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1 Purpose

In May 2001 802.11TGi passed a motion requesting “submissions for a new authentication method”. In response, this submission describes a new authentication approach, which the authors believe is well suited to the needs of the TGi activity. In particular, this proposal meets all the requirements listed in document “Supplementary Functional Requirements for TGi ESS Networks”.

This proposal defines a method for mutual authentication of mobile client and network. It also defines a mechanism for key distribution for general cipher-suites. This proposal does not cover cipher-suite operation or 802.11MAC Management operations such as beacons and probes.

The proposal introduces a different concept to previous proposals by performing network authentication and client authentication in two serial operations. Importantly, keying material is delivered by the first operation so that the second operation can be performed with privacy. This has the substantial advantage that the identity of the client, as well as the messages used in client authentication, are hidden from possible attackers.

Considerable care has been taken to ensure that this two phases serial approach is consistent with the rules in 802.1X and EAP. However, this is an area of continuing study and further contributions on this issue are welcomed.

The proposal is primarily targetted at use in ESS networks. It is possible that a similar approach could be used for IBSS networks but this has not been studied in the current proposal. The proposed method is intended to be suitable both for large managed corporate or service provider locations as well as for small standalone networks.

2 Proposal Overview

The proposal assumes that the Serial Authentication method is defined as an 802.11 Authentication Suite and assigned a specific Authentication Suite selector value. This value is used as any other Authentication Suite selector and can be included in Authentication Suite Elements carried in Associate Request, Associate Response, Reassociate Request, Reassociate Response and Probe Response frames. It is proposed that the Authentication Suite selector value for Serial Authentication be OUI = 00:00:00; Value = 4.

However, the proposal differs from others in that cipher suite selection occurs during the first phase of the Serial Authentication method, rather than through the use of 802.11 management frames. Specifically, it utilizes the protected cipher suite negotiation mechanisms of TLS. Consequently, when the Serial Authentication method is chosen, Unicast Cipher Suite Elements are not carried in 802.11 management frames.

Note that the selection of the Serial Authentication method implies the use of a two phase authentication protocol. In the first phase EAP-TLS is used and in the second phase another EAP protocol is used.

The proposal defines state machines and an associated protocol that distributes keying material for protecting trafffic between a wireless client (WLC) and an access point (AP), authenticates an authentication server to the WLC, and authenticates the user of the WLC to a possibly different authentication server. It accomplishes this using existing well-defined authentication protocols. One protocol (i.e., EAP-TLS) authenticates a RADIUS-EAP-TLS server to the wireless client and distributes keying material used to protect communications between the wireless client and access point. A second protocol (e.g., EAP-MD5) authenticates the user of the wireless client using a RADIUS-EAP-2ndPhase based server.

The second phase of the protocol provides flexibility to deployments. After EAP-TLS completes, the serial authentication scheme initiates a standard EAP protocol in which a user identity is sent to a RADIUS server in a EAP-Response/Identity message. This message is forwarded by the AP to the RADIUS-EAP-2ndPhase server, which uses it to choose a specific EAP protocol for user authentication. For example, it might chose EAP-MD5, EAP-OTP or EAP-GenericToken based on a configuration record it associates with user identities. The RADIUS-EAP-2ndPhase server returns the appropriate EAP-Request message to the WLC, which uses the user credentials it holds to complete the EAP protocol. This proposal requires all implementations to support one mandatory second phase protocol, specifically, EAP-MD5.
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Figure 1 – Serial Authentication Scheme General Configuration

Figure 1 illustrates the general configuration used in the serial authentication scheme consisting of a wireless client, access point, RADIUS-EAP-TLS server and RADIUS-EAP-2ndPhase server. While shown as separate servers, the scheme allows the RADIUS-EAP-TLS server and RADIUS-EAP-2ndPhase server to be implemented either as a single server or as two different servers. This is a significant advantage of the scheme, since it thereby allows deployments with existing RADIUS-based central authentication databases to use them to control access to an 802.11 wireless LAN.

For standalone networks, the Access Point may incorporate software modules that emulate the two RADIUS-EAP servers without the use of the RADIUS protocol. It is anticipated that such software modules will be easy to incorporate based on current access point implementations.

The scheme introduces the notion that each authenticator (Port Access Entity) PAE controls access to an authenticator port using two associated subports. These subports control access to the controlled port in the two directions of mutual authentication. It is the subport construct that allows the scheme to use existing authentication protocols in a serial fashion and the mechanisms defined within 802.1x without change.
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Figure 2 – The relationship of subports to their associated authenticator port.

Figure 2 illustrates the two subports associated with an authenticator port. Each subport is associated with a “switch” (represented by an “X” in the diagram), which when closed connects the controlled port of the subport to a stage leading to the next phase. During the first phase of the serial authentication process, the Authenticator PAE uses EAP-TLS to authenticate and authorize the backend authentication server to the client (and to distribute keys used to protect the communications over the wireless channel during the second phase). Once this successfully completes, the first “switch” that manages access from the point-of-attachment to the EAP-TLS  controlled subport closes, connecting the point-of-attachment to the second subport. Note that the point-of-attachment is still disconnected from the encrypted and authenticated controlled port at this point.

During the second phase of the serial authentication process, the Authenticator PAE uses another EAP authentication exchange to authenticate and authorize the user of the WLC to a backend authentication server. This server may be the same one used during the first phase or it may be a different server. When this completes successfully, the EAP-2ndPhase subport “switch” closes, which connects the point-of-attachment to the encrypted and authenticated controlled port.

The Subport concept is a convenient abstraction that allows the serial authentication scheme to use 802.1x unchanged. From its perspective, the EAP protocol exchanges in the first and second phases of the serial authentication process connects the point-of-attachment to a “controlled port” (in actuality the controlled port of one of the subports). When the authenticator PAE successfully executes the 802.1x state machine on both subports, the point-of-attachment is connected to the encrypted and authenticated controlled port.

The remainder of this proposal is divided into five parts (sections 3, 4, 5, 6 and 7). Section 3 describes the objectives of the proposed scheme.
Section 4 describes two state machines, one for driving the serial authentication process on the WLC and the other for driving the serial authentication process on the AP. Both machines run through a state representing the first phase of the serial authentication process (using EAP-TLS) and another state representing the second phase of the serial authentication process (using an EAP method chosen by the RADIUS-EAP-2ndPhase server based on the user identity). The transition from phase 1 to phase 2 occurs when the client starts encrypting frames sent over the wireless channel (i.e., frames with the WEP bit set). The state machines also implement a quiet period after a failure to authenticate on either of the subports associated with the logical port.
Section 5 describes the protocols used by the state machines to achieve key distribution and mutual authentication. During the first phase of each state machine, the WLC and RADIUS-EAP-TLS server use EAP-TLS with server-side certificates to distribute keying material to the WLC and the AP, and the WLC authenticates and authorizes the RADIUS-EAP-TLS server. A detailed description of keying material derivation and distribution field formats is presented in section 6. During the second phase of each state machine, the RADIUS-EAP-2ndPhase server authenticates and authorizes the user, thereby completing the serial authentication process, which opens the encrypted controlled port on the AP for use by the WLC. All implementations must support EAP-MD5. This is the mandatory to implement 2nd phase EAP protocol.

Section 6 refines the material in sections 4 and 5. It presents detailed information on protocol elements and implementation algorithms.

Section 7 describes a fast hand-off scheme that can be used in conjunction with the serial authentication scheme for roaming.

3 Objectives

The scheme described in this proposal was developed to achieve the following objectives.

1. It should use standard protocols and 802 mechanisms without change.

2. It should support the use of legacy authentication databases currently deployed to control network access, especially those used to control remote access.

3. It should require minimal changes to access points and minimize the additional computational burden on clients and access points.

4. It should distribute the keys necessary to protect the traffic between a WLC and AP.

5. It should derive separate keys for each direction between a WLC and AP and also derive separate keys for confidentiality and message integrity, when the underlying message security algorithms (e.g., encryption and MAC algorithms) require it.

6. It should mutually authenticate the user and authentication server. When necessary to meet requirement 2, it should allow the user to authenticate to a different server than that which authenticates to the WLC.

7. It should be resistant to offline dictionary attacks against traffic observed in the wireless channel.

8. It should not require client-side certificates.

9. It should optionally support the use of a common user authentication database for wireless LAN, wireline LAN and remote access (i.e., dialup or VPN access over the internet).

10. It should be suitable for clients and APs with low to moderate processing capabilities.

11. It should support graceful disaster recovery in case of compromises in the security system.

12. It should support anonymity of the user from the standpoint of an attacker using or observing the wireless channel.

13. It should be sufficiently strong to resist active and passive attacks against its cryptographic algorithms and protocols.

14. It should work with fast hand-off and re-authenticate in roaming.

15. When it encorporates standards from other standards bodies (e.g., the IETF), they should be complete and not in working draft form.

16. It should provide a quick time-to-market solution.

4 State Machines

The state machines defined in this section are for the WLC and AP. The scheme as currently formulated assumes these state machines execute within the MAC layer of 802.11 as an authentication suite. While it may be possible to modify them to work within the 802.1x domain of control, this proposal does not explore that possibility.

4.1 State machine Variables, Timers and Procedures
The Serial EAP authentication state machines utilize the following variables and procedures.

Variables

eap-tlsSubport. This variable is set to UNAUTHORIZED upon initialization. The Serial EAP Authentication state machine creates/calls the 802.1x process/thread/procedure that runs the EAP-TLS protocol. If it asserts authSuccess, this variable is set to AUTHORIZED. It can be set to UNAUTHORIZED by management action.
eap-2ndPhaseSubport. This variable is set to UNAUTHORIZED upon initialization. The Serial EAP Authentication state machine creates/calls the 802.1x process/thread/procedure that runs the EAP-2ndPhase protocol. The RADIUS-EAP-2ndPhase server selects the exact EAP protocol to use based on the user identity included in the EAP-Response/Identity message. If it asserts authSuccess, this variable is set to AUTHORIZED. It can be set to UNAUTHORIZED by management action
portStatus. This variable is set to UNAUTHORIZED upon initialization. It is set to AUTHORIZED when the state machine enters the Authenticated state. This occurs when eap-2ndPhaseSubport is set to AUTHORIZED when authSuccess is received from the 802.1x process that runs the EAP-2ndPhase protocol.
initialize. This variable is externally controlled. When asserted it forces the Serial EAP state machine to its initial state. Initialization occurs upon association, re-association or if a protocol error occurs.
authSuccess. This variable is asserted by the 802.1x process/thread/procedure when the EAP protocol returns an EAP-Success message.
authFail. This variable is asserted by the 802.1x process/thread/procedure when the EAP protocol returns an EAP-Failure message.
wepBitOff. This variable is asserted when a frame received by the MAC layer has the WEP bit cleared.
wepBitOn. This variable is asserted when a frame received by the MAC layer has the WEP bit set.

wepBit. This variable controls when the state machine turns on the WEP bit. When the variable value is OFF, the WEP bit is not set in a frame. When the variable value is ON, the WEP bit is set in the frame and the frame is encrypted using the keying material established by the EAP-TLS protocol run.

keyMaterial. This variable is used by the EAP-TLS flow of execution to pass the keying material and the identity of the selected ciphersuite to the 802.11 MAC layer. The use of this variable presumes that TLS is enhanced so that it is capable of negotiating 802.11 ciphersuites.

quietPeriod. The period of time during which the state machine will not attempt to authenticate the client.

WepBitWaitPeriod. The period of time during which the  state machine will wait for a frame from the client after an EAP-Success message is delivered to the client as the result of an EAP-TLS protocol run.

Timers

quietWhile. A timer used by the state machine to define a period of time during which it will not attempt to authenticate the client.

wepBitWait. A timer used by the Authentication state machine to ensure liveness after EAP-TLS returns EAP-Success.
Procedures

createOneX(). This procedure executes the 802.1x protocol in a flow of execution (process, thread or procedure). It signals the results of the protocol run to the Serial EAP Authentication state machine through two variables – authSuccess and authFail. Note: When createOneX(EAP-2ndPhase) is called in the client machine, the instance of 802.1x created must send an EAPOL-Start message. This is required to maintain liveness in the Serial EAP Authentication protocol. This frame is the first sent over the wireless channel using the encryption keys established by the preceding call to setKeys(). The AP Serial EAP  state machine waits for a frame to arrive with the WEP bit set, before it calls createOneX(EAP-2ndPhase). This leads to inefficiency, since the AP will then send an EAP-Request/Identity message without provocation. It will then send another EAP-Request/Identity message when it receives the EAPOL-Start message. This inefficiency is a result of the 802.1x state machine.
txDeauthenticate(). This procedure sends a Deauthenticate message from the AP to the Client.
txEAPOLLogoff(). This procedure sends an EAPOL-Logoff message from the Client to the AP.

setKeys(). This procedure accepts keying material and ciphersuite information using it to set up the WEP keys and state for subsequent frame encryption.

txEAPSuccess. This procedure sends an EAP-Success message. The AP state machine uses it to reliably deliver this message after the EAP-TLS protocol run succeeds
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Serial EAP Authentication State Machine (AP)
5 Protocol Diagrams

This section presents the protocol run diagrams for EAP-TLS and EAP-2ndPhase as used by the serial authentication process. Since the state machines use these protocols independently, we show two diagrams, one for EAP-TLS and one for EAP-2ndPhase. We also show the exact protocol run when the selected EAP authentication scheme is EAP-MD5, which is the mandatory to implement 2nd phase protocol.

The 2nd phase of serial authentication allows the RADIUS-EAP-2ndPhase server to select the exact EAP protocol it will use to authenticate the user. Specifically, it examines the UserName parameter in the EAP-Response/Identity message, deciding which EAP protocol to use based on its value. This provides significant generality in the serial authentication scheme, since different users may have different user credentials, thereby requiring the use of different EAP protocols.

The serial authentication scheme assumes TLS is enhanced so that it can negotiate 802.11 ciphersuites. This does not require a change to the TLS protocol, but does require the use of existing ciphersuites or the registration of new ciphersuites for TLS. In addition, the AP must signal its ciphersuite capabilities and preferences to the RADIUS-EAP-TLS server. This occurs in step 7 when the AP places a Unicast Cipher Suite Element (UCSE) in a RADIUS attribute (802.11-UCSE) and forwards it to the server. This relieves the RADIUS server of the responsibility of storing ciphersuite capabilities and preferences for the APs it serves. The RADIUS-EAP-TLS server uses the 802.11-UCSE attribute to signal the chosen ciphersuite to the AP. This occurs in step 19 when the server places the chosen Unicast Cipher Suite selector within this attribute and then places it in an access-accept message. Finally, the RADIUS-EAP-TLS server sends to the access point the keying material it generates for the chosen ciphersuite. This is placed in an 802.11-TLS-Keying-Material RADIUS attribute. The definition, registration and use of these attributes require no changes to the RADIUS protocol.

The scheme assumes that any multicast or broadcast keys required for the logical port are distributed using an EAPOL-Key message sent during the EAP-2ndPhase protocol run. While existing proposals have the AP use this message to signal the client to begin WEP encryption, this proposal does not follow that procedure. The client turns on WEP encryption after EAP-TLS returns an EAP-Success message. The first message sent encrypted is the EAPOL-Start message of the EAP-2ndPhase protocol run. It is critical that the client send this message, as the AP does not start its EAP-2ndPhase 802.1x state machines until a frame arrives over the logical port with its WEP bit set.
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This completes the EAP-TLS protocol run. Control is returned to the Serial EAP authentication protocol machine, which subsequently invokes an 802.1x process/thread/procedure that executes an EAP protocol run. The exact EAP protocol is chosen by the RADIUS-EAP-2ndPhase server based on the user identity (i.e., UserName) provided in the EAP-Response/Identity message in step 3.

The following messages in the 2nd Phase are encrypted by the keys derived in the First Phase.
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The following protocol run diagram shows the exact message exchanges when the RADIUS-EAP-2ndPhase server chooses EAP-MD5, which is mandatory to implement 2nd phase protocol.
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6 Protocol and Implementation Details

The serial authentication scheme utilizes existing standards whenever possible. However, the scheme enhances these in some cases. This section presents these enhancements. Specifically, it describes:

49. the syntax of the RADIUS attributes used in the EAP-TLS protocol run (section 6.1),

50. the TLS ciphersuite identifiers used during 802.11 cipher suite negotiation and how the keying material is derived from the master secret for each 802.11 cipher suite (section 6.2),

51. how the identifiers of trusted RADIUS-EAP-TLS servers might be distributed to wireless clients (section 6.3), and

52. possible mitigation strategies when an intruder compromises the security system (section 6.4).

6.1  RADIUS attribute syntax

Two RADIUS attributes are used to move information between the access point and the RADIUS-EAP-TLS server. One of these moves 802.11 cipher suite information. The other moves derived keying material from the RADIUS-EAP-TLS server to the access point.

6.1.1 802.11-UCSE

The 802.11-UCSE attribute carries one or more Unicast Cipher Suite selectors. These are encoded in an 802.11 Unicast Cipher Suite Element and placed in the UCSE field of the attribute.

0                   1                   2                   3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| RADIUS-Type | RADIUS-Length |           Vendor-ID 

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

     Vendor-ID(cont.)         |  Vendor-Type  |  Vendor-Length

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                             UCSE...

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
RADIUS-Type (1 Octet)

26 for Vendor-Specific.

RADIUS-Length (1 Octet)

Vendor-Length+6.

Vendor-ID (4 Octets)

43 for 3Com 

Vendor-Type (1 Octet)

2 for 802.11-UCSE.

Vendor-Length (1 Octet)

>= 6

UCSE (4*n Octets)

The UCSE field contains an 802.11 Unicast Cipher Suite Element. Encoding details are found in the Enhanced Security section of the IEEE 802.11 standard.

6.1.2 802.11-Keying-Material

The 802.11-Keying-Material attribute carries the keying material for the selected ciphersuite from the RADIUS-EAL-TLS server to the AP.

0                   1                   2                   3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| RADIUS-Type | RADIUS-Length |           Vendor-ID 

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

     Vendor-ID(cont.)         |  Vendor-Type  |  Vendor-Length

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

             Salt             |           String...

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
RADIUS-Length (1 Octet)

Vendor-Length+6.

Vendor-ID (4 Octets)

43 for 3Com 

Vendor-Type (1 Octet)

3 for 802.11-Keying-Material.

Vendor-Length (1 Octet)

> 5

Salt (2 Octets)

The Salt field is used to ensure the uniqueness of the keys used to encrypt the keying material carried in the String field. The most significant bit (leftmost) of the Salt field MUST be set (1). The contents of each Salt field in a given 802.11-Keying-Material attribute MUST be unique.

String (n Octets)

The plaintext String field consists of three logical sub-fields: the Keying-Material-Length and Keying-Material sub-fields (both of which are required), and the optional Padding sub-field. The Keying-Material-Length (KML) sub-field is one octet in length and contains the length of the unencrypted Keying-Material sub-field. The Keying-Material sub-field contains the keying material for the chosen ciphersuite. The format of the Keying-Material sub-field consists of a ciphersuite identifier (Ciphersuite), followed by a sub-field that is ciphersuite dependent. See section 6.2 for definitions of the format of this subfield for the ciphersuites defined in this proposal.

If the combined length (in octets) of the unencrypted KML and Keying-Material sub-fields is not an even multiple of 16, then the Padding sub-field MUST be present. If it is present, the length of the Padding sub-field is variable, between 1 and 15 octets. The String field MUST be encrypted as follows, prior to transmission:

Construct a plaintext version of the String field by concatenating the KML and Keying-Material sub-fields. If necessary, pad the resulting string until its length (in octets) is an even multiple of 16. It is recommended that zero octets (0x00) be used for padding. Call this plaintext P.

Call the shared secret S, the pseudo-random 128-bit Request Authenticator (from the corresponding Access-Request packet) R, and the contents of the Salt field A. Break P into 16 octet chunks p(1), p(2)...p(i), where i = len(P)/16. Call the ciphertext blocks c(1), c(2)...c(i) and the final ciphertext C. Intermediate values b(1), b(2)...c(i) are required. Encryption is performed in the following manner ('+' indicates concatenation):

b(1) = MD5(S + R + A)
c(1) = p(1) xor b(1)
C = c(1)

b(2) = MD5(S + c(1))
c(2) = p(2) xor b(2)
C = C + c(2) 


•
• 


•
• 


•
• 

b(i) = MD5(S + c(i-1))
c(i) = p(i) xor b(i)
C = C + c(i)

The resulting encrypted String field will contain c(1)+c(2)+...+c(i).

On receipt, the process is reversed to yield the plaintext String.

Implementation Notes

This attribute MAY be used to pass keying material from an external (e.g., EAP-TLS [3]) server to the RADIUS server (e.g., the RADIUS-EAP-TLS server is implemented as a RADIUS server and backend EAP-TLS server). In this case, it may be impossible for the external server to correctly encrypt the keying material, since the RADIUS shared secret might be unavailable. The external server SHOULD, however, return the attribute as defined above; the Salt field SHOULD be zero-filled and padding of the String field SHOULD be done. When the RADIUS server receives the attribute from the external server, it MUST correctly set the Salt field and encrypt the String field before transmitting it to the access point. If the channel used to communicate the 802.11-Keying-Material attribute is not secure from eavesdropping, the attribute MUST be cryptographically protected.

6.2 TLS ciphersuites and keying material derivation

The serial authentication scheme uses existing TLS ciphersuite identifiers whenever possible during 802.11 cipher suite negotiation. Since access points and the RADIUS-EAP-TLS server communicate cipher suite information using Unicast Cipher Suite Elements (UCSEs), while the wireless client and RADIUS-EAP-TLS server communicate this information using TLS ciphersuite identifiers, the scheme establishes a mapping between the two. This allows the RADIUS-EAP-TLS server to select the appropriate ciphersuite and communicate this selection to both the wireless client and the access point.

Three ciphersuites and their associated bindings are defined in this document: 1) Basic WEP, 2) WEP2, and 3) AES-OCB. These definitions include not only the bindings between the identifiers used within a UCSE and by TLS, but also the key derivation algorithms and the ciphersuite dependent sub-field of the 802.11-Keying-Material attribute.

The key derivation algorithms specialize the algorithm given in RFC 2246 [1], which is reproduced here for convenience. When the text refers to the “secret”, it means the master secret computed by the wireless client and RADIUS-EAP-TLS server exchange.

“… [A] construction is required to do expansion of secrets into blocks of data for the purposes of key generation or validation. This pseudo-random function (PRF) takes as input a secret, a seed, and an identifying label and produces an output of arbitrary length.

“In order to make the PRF as secure as possible, it uses two hash algorithms in a way which should guarantee its security if either algorithm remains secure.

“First, we define a data expansion function, P_hash(secret, data) which uses a single hash function to expand a secret and seed into an arbitrary quantity of output:

    P_hash(secret, seed) = HMAC_hash(secret, A(1) + seed) +

                           HMAC_hash(secret, A(2) + seed) +

                           HMAC_hash(secret, A(3) + seed) + ...

   Where + indicates concatenation.

   A() is defined as:

       A(0) = seed

       A(i) = HMAC_hash(secret, A(i-1))

“P_hash can be iterated as many times as is necessary to produce the required quantity of data. For example, if P_SHA-1 was being used to create 64 bytes of data, it would have to be iterated 4 times (through A(4)), creating 80 bytes of output data; the last 16 bytes of the final iteration would then be discarded, leaving 64 bytes of output data.

“TLS's PRF is created by splitting the secret into two halves and using one half to generate data with P_MD5 and the other half to generate data with P_SHA-1, then exclusive-or'ing the outputs of these two expansion functions together.

“S1 and S2 are the two halves of the secret and each is the same length. S1 is taken from the first half of the secret, S2 from the second half. Their length is created by rounding up the length of the overall secret divided by two; thus, if the original secret is an odd number of bytes long, the last byte of S1 will be the same as the first byte of S2.

“The secret is partitioned into two halves (with the possibility of one shared byte) as described above, S1 taking the first L_S1 bytes and S2 the last L_S2 bytes.

“The PRF is then defined as the result of mixing the two pseudorandom streams by exclusive-or'ing them together.

    PRF(secret, label, seed) = P_MD5(S1, label + seed) XOR  P_SHA-1(S2, label + seed);

“The label is an ASCII string. It should be included in the exact form it is given without a length byte or trailing null character.  For example, the label "slithy toves" would be processed by hashing the following bytes:

    73 6C 69 74 68 79 20 74 6F 76 65 73

“Note that because MD5 produces 16 byte outputs and SHA-1 produces 20 byte outputs, the boundaries of their internal iterations will not be aligned; to generate a 80 byte output will involve P_MD5 being iterated through A(5), while P_SHA-1 will only iterate through A(4).

    L_S = length in bytes of secret;

    L_S1 = L_S2 = ceil(L_S / 2);

•••
“When generating keys and MAC secrets, the master secret is used as an entropy source, and the random values provide unencrypted salt material and IVs for exportable ciphers.

“To generate the key material, compute

       key_block = PRF(SecurityParameters.master_secret,

                          "key expansion",

                          SecurityParameters.server_random +

                          SecurityParameters.client_random);

The code that generates key_block must at least know the maximum length suitable for all cipersuites the AP supports. It is the responsibility of the ciphersuite code to “slice and dice” the key block to produce the required keying material.

6.2.1 Basic WEP

The Basic WEP algorithm uses a 40-bit confidentiality key to encrypt 802.11 frames. The confidentiality key is concatenated with a 24-bit initialization vector to produce a 64-bit key, which is used by the RC-4 stream cipher to encrypt the frame. Basic WEP can use shared keys, which are distributed out of band, or key mapping keys, which can use a dynamic key distribution process, such as serial authentication.

Basic WEP is seriously flawed and its use is deprecated in this proposal. However, to ensure backwards compatibility, it defines the TLS to 802.11 enhanced security identifier bindings, keying material derivation algorithm and 802.11-Keying-Material ciphersuite dependent sub-field for it.



Basic WEP UCSE selector to TLS ciphersuite identifier mapping

	Unicast Cipher Suite selector value
	TLS ciphersuite identifier

	OUI = 00:00:00; Value = 0
	TLS_RSA_EXPORT_WITH_RC4_40_MD5


The TLS ciphersuite identifier TLS_RSA_EXPORT_WITH_RC4_40_MD5 is normally associated with a message security algorithm that uses HMAC-MD5 for integrity and 40-bit RC4 for confidentiality. On the other hand, Basic WEP utilizes an encrypted CRC checksum for integrity protection (one of its security hazards). Consequently, when deriving the keying material for Basic WEP, the 16 byte HMAC-MD5 secrets (there are two of these, one for wireless client writes and one for access point writes) are not used. However, both must be generated, as the wireless client typcially will use standard TLS software to compute the confidentiality keys. If so, they come from locations within the pseudo-random hash value that are after those used to generate the HMAC MD5 keys.

The ciphersuite dependent sub-field of the 802.11-Keying-Material RADIUS attribute carries one 40-bit key for the confidentiality between WLC and AP. The format of the sub-field is:

0                   1                   2                   3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                                |   KML

| Ciphersuite

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                          WLC-TO-AP key (cont.)

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

WLC-TO-AP key |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Ciphersuite (1 Octet)

0 for Basic WEP.

WLC-to-AP key (5 Octets)

40-bit RC4 key for confidentiality between WLC and AP.

6.2.2 WEP2

The WEP2 algorithm uses a 128-bit confidentiality key to encrypt 802.11 frames. The confidentiality key is xor’ed with a 128-bit initialization vector to produce a 128-bit per-frame encryption key. This key is used by the RC-4 stream cipher to encrypt the frame. 

The TLS to 802.11 enhanced security identifier bindings are:

WEP2 UCSE selector to TLS ciphersuite identifier mapping

	Unicast Cipher Suite selector value
	TLS ciphersuite identifier

	OUI = 00:00:00; Value = 1
	TLS_RSA_WITH_RC4_128_MD5


This proposal assumes the current WEP2 specification will be modified to include a cryptographically sound integrity protection algorithm.  The derivation of the 128-bit RC4 keys and 128-bit HMAC-MD5 keys is identical to that for TLS_RSA_WITH_RC4_128_MD5.

The ciphersuite dependent sub-field of the 802.11-Keying-Material RADIUS attribute carries four 128-bit keys (one for WLC to AP encryption, one for WLC to AP integrity protection , one for AP to WLC encryption, and one for WLC integrity protection). The format of the sub-field is:

0                   1                   2                   3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                                |   KML         |   Ciphersuite

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                    WLC-TO-AP confidentiality key

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                    WLC-TO-AP confidentiality key (cont.)

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                    WLC-TO-AP confidentiality key (cont.)

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                    WLC-TO-AP confidentiality key (cont.)

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                    WLC-TO-AP integrity key

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                    WLC-TO-AP integrity key (cont.)

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                    WLC-TO-AP integrity key (cont.)

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                    WLC-TO-AP integrity key (cont.)

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                    AP-to-WLC confidentiality key

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                    AP-to-WLC confidentiality key (cont.)

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                    AP-to-WLC confidentiality key (cont.)

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                    AP-to-WLC confidentiality key (cont.)

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                    AP-to-WLC integrity key

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                    AP-to-WLC integrity key (cont.)

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                    AP-to-WLC integrity key (cont.)

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                    AP-to-WLC integrity key (cont.)

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Ciphersuite (1 Octet)

2 for WEP2.

WLC-to-AP confidentiality key (16 Octets)

128-bit RC4 key for WLC to AP encryption.

WLC-to-AP integrity key (16 Octets)

128-bit HMAC-MD5 key for WLC to AP integrity protection.

AP-to-WLC confidentiality key (16 Octets)

128-bit RC4 key for WLC to AP encryption.

AP-to-WLC integrity key (16 Octets)

128-bit HMAC-MD5 key for WLC to AP integrity protection.

6.2.3 AES-OCB

The default frame security algorithm for 802.11 enhanced security is AES operating in OCB mode. At the present time there is no TLS ciphersuite defined for AES-OCB. Consequently, this proposal specifies a ciphersuite identifier that has no official standing. The authors are investigating ways to define such a standard identifier.

AES-OCB UCSE selector to TLS ciphersuite identifier mapping

	Unicast Cipher Suite selector value
	TLS ciphersuite identifier

	OUI = 00.00.00; Value = 2
	TLS_RSA_WITH_AES_128_OCB


AES-OCB requires two 128-bit keys, one for wireless client to access point confidentiality/integrity protection, and the other for access point to wireless client confidentiality/integrity protection. The TLS key derivation process therefore must produce two 128-bit keys. The first is the wireless client to access point key and the second is the access point to wireless client key. Note that for AES-OCB, the key derivation process does not generate a client write MAC secret and server write MAC secret. The client write key and server write key are taken from the first 256 bits of the pseudo-random hash value (first 128 bits for the client write key and the second 128 bits for the server write key).

The ciphersuite dependent sub-field of the 802.11-Keying-Material RADIUS attribute carries two 128-bit keys (one for WLC to AP confidentiality/integrity protection and one for WLC to AP confidentiality /integrity protection). The format of the sub-field is:

0                   1                   2                   3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                                |   KML         |   Ciphersuite

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                    WLC-TO-AP key

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                    WLC-TO-AP key (cont.)

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                    WLC-TO-AP key (cont.)

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                    WLC-TO-AP key (cont.)

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                    AP-to-WLC key

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                    AP-to-WLC key (cont.)

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                    AP-to-WLC key (cont.)

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                    AP-to-WLC key (cont.)

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Ciphersuite (1 Octet)

3 for AES-OCB.

WLC-to-AP key (16 Octets)

128-bit AES-OCB key for WLC to AP confidentiality /integrity protection.

AP-to-WLC key (16 Octets)

128-bit AES-OCB key for AP to WLC confidentiality /integrity protection.

6.3 Trusted RADIUS-EAP-TLS server identifier distribution

TLS authentication proves the identity of the RADIUS-EAP-TLS server to the wireless client. This identity takes the form of a name carried in the server’s certificate. However, unless the wireless client knows which servers it should trust, the authentication has little value (i.e., an intruder server can authenticate to the wireless client simply by having a certificate verifiable by a certification path rooted in a root key held by the client). Consequently, the administrators of the wireless client must securely move to it a list of trusted server identifiers, so it can authorize the server.

It is beyond the scope of this proposal to enumerate all ways in which this list might be distributed. This is a security policy management issue and its solutions should be defined in that realm. However, as a proof of concept, the proposal suggests a number of approaches that might be used.

One way to move a list of trusted server identifiers is to email them to the clients using a secure email system, such as S/MIME. This requires the establishment of a Public Key Infrastructure, which is non-trivial.

Another approach is to make the list available on a trusted web page. Clients initially could use their browser to download it from a trusted secure web page and subsequently wireless client software could automatically update it periodically to ensure it has the most current data (much as virus definitions are updated). This approach assumes the URL of the trusted web site is distributed manually. If there is only one RADIUS-EAP-TLS server, its identity could be distributed manually.

Yet another approach is to encapsulate the list in a signed Java JAR file and distribute it through email, ftp, http or other means. This approach also requires the establishment of a Public Key Infrastructure for checking the signature and manually distributing of the identity of the trusted signer.

6.4 Security system compromise mitigation

One of the objectives of the serial authentication scheme is graceful recovery from security compromises. The scheme is vulnerable to the following compromises:

53. An RADIUS-EAP-TLS server private key might be leaked,  rendering its certificate invalid.

54. A user password might be leaked.

55. The private key corresponding to a root key might be compromised.

56. The password database managed by a RADIUS-EAP-MD5 server might be compromised.
The mitigation strategies for these compromises are presented below. Note that an administration must detect the compromise before it can take any remedial action.

6.4.1 RADIUS-EAP-TLS server private key compromise

The compromise of a server private key renders the messages signed by it invalid. When this happens, the server can be issued a new private key with a new associated certificate that carries a new identity. The list of trusted servers would then be updated, replacing the old server name with the new one. Since this list is periodically delivered to the wireless clients, the old server name, and hence the old certificate, will eventually be rendered invalid.

6.4.2 User password compromise

User password compromise is handled by invalidating the entry corresponding to the associated user in the password database. An administrator must then reregister the user, giving him a new password.

6.4.3 Root private key compromise

Root private key compromise is a catastrophic event. Not only does it affect the security of the serial authentication scheme, it also affects the security of any other method that relies on root keys (e.g., http/s). This proposal assumes that root keys are distributed using techniques that are independent of serial authentication (e.g., the wireless client uses root keys distributed with a web browser). It also assumes that those techniques handle root private key compromise.

6.4.4 Password database compromise

The compromise of the password database used by EAP-MD5 is another catastrophic event. Since one of the objectives of this proposal is to allow the use of a common user authentication database for controlling access to different networks (e.g., wireless LANs, wireline LANs, remote access networks), compromise of this database potentially compromises access control to a wider set of facilities than an 802.11 network. The compromise of a password database requires the invalidation of all users listed in that database and their re-registration. The exact workflow process to achieve this is deployment dependent.

7 Fast hand-off and re-authenticate in roaming

This section addresses fast re-authentication and handoff when the WLC roams from one AP to another. The fast re-authentication scheme utilizes the Inter-Access Point protocol (figure 3) to transport to the new AP a Context Blob (CB) containing the dynamic session keys and the RADIUS Accept message established between the old AP and WLC . The CB is encrypted using a key shared between the old AP and the new AP. This protects it in transit between these systems.
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An AP Key Distribution Server securely distributes the shared keys using (for example) SNMP V3. In order to mitigate the n-square problem with pairwise AP keys, the scheme uses the concept of a Cluster Key (CK) . With clustering, APs in close proximity share the same key for protecting the CB. It is envisioned that users expect fast re-authentication while they are roaming locally, for example when they are on the same floor of a building. However, when they move to a distant location, they are willing to tolerate the slower full authentication. Using encryption to facilitate the secure transfer of a CB enables fast hand-off when the client roams to nearby APs. When an AP is compromised, only the group of APs that share the same key are compromised, which provides compromise containment control and graceful recovery. 

IAPP uses a registration server to resolve the "old AP" information from the re-associate message. The re-associate message contains the MAC address of the old AP whereas the IP address is needed to communicate. Therefore the new AP can use a server lookup to translate the Old AP MAC address to its (wire-side) IP address. In addition to returning IP address of the old AP, the registration server can also return a "cluster" attribute to the new AP. This would allow the new AP to determine whether this is an intra-cluster roam or inter-cluster roam. The CB transfer is only used for "intra-cluster" roams and that in other cases no fast handover is possible (i.e. it goes through the whole authentication). 
When a WLC roams to a new AP within the same cluster, the new AP sends a MOVE-notify packet to the old AP. The new AP knows the identity of the WLC from the re-associate request. The old AP responds with a MOVE-response packet containing a CB, which contains the keying material and other secure communications context state used to protect the traffic between the WLC and old AP. These messages are protected using the cluster key and the mechanisms within IAPP under development to protect IAPP messages.

When a WLC roams into a different cluster, for example, on in another building or on another floor of the same building, the transfer of the WLC to an AP in the new cluster requires Serial Authentication. From this, a new set of WLC/AP dynamic keys are derived and used for WLC to AP communications security.
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� There is a shared secret in place between the access point and RADIUS/EAP-TLS server that is used to protect the keying material as it is sent from the RADIUS/EAP-TLS server to the AP.


� It would be advantageous if the RADIUS-EAP-TLS server could send a close-alert message encapsulated within the EAP-Success message to cleanly close off the TLS session. Regrettably, the EAP specification does not allow data within the EAP-Success message. So, the implementations must infer the end of the TLS session by means of the EAP-Success message.
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