = HMAC-MD5128bitsofAK ( Replay Counter Init Value || Requestor Nonce || Responder Nonce || AKA_threshold_value || AddrRequestor || AddrResponder )

Synchronization Frame

Encryption Key (re)fresh response:

· Message type: Management

· Message subtype: key refresh synchronize

· Information items:

· The Requestor’s ID : source MAC address used in computation of the integrity tag but not included in the payload (since it is in the header).

· The Responder’s ID: destination MAC address used in computation of the integrity tag but not included in the payload (since it is in the header).

· Responder’s nonce or key material used for deriving EK

· Status code : in the event that the integrity tag or threshold value was invalid an error code is included to alert the failure of exchange

· Transaction sequence number must be 3

· Responder AKA_integrity_tag: HMAC_MD5 hash of the previous items including both the Requestor’s and Responder’s ID

Key Derivation

Once the responder receives the initiator’s request, it then holds all of the information required to compute the new EK.   Both peers, upon receipt of both Requestor and Responder Nonce values can derive the new key as follows:

C = AddrRequestor || AddrResponder  || Requestor Nonce || Responder Nonce || 

ASERequestor|| ASEResponder || UCSERequestor || UCSEResponder || MCSERequestor || MCSEResponder)

Where I is the Initiator and R is the Responder

For the case where only one encryption key is required:

EK = AES-CBC-MACl128lsbitsofAK(  C || 0pad )

Otherwise:

STAInit-to-STAResp-EK = AES-CBC-MAC128lsbitsofAK(  C || 0x01 || 0pad )

And

STAResp-to-STAInit-EK = AES-CBC-MAC128lsbitsofAK(  C || 0x02 || 0pad )

Key Synchronization (or when to start using the key)

To allow for the flushing of transmit queues, the Authenticated Key Agreement also allows for asynchronous key switches; this is required for the scheme to work with systems implementing the TGe QoS enhancements.  That is, the synchronization of when the encryption key takes effect is based on the agreed upon threshold values exchanged by both the requestor and responder.  Note that other packets can be flowing while the exchange is occurring; especially for packets flowing between the two peers.  That is, packets can still be flowing between the requestor and responding STAs through the encrypted channel.  If that is the case, the previous (and soon to be updated) EK is used to encrypt and decrypt frames.

When the agreed on threshold criteria is reached, the old encryption key is replaced by the new EK.  Since there is no further use for the old encryption key nor should it ever be reused again, the old key can be discarded.  The EK can persist until the next authentication exchange occurs or a deauthentication frame is issued.  Upon receipt of a deauthentication request, the EK value should be reset to NULL.  This ensures that a new AKA exchange occur to establish a new encryption key for the new session. Persistance of an EK through the next authentication allows for roaming (reassociations) to work for both for the case when a STA reassociates to a new AP or is returning to an already established AP.  That is, if a STA is reassociating with a previously associated AP, it’s encryption keys will still be valid.  However, if a STA is reassociating with a new AP, unless the encryption keys were previously plumbed by a preauthentication an AKA exchange will be required.

Since the responding peer is not guaranteed to receive either all of the agreed upon packets or reaching the designated sequence counter (maximum) value, the AKA_timeout  is used as a safetyguard to denote that since it was unable to achieve the  AKA_threshold within the AKA_timeout  it can not guarantee a safe key switch and thus a deauthenticate  frame must be initiated

If the AKA_Threshold is based on packet count and the agreed upon value  is set to 0, this is effectively a blocking exchange, where the requesting peer is effectively notifying that no more packets will be sent with the old key and thus traffic between the link can cease until the full exchange has occurred.  By setting the threshold value to 0 the peers agree to stop all traffic flow between the two peers until the encryption key has been derived and plumbed.

Since the AKA management frames are ACK’ed via control frames both peers can determine if and when the exchange has gone awry.  Each peer can retry sending either request or for the determined Max_rekey_retries; upon reaching this limit it is recommended that the peer send a deauthenticate frame since key refresh failed and security using the current derived key has been compromised.

Who determines when a key needs to be refreshed?

The current proposal does not impose a restriction as to which of the peers initiate the exchange.   However, to avoid race conditions and as the performance burdens typically fall on an AP, it would be appropriate to befall the duty of configuring and managing the rekey frequency at the AP.  In addition, having the AP manage the rekey_frequency and max_refresh_count prevents an adversary from mounting a denial of service attack.   For an IBSS, the STA initiating the authentication could act as the rekey manager.  To have both peers manage the rekey_frequency would be redundant.

The other important thing to note is that the rekey works best if we are rekeying keys that are at least 128bits in length.  Also, the master key is only used to help compute the derived encryption key(s).

Appendix B illustrates the logical flow for exchanging messages between the requesting and responding peers.
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Appendix A: Rekeying Model

What is a session?

A session in a BSS is defined as a link between the AP and STA that has been properly authenticated by ULA and successfully associated.  Since association is not applicable to an IBSS, a session is thus defined as a link between two STAs that have been properly authenticated.  In both cases, a successfully established session is one that has both authenticated and established the 256bit master key.

External Events

1. MLME- SetMasterKeys : used by ULA to configure a key into the MAC.  The MasterKey is 256 bits used for:

a. 128msbits is used for authenticating the exchange.  

b. the other 128lsbits are used for deriving the encryption 

2. Deauthenticate : effectively sets the MasterKeys to NULL to invalidate the notion of having Master Keys and thus force a reestablishment of these keys at authenticate.

3. AKA message 1 arrives from the airwaves

4. AKA message 2 arrives from the airwaves

5. AKA message 3 arrives from the airwaves

6. Timeout event for when message 1 is not ACKed

7. Timeout event for when message 2 is not ACKed 

8. Timeout event for when message 3 is not ACKed

9. Timeout event for when message 2 is expected but is never received 

10. Timeout event for when message 3 is expected but  is never received

11. Transmit AKA-frame (e.g. MMPDU as MA-UNITDATA tells us to do this)

12. Receive AKA-frame (e.g. process MMPDU)

State

1. Session-state : the authentication record (or association record) that includes the information required to determine whether the ULA Master Keys have been plumbed.

2. Refresh-state: this state is used to track the state of the acquisition/derivation of the session’s encryption keys.

3. Active-Encryption-state : this state determines when a STA or AP is actively encrypting/decrypting MSDUs received.  This state implies that both master keys and encryption keys have been properly established and plumbed.  It uses the active encryption key (derived by the Acquiring_Encryption_Key state).

Contexts

1. Session Context: depending on whether this is a BSS or IBSS configuration, the session context stores the information about the Authentication and Association states.  More importantly for this mechanism, it has the information of where the Master Keys have been obtained or not from ULA.

2. Refresh Context: includes all of the state information required to manage the AKA exchange required to:

a. Derive the encryption keys

b. Timers to ensure the exchange is progressing

c. Threshold values used to synchronize when the new derived key takes effect

3. Active Encryption Context: includes all the information required to encrypt/decrypt packets for the corresponding session

STA State Machine

Initialization (for each session)

Session-context ( nil

Refresh-state ( nil

Active-Encryption-state ( nil

Encryption Keys ( nil

MLME-SetMasterKeys event   // Set the master keys by ULA

if Session-context for this session = nil (
skip // error; event fails

else //the Session-context is populated check to see if Refresh state is active


plumb the master keys and cache them for this session


if Refresh-state = nil (


no encryption key has been derived, start the exchange to get one



set the packet threshold to 0 so no encrypted traffic goes by as key is new



use the newly plumbed master keys to authenticate and derive encryption keys

create a new Refresh-state state



transmit message 1



start message 1 timeout


else ( // there’s already an encryption key active so we must synchronize the switch 



determine when (based on packet count or iv value) a switch is safe



use the newly plumbed master keys to authenticate and derive encryption keys



create a new Refresh-state state



transmit message 1



start message 1 timeout


fi

fi

Deauthenticate event  // Disable the master keys when you deauthenticate

if Active-Encryption-state = nil AND revoked key is associated with Active-Encryption-state (

skip  // nothing to do, no encryption is active

else // crypto is active; stop subsequent packets from being encrypted/decrypted with the keys


Active-Encryption-state = nil

fi

if Refresh-state = nil (

skip  // nothing to do, no exchange is in process

else  if Refresh-state ( nil AND key is associated with Refresh-Encrytion-Key ( 

// Revoking in a middle of exchange, abort this process anyway 

fi

Session-context ( nil

Session-state ( nil

Refresh-state ( nil

Active-Encryption-state ( nil

Encryption key for this session ( nil

Disassociate event (for AP or STA)

if Active-Encryption-state  ( nil (
disassociate Active-Encryption-state from association

delete association-record

delete session-state

clean up session context

else if Active-Encryption-state = nil (
skip // no crypto was active, nothing to do 

fi

if Refresh-state ( nil (

// disassociating in the middle of a key exchange, abort the key exchange


// but force the next association to replumb the encryption keys


Encryption Key for this session ( nil

Refresh-state = nil

if timer is active (
cancel timer

else if timer is NOT active (
skip

fi

else if Refresh-state = nil (
skip  // no rekeying, nothing to do

fi

Associate or Reassociate event  (for AP or STA)

if Session-context for this STA ( nil (
signal ULA to MLME-SetMasterKeys

else if Session-context for this STA = nil (
//no Authentication has been done, signal an ULA authentication

signal MLME-Authenticate using ULA

fi

AKA message-1 arrives

if Refresh-state = nil (
construct message 2 reply and send it to the peer

make sure the STA can meet the switch threshold criteria and agree upon value

// use the MAC addresses as the identities

// rather than redundantly placing the MAC addr in the payload, use the ones from header 

initialize AKA-exchange-timer

else if Refresh-state ( nil (

// if we’re already in the process of a Refresh, can’t preempt with another


// could this be a DOS attack?  Or is a retry?  Or is it a replay?

// Should we just discard this message or should we reply?

error  // send of error message, perhaps in the reply signaling already in refresh state

fi

AKA message-2 arrives  

if Refresh-state = nil AND Encryption-Key for this session = nil (

// allow the STA to initiate only the initialization of the Encryption keys (not the refresh)

if refresh context does not authenticate message-2  (
error // integrity tags didn’t match, rekey can not be plumbed deauthenticate

send a Deauthenticate frame

else if refresh context does authenticate message-2  (

extract threshold values


if threshold values acceptable (


create refresh context 

// set threshold values and counters for synchronizing key switch

// set nonce values for computing new derived key

// generate responder’s nonce value 

construct message-3

transmit message-3

restart AKA-exchange timer



else // values are not acceptable




error // create message-3 reply with error status



fi

fi

else 


error // do not allow STAs to rekey, only to initialize 

fi

AKA message-3 arrives

if Refresh-state = nil (

error // reply that it’s in the wrong state! (should be in message 1)

else if Refresh-state ( nil (
if refresh context does not authenticate message-3  (
error // integrity tags didn’t match, rekey can not be plumbed deauthenticate

send a Deauthenticate frame

else if refresh context does authenticate message-3  (
update context to show that we’ve received message-3

derive key

construct Active-Encryption-state based on derived key

refresh-context ( nil

cancel AKA-exchange timer

if traffic embargoed (  // threshold was 0 (i.e. blocking tracking till switch)

unembargo it

else if traffic NOT embargoed (  (i.e. asynchronous exchange)

initialize Key-switch timer

set key-switch-threshold value to one agreed on

fi

fi

fi

AKA-exchange or Key-switch timer expires

// this design assumes we can rely on 802.11 MAC retries

refresh-context ( nil

Refresh-state ( nil

Encryption key for the session ( nil

disassociate

report failure indication to ULA // ULA must reauthenticate

Key-switch  event

When the agreed upon (either IV or packet count) has been reached, receive this packet, count it as the last packet using the old key.  Plumb new encryption key.

refresh-context ( nil

Refresh-state ( nil

Encryption key for the session ( new encryption key

sequence counter ( initialize to value as agreed during AKA exchange

refresh_counter ( refresh_counter + 1

Transmit data event  

if Session-context = nil 

error  // can’t transmit data unless you are at least authenticated

else if Session-context ( nil (
if Session-context is marked embargoed (
// drop packet? Traffic’s been withheld until encryption keys

else if Session-context or session-context is NOT marked embargoed (
if Active-Encryption-state = nil (
send MSDU in the clear

else if Active-Encryption-state ( nil (

// since the AP manages the rekeying, the STA does not need to 


// check for when the sequence counter is about to exceed.  It does


// however have to check if flushing the transmit queue in the mist


// of a rekey

increment sequence-number

encapsulate MSDU using Active-Encryption-state

send encapsulated MSDU

fi

fi

fi

fi

Receive data event

if Session-context = nil (
error  // must be at least authenticated

else if Authentication-record ( nil (
if Session-context or session-context is marked embargoed (
// drop packet? Traffic’s been withheld until encryption keys

else if Session-context or session-context is NOT marked embargoed (
if Active-Encryption-state = nil (
deliver MSDU without modification

else if Active-Encryption-state ( nil (
decapsulate MSDU using Active-Encryption-state

if decapsulation succeeds (
deliver decapsulated MSDU

if Refresh-state = nil (
skip // normal encryption channel

else if Refresh-state ( nil (  // async, AP flushing xmit queue

increment threshold value

if threshold value is reached (

trigger Key-Switch event

fi





fi

else if decapsulation fails (
drop MSDU

fi

fi

fi

AP State machine (for each session)

Initialization

Session-context ( nil

Refresh-state ( nil

Active-Encryption-state ( nil

Encryption Keys ( nil

MLME-SetMasterKeys event : same as STA

Deauthenticate event : same as STA

Disassociate event : same as STA

Associate or Reassociate event: same as STA

AKA message-1 arrives

if Refresh-state = nil AND Encryption-Key for this session = nil (

// allow the STA to initiate only the initialization of the Encryption keys (not the refresh)

construct message 2 reply and send it to the peer

make sure the STA can meet the switch threshold criteria and agree upon value

// use the MAC addresses as the identities

// rather than redundantly placing the MAC addr in the payload, use the ones from header 

initialize AKA-exchange-timer

else 

error  // send of error message, perhaps in the reply signaling already in refresh state

fi

AKA message-2 arrives

if Refresh-state  = nil (

error  // AP never initiated the exchange, something’s awry

else

if refresh context does not authenticate message-2  (
error // integrity tags didn’t match, rekey can not be plumbed deauthenticate

send a Deauthenticate frame

else if refresh context does authenticate message-2  (

extract threshold values


if threshold values acceptable (


create refresh context 

// set threshold values and counters for synchronizing key switch

// set nonce values for computing new derived key

// generate responder’s nonce value 

construct message-3

transmit message-3

restart AKA-exchange timer



else // values are not acceptable




error // create message-3 reply with error status



fi

fi

fi

AKA message-3 arrives

if Refresh-state  = nil (

error // we should already be in the process of Refreshing encryption keys

else if are we are awaiting message 3 (
if refresh context does not authenticate message-3  (
error // integrity tags didn’t match, rekey can not be plumbed deauthenticate

send a Deauthenticate frame

else if refresh context does authenticate message-3  (
update context to show that we’ve received message-3

derive key

construct Active-Encryption-state based on derived key

refresh-context ( nil

cancel AKA-exchange timer

if traffic embargoed (  // threshold was 0 (i.e. blocking tracking till switch)

unembargo it

else if traffic NOT embargoed (  (i.e. asynchronous exchange)

initialize Key-switch timer

set key-switch-threshold value to one agreed on

fi

fi

else

error // we were waiting for message 2, not 3! Something’s really wrong

Send deauthenticate frame

fi

AKA-exchange or Key-switch timer expires: same as STA

Transmit data event

if session-context = nil (
error

else if session-context ( nil (
if session-context is marked embargoed (
// drop packet

else if session-context is NOT marked embargoed (
if Active-Encryption-context = nil (
send MSDU in the clear

else if Active-Encryption-context ( nil (
if sequence-number from Active-Encryption-context not exceeded (
increment sequence-number

encapsulate MSDU using Active-Encryption-context

send encapsulated MSDU

else if sequence-number from active-crypt-context exceeded (
if refresh-counter NOT exceeded (
increment refresh-counter

create refresh-state initialise to be in first message phase 

start message-1 timer

construct message 1 and send it to the peer

increment sequence number

encapsulate MSDU using Active-Encryption-context

send encapsulated MSDU

else if refresh-counter exceeded (
signal ULA to reauthenticate

fi

fi

fi

fi

fi

Receive data event

if session-context = nil (
error

else if session-context ( nil (
if session-context is marked embargoed (
// drop packet

else if session-context is NOT marked embargoed (
if Active-Encryption-context = nil (
deliver MSDU without modification

else if Active-Encryption-context ( nil (
decapsulate MSDU using Active-Encryption-context

if decapsulation succeeds (
deliver decapsulated MSDU

else if decapsulation fails (
drop MSDU

fi

fi

fi

fi

Appendix B: Logical flows for the AKA exchange

The following diagrams illustrate only the logical portions pertaining to the actual exchange and processing of the newly defined MMPDUs required to securily establish encryption keys for a session. 
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Figure 3 Initiating an AKA Exchange (start with message-1)
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Figure 4  Responding to initial AKA Exchange (message-2)
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Figure 5 Final response to AKA Exchange (message-3) and synchronization of key switch
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Figure 6  Final receipt of AKA message-3 exchange and synchronization of key switch
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