July 2001

doc.:IEEE 802.11-01/382r0

IEEE P802.11i
Wireless LANs

Motions to resolve comments on AES algorithms

Date: July 9th, 2001

Authors: Nancy Cam-Winget, Jesse Walker
 Atheros Communications Inc., Intel Corporation
 Phone: 408-773-5317, 503-712-1849 email: nance@atheros.com, jesse.walker@intel.com

Abstract

A motion was passed in the IEEE May meeting to adopt the new OCB algorithm specified in the April 2001 submissions to NIST. New text has been drafted and included as an appendix to this document. The new draft includes Clauses 8.2.3 thru 8.2.3.5. This paper includes motions that address comments in response to TGi’s recent letter ballot 25.

Clarification and reply for comment 1861: NIST’s faq #25 (http://csrc.nist.gov/encryption/aes/aesfact.html) states that AES is exportable requiring a one time review prior to export. For information on the export procedures contact BXA’s Information Technology Controls Division phone (202) 482-0701.

Table 1 Comments concerning export issues

	ID
	Clause
	Pg/Line
	Comment Description
	Suggested Remedy

	1861
	8.2.3.2
	41/24
	Including AES in the specification, given the current export restrictions, may severly limit its use on a global scale and the acceptance of the specification beyond the IEEE 802 group.
	Request a ruling from the US Dept. of Commerce on the export of AES based systems from the United States.

Motion # 1a: Reduce MIC size to 8 bytes.

 Motion # 1b: Supplant IV by replay sequence counter and use the counter as the OCB nonce.

Motion # 1c: Define replay sequence counter field as a 6 byte field: 5bytes of counter space and 1 byte for keyID allocation. However all 6 bytes can be used for the nonce. The nonce shall be 10bytes of 0-pad concatenated with the 6byte field.

Table 2 Comment resolved by Motions 1a, 1b and 1c

	ID
	Clause
	Comment Description

	709
	8.2.3.4
	The overhead introduced (36 octets) is high. In the case of short frames (voice), the security overhead is likely to consume 50% of bandwidth.

Motion # 2: Remove all references to IP statements regarding PMAC, AES and OCB encryption algorithms.

Table 3 Comments resolved by Motion # 2

	ID
	Description

	1298

	This statement about intellectual property claims should be removed

	760
	AES is a public standard sponsored by NIST, and there are no known intellectual property claims associated with it. I don't think this should be included - a reference to NIST information would be more appropriate.

	1340
	I am confused with the statement in clause 8.2.3.1 "AES is a public standard sponsored by NIST, and there are no known intellectual property claims associated with it" and the statement in clause 8.2.3.3 which says that "The University of California at Davis Board of Regents is patenting the OCB mode of operation. Implementors shall obtain a license for this algorithm". Given that the AES mode of operation that is chosen for IEEE 802.11 ESNs is OCB mode, the above two statements seem to contradict with each other.

	1211

	The text states that an OCB license can be obtained from UC Davis. However, Prof. Rogaway's OCB Web page states: "What about patents? This is one of the unresolved issues in the use of OCB, or any of the other authenticated encryption schemes that have been proposed. There are (at least) three parties with IP claims in this domain: Gligor [Univ. of Maryland], IBM, and me [UC Davis]." (see http://www.cs.ucdavis.edu/~rogaway/ocb/ocb-back.htm).

	94
	There is no IP policy received regarding usage of OCB mode.

	1169
	"Implementors shall obtain a license for this algorithm" I'm not sure a technical standard can make this a mandatory requirement.

	763
	The University of California at Davis Board of Regents is patenting the OCB mode of operation. Implementers shall obtain a license for this algorithm. I don't think this should be included - a reference to UC information would be more appropriate. Has the appropriate IP statement been revceived?

	71
	The UC Davis Board of Regents cannot "be patenting" anything. Only the PTO can patent (issue patents). This is a nit, but humor me. The second sentence is stated as a requirement. Since a conformant implementation can be built without a license, this can't be a requirement.

	393
	The statement is made that "The University of California at Davis Board of Regents is patenting the PMAC algorithm. Implementors must obtain a license for this algorithm". Has any attempt been made to obtain an IP statement from UC Davis?

	771
	The University of California at Davis Board of Regents is patenting the PMCA algorithm. Implementers shall obtain a license for this algorithm. I don't think this should be included - a reference to UC information would be more appropriate - see current standard for RC4 text as an example.

	79
	See comment on 8.2.3.3

Motion # 3: Supplant the keyID bits into byte 3, bits 30 and 31 of the IV/Sequence No field in both WEP-N and AES.

Table 4 Comments resolved by Motion # 3

	ID
	Comment Description
	Suggested Remedy

	1049
	It is annoying that the keyID bits wander around depending on the encryption
	Please make the keyID location always bit positions 30:31

	1368
	The definition of the IV/key block in the Expanded WEP Mpdu, although pleasing for the human eye, has the disadvantage that a receiving entity in a MAC controller must have access to the station database to figure out how long the IV/keyId block is. It can't tell a decrypting entity when to start the WEP initialization, thus a decryption must performed after the reception of a complete frame (and a WEP initialization).

	Have the KeyId field in its original (basic WEP) place and have the Encryption algorithm indicator in the KeyId byte. Thus 3 bytes IV, 1 byte with KeyId, EncAlg and pads, 13 bytes IV. The EncAlg can be a single bit that differentiates between short IV block (4 bytes) and long IV block (16 bytes). Then the name of that bit can be changed into ExtIV or something else.

	1374
	Apply the same format to the IV/keyId block as in clause 8.2.2.2

	

	1843
	IV field format should preferably be backwards compatible with 1999 WEP. See also comment 21
	Change lay-out as proposed in comment 21

Motion #4 : Further protect header Addresses 3 and 4 (typically the DA and SA) and QoS Selector field by creating a pseudoheader whose length is a multiple of 16bytes. The pseudoheader is then used as the first j-blocks in of the OCB encipherment and decipherment computation of the MIC.

Table 5 Comments resolved by Motion 4

	ID
	Comment Description
	Suggested Remedy

	1048
	At least some portions of the MAC header MUST be protected by the integrity check algorithm. In particular, the ulti,ate destination (address 3) must be integrity protected. Otherwise there are trivial attacks that will destroy all our good work.
	Create a 16 byte IV for AES that includes address 3 from the frame header.

	591
	Because the MAC header is not protected there may be vulnerabilities. For example, in a man-in-the-middle attack, the attacker could change the Address3 field in the MAC header to a multicast address when forwarding a unicast AES encrypted frame to an AP. This would result in the AP retransmitting the frame as a multicast, which may be a much weaker encryption method (eg WEP) and the key is known to all STAs in the BSS. This exposes the data. Other creative attacks may well be possible.
	Let the MIC cover the MAC header (excluding Retry bit)

Motion # 5: AES in OCB mode is the mandatory to implement encryption mechanism for ESN

Table 6 Comments resolved by Motion 5

	ID
	Comment Description
	Suggested Remedy

	1462
	I think the intent is that for a product to claim in its published literature that it provides ESN, the product must support AES. However, a product which supports only WEP and WEP2 is allowed to set the Enhanced Security Subfield of the Capability Info fixed field, this is not considered "claiming to provide ESN support". For STAs without AES to use WEP2, the STA must be able to set the Enhanced Security Subfield. The difference between "claiming to provide ESN support" and setting the Enhanced Security Subfield should be clarified.

	Add to lines 23-24 the following sentence. "Implementations not supporting AES may set the Enhanced Security Subfield of the Capability Info fixed field to support negotiation of Null Security, Basic WEP, or WEP2 Cipher Suites.

	1167
	"Implementation of the AES algorithm is optional, but any implementation claiming to provide ESN support shall implement it." A station cannot use WEP2 unless it uses ESN to negotiate its use. This statement requires that the station also support AES. If all stations supporting WEP2 are required to support AES, what benefit is WEP2?

	Remove this statement and explicitly permit WEP2 without AES

	1378
	"shall implement it" This will make the installed base of cards with a WEP implementation useless, since it is more likely that cars can be upgraded to WEP2 than to AES
	Assign WEP2 as the mandatory cipher suite for an ESN.

	1841
	"shall implement it" Making AES mandatory for ESN will leave a very large installed base of 802,11 equipment out of ESN networks, as it is unlikely to get firmware updates to support AES, where it is much more likely to get updates to WEP2 on installed base.
	Make WEP2 the mandatory cipher suite.

	720
	" shall implement it" This makes AES mandatory. A very large installed base of 802.11 equipment will not be compliant with this, as it is unlikely to get firmware updates to support AES.
	Make WEP2 mandatory

	1860
	This sentence seems to contradict itself. It states that AES implementation is optional, but implementation is required to claim ESN support.

	Reword paragraph that either AES is mandatory to claim ESN support, or ESN support can be claimed with other cypher algorithms.

	1768
	ESN not effective if AES in OCB mode not mandatory
	Must implement it

	1757
	AES Privacy encryption / decryption is significantly more computationally intensive than WEP or WEP2. Tbe level of computation required tends to preclude the possibility of software-based ("firmware") solutions in current technology that is both low cost and that offers throughput that matches the capabilities of 802.11. It is unclear to the commentor whether NIST considered applications requiring real-time encryption / decryption in selecting AES as a standard, and whether this algorithm is well-suited to the 802.11 privacy application.
	Do one of the following: 1) Change the normative text to indicate that WEP2 is mandatory for implementations claiming ESN compliance, and that AES is optional in this regard. 2) Select another cryptographic algorithm to replace AES in 802.11i 2) Demonstrate that a practical low-cost software-based ("firmware") solution with acceptable throughtput exist. 3) Demonstrate that the additional computational complexity of the AES algorithm is warranted. That is, show that the improved level of security offered by AES Privacy is actually required, and that there are no other encryption / decryption algorithms available that offer a similar level of security and that are computationally less demanding.

	1820
	Does not specify use of AES in OCB mode

	Make mandatory else ESN's will not be secure

	1845
	AES mode needs to be specified
	Specify OCB as the mandatory AES mode.

	1490
	The following sentence is misleading:

“Implementation of the AES algorithm is optional, but any implementation claiming to provide ESN support shall implement it” .
	"Implementation of the AES algorithm is mandatory when providing ESN support."

Comments that are addressed or no longer valid due to adoption of new OCB algorithm; new sections 8.2.3.3.1 thru 8.2.3.5

	ID
	Clause
	Comment Description

	1503
	8.2.3.3
	typo

	1759
	8.2.3.3.1
	All the mathematical symbols used in subsequent subclauses are defined in this subclause except the symbol used for multiplication (".").

	764
	8.2.3.3.1
	Operators ~, o(dot), mask and pad should be defined here too.

	1499
	8.2.3.3.1
	No mention that (.) is the ordinary multiplication operator.

	1170
	8.2.3.3.1
	Don't you just love endianness! "Bit 0 of the first byte of the string being the most significant bit." Do you mean bit 0 of the first byte of the string is the most significant bit of that byte, or the most significant byte of the 128-bit number. 802.11 says: "In figures, all bits within fields are numbered, from 0 to k, where the length of the field is k + 1 bit. The octet boundaries within a field can be obtained by taking the bit numbers of the field modulo 8. Octets within numeric fields that are longer than a single octet are depicted in increasing order of significance, from lowest numbered bit to highest numbered bit. The octets in fields longer than a single octet are sent to the PLCP in order from the octet containing the lowest numbered bits to the octet containing the highest numbered bits." And usage (apart from CRCs) is stricly little-endian

	1501
	8.2.3.3.1
	Wording

	1500
	8.2.3.3.1
	The pre and post whiten operations are an "add" rather than an "xor". This may prohibit the use of FEC since a mangled bit will be more difficult to determine.

	1505
	8.2.3.3.1
	If the encipherment algorithm changes the whitening procedure, the signature probably also needs modification. xor is preferred to allow FEC to perform correction of deciphered bits.

	1408
	8.2.3.3.1
	All operators used in the following sections are defined with the exception of "."

	1449
	8.2.3.3.1
	10^127 should be 1^127_0

	1450
	8.2.3.3.1
	10^127 should be 1^127_0

	1821
	8.2.3.3.2
	OCB mode now obsolete

	73
	8.2.3.3.2
	There is a strange mix of normative and descriptive text in this section.

	765
	8.2.3.3.2
	Input to left-most box should I think be 1^1270

	74
	8.2.3.3.2
	The "dot" notation is not described.

	1206
	8.2.3.3.2
	The picture has an incorrect input string to the left Ek box.

	1303
	8.2.3.3.2
	The text "giving the algorithm its name" is superfluous and confusing and should be deleted.

	1304
	8.2.3.3.2
	The text at the end of the sentence "if it is not already set" is superfluous and should be deleted.

	1305
	8.2.3.3.2
	The text "it shall never be exposed without compromising the security…" is unclear.

	1331
	8.2.3.3.2
	Spelling - intialization

	72
	8.2.3.3.2
	The figure appears to use 10^127 at the left to begin encryption, while the text says to use 1^127 0. Which is correct? Or are these two constant values used for different purposes?

	1173
	8.2.3.3.2
	Figure 9. The encryption process pre- and post-whitens using an addition (modulo 2**128). Is there any reason this can't be an XOR instead? The addition operation for 128-bit numbers is potentially a slower operation because of the need to ripple the carry through so many stages.

	1506
	8.2.3.3.2
	The input to the leftmost Ek box is "10^127" while the text shows "1^127 0".

	1306
	8.2.3.3.2
	Note that the dot operator (R+i.O) is not defined.

	1171
	8.2.3.3.2
	The starting value of 1(to the 127)0 is not as shown in the figure 0 (to the 127) 1.

	1302
	8.2.3.3.2
	Calculation of offset shows use of value 10^(127) but this is inconsistent with text which says 1^(127)0.

	1215
	8.2.3.3.2
	n is used throughout the text of 8.2.3.3.2 in two roles: as a number of blocks of plaintext (almost everywhere), and as number of bits in the word in definitions of Mask and Pad. This can cause a lot of confusion and caused errors in equations on lines 6 and 13.

	1213
	8.2.3.3.2
	The meaning of m in the next equation is unclear.

	1214
	8.2.3.3.2
	Pad m,n(...) in the equation will not work as planned, since n is not related to 128.

	1212
	8.2.3.3.2
	Equation contains an error. Mask m,n (...) will not have the desired effect, since n is not related to 128.

	1172
	8.2.3.3.2
	"Maskm,n(A) means to mask off bits m+1, m+2, …, n" "Padm,n(A) takes an m-bit argument A and produces an n-bit result by prepending n–m–1 zero bits, followed by the bit 1, to A: Padm,n(A) = 0 n–m–1 1A" These appear to be inconsistent. The Pad operation implies that A is at the high numbered (low order) bits. The mask operation implies that the high numbered (low order) bits are masked.

	1770
	8.2.3.3.2
	Description of OCB algorithm obsolete

	1409
	8.2.3.3.2
	The text and Figure 9 are inconsistent * Text uses "1^127 0" on line 6 and line 9 * Figure 9 uses "1 0^127"

	1410
	8.2.3.3.2
	Figure 9 only illustrates the case for a full final block. It would also be informative to have the non full final block illustrated.

	611
	8.2.3.3.3
	Equation for decryption is same as encryption.

	75
	8.2.3.3.3
	This is the first mention of a sequence number in the expanded frame body. The field should be described somewhere earlier than here.

	766
	8.2.3.3.3
	Input to left-most box should I think be 1^1270

	1216
	8.2.3.3.3
	The picture has incorrect input to the left Ek box.

	1219
	8.2.3.3.3
	Errors in equation. n in Mask m,n(...) is a different n from the rest of the equation. Index i is erroneously used in place of n.

	394
	8.2.3.3.3
	Typographical error?!?

	1764
	8.2.3.3.3
	Equation for decryption is same as encryption.

	1217
	8.2.3.3.3
	Error in equation.

	1218
	8.2.3.3.3
	The meaning of m in the next equation is unclear.

	1455
	8.2.3.3.3
	10^127 should be 1^127_0

	1411
	8.2.3.3.3
	The whitening expressions on line 4 and line 5 are missing the dot operator

	1412
	8.2.3.3.3
	Typo

	1504
	8.2.3.4
	This figure, and the associated text, should probably come before the algorithm specifics found in 8.2.3.3.1

	709
	8.2.3.4
	The overhead introduced (36 octets) is high. In the case of short frames (voice), the security overhead is likely to consume 50% of bandwidth.

	1375
	8.2.3.4
	correct the word: comminication

	1175
	8.2.3.5.1
	O = AES_EncryptK(0 128) �É0 127 1 Compare with page 43 line 9: "O = AES_EncryptK(1 127 0) �É0 127 1" Are these differences significant or historical?

	1465
	8.2.3.5.1
	Equation does not seem to include pre-whitening.

	1222
	8.2.3.5.1
	Definition of Pad() uses n both as a number of plaintext blocks and number of bits in a block (128).

	1220
	8.2.3.5.1
	The picture contains an extraneous arrow between first and second Ek boxes on the left.

	1507
	8.2.3.5.1
	The duration also needs to be masked to hide changes caused by retransmission at different rates.

	1417
	8.2.3.5.1
	The equation on line 15 and Figure 12 are inconsistent

	1309
	8.2.3.5.2
	Use of Association request/response for key derivation It seems unnecessary to store the entire association message for this purpose, especially as the length is not known due to possible additional elements that might be present in some implementations. Therefore it is proposed that the text to be signed using PMAC be created by concatenating the Nonce value with the source and destination MAC addresses. This means that the length of the text is known and the only value that need to be cached is the Nonce value.

	1177
	8.2.3.5.2
	Does "frame" here mean MPDU? I.e. is the counter incremented per MPDU or per MSDU?

	81
	8.2.3.5.2
	There are up to four keys used for encrypting multicast frames, identified by the KeyID bits. Also, include the sequence number to eliminate differences in fraem handling based on the address.

	775
	8.2.3.5.3
	If the MIC is invalid, the data has been altered, so the MAC shall discard the frame without further processing. Is there no MIB counter for discards?

	1182
	8.2.5.3.5
	If the MIC is invalid, the data has been altered, so the MAC shall discard the frame without further processing. Is there no MIB counter for discards?

	2244
	8.2.3.5.3
	A MIB counter for the number of sequence numbers that were too old and a MIB counter for the number of frames already received separate from the aFrameDuplicateCount should be added.

	1180
	8.2.3.5.3
	General comment applies to encapsulation and decapsulation: Does the sequence number need to be replicated for each 802.11e (Q) traffic class? What other state of the 802.11e (S) modifications is affected by multiple traffic classes and the resulting re-ordering of MSDUS of the MAC UNIDATA service?

	1912
	8.2.3.5.3
	The text fails to note any auditable events, allowing blatant attacks to go undetected

	1911
	8.2.3.5.3
	The lack of counter updates allow attacks to go undetected and make trouble-shooting more difficult

	1910
	8.2.3.5.3
	A new IV mechanism is needed to obtain the benefits of OCB mode

Motion to accept the following comments as editorial comments

	ID
	Clause
	Pg/Line
	Comment Description
	Suggested Remedy

	1297
	8.2.3.1
	40/14
	The text at the end of the sentence "in addition to RC4" is superfluous and confusing and should be removed.

	Delete the text

	1210
	8.2.3.1
	40/17
	Incorrect key size: 196 bits. Same typo on line 19
	Change to 192.

	1491
	8.2.3.1
	40/25
	"may be required" inappropriate in standard. paragraph ends with incomplete
	change "required" to "desirable". Finish sentence.

	761
	8.2.3.1
	40/25
	Note that implementations supporting AES may also support Basic WEP or WEP2. This may be required because in general it will be infeasible to upgrade all Basic WEP or WEP2 devices to AES at a once, so earlier, relatively insecure services will be required for multicast communication until the entire ESN

	Complete sentence

	1701
	8.2.3.1
	40/25
	This para is vague and has a completely mangled sentence. Standard does not have to talk about field upgrade issues unless the standard is providing an explicit solution to it in the form of frame formats or operational description
	remove the paragraph

	1679
	8.2.3.1
	40/25
	This para is vague and has a completely mangled sentence. Standard does not have to talk about field upgrade issues unless the standard is providing an explicit solution to it in the form of frame formats or operational description
	remove the paragraph

	1562
	8.2.3.1
	40/25
	This para is not clear. Does this cause any change to frame formats or operational description?

	remove the paragraph

	1299
	8.2.3.1
	40/27
	Change "earlier relatively insecure services" to "earlier less secure services" since "insecure" is undefined

	Change "earlier relatively insecure services" to "earlier less secure services" since "insecure" is undefined

	780
	8.2.3.1
	40/27
	Something seems to be missing from the end of this sentence. It leaves you...
	Finish the sentence.

	1604
	8.2.3.1
	40/27
	Incomplete sentence "until the entire ESN."

	modify to ".... until the entire ESN can be upgraded."

	1371
	8.2.3.1
	40/27
	The last sentence is not complete
	add to the sentence: is upgraded.

	1448
	8.2.3.1
	40/25
	This paragraph is confusing and doesn't finish in a complete sentence.
	Reword the paragraph for clarity

	1300
	8.2.3.2
	41/16
	The first sentence "The AES performance…" is strange and does not contribute - should be deleted

	Delete Sentence

	389
	8.2.3.2
	41/17
	The first sentence "The AES performance…" is strange and does not contribute - should be deleted

	Include the explicit normative reference.

	1498
	8.2.3.2
	41/23
	Grammer
	"...parallelizable, so it can exploit all..."

	762
	8.2.3.2
	41/31
	Optionality This is not a property of AES - remove.

	Remove

	1301
	8.2.3.2
	41/31
	This paragraph is superfluous and should be deleted.
	Delete paragraph

	388
	8.2.3.2
	41/7
	Typographical error.
	Replace word "cryptanlysis" with "cryptanalysis".

	1168
	8.2.3.2
	41/2
	"Very Strong." Pride cometh before a fall

	Remove "Very".

	1758
	8.2.3.3
	41/37
	The NIST AES algorithm specifies 10 iterations, while the 802.11i draft specifies 12 iterations.
	Change "AES iterates over the data 12 times" to "AES iterates over the data 10 times"

	718
	8.2.3.3
	42/10
	Wrong tense
	Replace "refer" with "refers"

	1002
	8.2.3.3
	42/10
	Wrong tense
	Replace "refer" with "refers"

	391
	8.2.3.3
	42/16
	Grammatical error.
	Remove the word "an" in the statement "...mode is also a very an efficient construction, ..."

	1373
	8.2.3.3
	42/16
	Remove _an_ from: mode is also a very an efficient....
	Remove _an_ from: mode is also a very an efficient....

	1453
	
	
	"Then then compute...." has a repeated word that needs to be deleted
	

	1454
	
	
	"revered" should be "reversed"
	

	1466
	
	
	"network byte order" is not a defined term.
	

Motion to respond to comment 2298:

There is no definition of "association key". How is the association key found?

by defining this as the unicast key configured by Upper Layer Authentication, and that Upper Layer Authentication configures all keys for the AES algorithm.

Motion to resolve to comment 1174:

I thought the AES used the same key for encryption and decryption. This being the case, one man's transmit is another man's receive. So does the "transmit" and "receive" key also need to be qualified with the role of the station regarding the authentication (i.e. I was supplicant)?

by responding that the author is correct, but the text being commented on is unclear, and will be resolved by adopting the language

The derived keys are per-association, and a different key is derived for each direction of the association.

Motion to respond to comment 2235

Should frame be ACKnowledged before it is discarded if it is unicast to prevent the sending station from retransmitting it?

by adopting language

The AES Algorithm architecturally lies above the MAC retry function. This is required since an MDSU may be accepted by the local MAC but its acknowledgement lost in transit to the peer. If the MAC were to lie below the MAC retry function, then it would be impossible to recover from this state, as the replay protection function would discard all further retries.

Motion to respond to comment 78

There is no description of how keys are dervice or used for multicast frames.

by adopting the text:

The IEEE 802.11 AES algorithm uses multicast/broadcast keys directly, without any key derivation step.

Motion to respond to comment 1771

Need to support multicast, current references specify unicast support only

by noting this is not true.

Motion to respond to comment 612

The key derivation procedure does not account for ad-hoc BSS

and to comment 1765

The key derivation procedure does not account for operation in an IBSS.

and comment 1179

Doesn't the receiver need to keep separate unicast and broadcast sequence numbers for each peer address? i.e. there is not a single multi/broadcast state as implied here.

by responding this is not true, but that Tgi must specify that use of the (Re)associate messages are mandatory in an IBSS that implements the AES algorithm:

It is impossible to detect when the entropy of a key has been completely consumed without coordinating sequence spaces. Similarly, the replay protection mechanism requires that peers exchange synchronize the beginning of their key usage. Since 802.11 uses (Re)associate messages for these function, an IBSS desiring security must implement (Re)associate messages. It is naïve to believe that cryptographic mechanisms can provide any guarantees of any sort without these exchanges.

Motion to respond to comment 1307

The text "…does not use any unicast keys it is presented with" is unclear

by including the text

The IEEE 802.11 AES algorithm does not directly use the unicast keys Upper Layer Authentication configures the unicast key to use.

Motion to respond to comment 1308

"per-link" should be "per-association"

and to comment 768

per link should be per association

by accepting the language “per-association”.

Motion to respond to comment 769

So there should be a new status code for association response that relates to a missing nonce element?

by adding a new status code to report this condition as a status code defined in clause 7.3.1.9.

Motion to respond to comment 770

Previous text led me to believe that just the nonce element contents would be used for key derivation. This text seems to imply that the whole frame is used is this caching of the whole frame necessary?

and to comment 2237

Are the entire Association Request and Response frames used? Ie MAC header upto and including the FCS or just the MAC header and data fields?

by adopting the text

The unicast key derivation algorithm performs fourth functions. First, it protects all the fields extracted from the (Re)associate messages utilized to establish the association from undetected modification by an adversary. Second, assuming the Nonce Elements convey random data, it randomizes the keys actually used to protect the association data traffic, thereby making it unlikely that any key will ever be reused across different associations. Third, providing different keys for each direction of traffic flow protects each party from reflection attacks, where an adversary plays back a STA’s messages to itself. Finally, it “stretches” the entropy of the underlying association key, so that very low cost systems can maintain reasonable security guarantees without requiring frequent manual rekeying.

Motion to respond to comment 773:

I think sequence number is distinct from the current 802.11 sequence number used for duplicate detection. It might be worth saying so and also specifying the behaviour over retransmissions.

by addressing this as part of the update from the preliminary to the final OCB algorithm.

Motion to respond to comment 80:

The algorithm must not vary because of what address might be in the frame.

and to comment 772

The algorithm varies slightly for unicast and muilticast/broadcast should be The algorithm varies slightly between unicast and muilticast data frames The restriction to data frames needs to be applied elsewhere in this section too.

by addressing this as part of the update from the preliminary to the final OCB algorithm. In particular, it is necessary to add the following explanatory text:

Notice that a broadcast/multicast receive context maintains no replay window. This is because it is in principle impossible to detect broadcast/multicast replays using symmetric key techniques. In particular, any party holding the broadcast/multicast key can masquerade as any other member of the group, so can intrude on another’s sequence space without detection.

Motion to respond comment 2299

How does the STA get the multicast/broadcast encryption key?

by modifying the syntax of SetKeys to permit Upper Layer Authentication to distinguish multicast and unicast keys.

Motion to address comment 1178

The requirement to re-associate when the sequence-number wraps requires additional service primitives out of the MLME into the SME.

and comment 399

The statement is made that if the sequence number reaches 2^32-1 the association shall be rekeyed. I believe the actions required of the peer who originally initiated the association are clear, but what does the other peer do with any data it might receive from this peer, or be required to send, in the meantime? The actions of the non-initiating peer are not clear when this occurs, but the concern here is that QoS data would stop being sent until a rekey occurs.

and comment 774:

The peer who originally initiated the association shall initiate the reassociation. Is this not always the STA?

by adopting a new service primitive for this purpose, and to define new management frames for exchanging nonces for the purpose of deriving new association keys, and to request and distribute broadcast/multicast keys.

Motion to address comment 1418

The paragraph starting on line 37 mostly describes a particular implementation. It should actually describe the requirements, possibly with implementation hints as notes

and comment 1377

The replay window mechanism is hard to understand.

by moving the description of the replay window from normative text into implementation hints.

Motion to address comment 1511

The procedure leaves undefined the exact procedure for terminating the association that has used its key too long.

be addressed in part by the transition from the preliminary to the final OCB algorithm, and in part by delegating it to upper layer authentication.

Motion to reclassify the following as editorial:

comment 1453

"Then then compute...." has a repeated word that needs to be deleted

1454: "revered" should be "reversed"

1466: "network byte order" is not a defined term.

Motion to seek further clarification on following comments prior to comment resolution:

2236: Will ESTAs in the QOS draft be required to go through an upper layer association with every other ESTA that it wants to talk to directly while in HCF operation?

Appendix: New text to replace sections 8.2.3 thru 8.2.3.5

8.2.3 Advanced Encryption Standard (AES) Privacy

8.2.3.1 Introduction

The Advanced Encryption Standard (AES) algorithm has been adopted as an option for providing wired equivalent privacy. The AES algorithm defines the NIST standard for block ciphers. The IEEE 802.11 uses the AES algorithm in OCB mode.

The AES encryption algorithm is based on the iterated block cipher Rijndael. This cipher has both a variable length key and block size. AES keys can consist of 128, 192 or 256 bits. The NIST standard, however, specifies the use of 128-bit blocks only, even though the Rijndael algorithm itself can support 128, 192, and 256 bit blocks. 802.11 restricts the use of AES further by using only 128-bit keys with the cipher.

Implementation of the AES algorithm is optional, but any implementation claiming to provide ESN support must implement it.

Note that implementations supporting AES may also support Basic WEP or WEP2. This may be desired because in general it will be infeasible to upgrade all Basic WEP or WEP2 devices to AES at first. Thus, during early adoption of ESNrelatively less secure services will be required for multicast communication until the entire ESN can upgraded.

The above paragraph should be updated to reflect the ESN compliance definition.

8.2.3.2 Properties of the AES algorithm

The AES algorithm has the following properties:

Strong:
AES is believed to be as strong as any symmetric key cipher in commercial use today. The algorithm models a pseudo-random permutation of its underlying block space very well, which affords it the security properties claimed. The AES block size makes birthday attacks against the cipher computationally infeasible. The round structure and the mixing transformations of the algorithm render it immune to linear and differential cryptanalysis. Unlike RC4, the algorithm has no known weak keys.

When used in OCB mode, AES provides data integrity as well as data privacy. This protects AES-based WEP against data modification attacks to which both Basic WEP and WEP?? are vulnerable.

Self Synchronizing:
AES is only used in a self-synchronizing mode, OCB mode. This property is critical for a data-link level encryption algorithm, where "best effort" delivery is assumed and packet loss rates may be high.

Efficient:
 The AES algorithm can be more efficiently implemented across a wider range of hardware platforms than other block ciphers, and may be efficiently implemented in both hardware and software. Great parallelism is possible in both hardware and software. The AES key schedule computation is considerably more efficient than most other symmetric key ciphers, allowing keys to change frequently. This latter property makes AES especially suitable for network communications. The OCB mode is highly parallelizable, so it can exploit all of the performance available from the basic AES cipher.

The specification (at least this section) does not need to specify exportability issues per se. Though, to answer this issue, there is a reference in the AES (NIST) fact sheet to address this. It is question/fact number 25 in http://csrc.nist.gov/encryption/aes/aesfact.html
8.2.3.3 AES theory of operation

AES is a symmetric key iterated block cipher. Symmetric key means it uses the same key to encrypt and decrypt data. Iterated means it applies the same data transformation over and over again to encrypt or decrypt data; 128-bit AES iterates over the data 10 times. A block cipher encrypts or decrypts a well-defined number of bits only; in the case of AES, this is 128-bits

The AES algorithm, like any block cipher, must be used with a mode of operation. A mode of operation is an algorithm employing the cipher to produce a stream of ciphertext from a stream of plaintext. The most naïve way to use AES is in Electronic Code Book (ECB) mode, whereby each block of plaintext is encrypted to ciphertext directly using a key. However, ECB mode is known to be insecure, as the same data encrypted under the same key always produces the same ciphertext; this can be used to easily break the cipher and obtain the key. Thus, block ciphers like AES are normally used only with other modes of operation.

Encryption provides a data privacy function only. In particular, it does not afford any protection against data modification. To provide data integrity requires the use of a data integrity mechanism. The standard way to accomplish this is to compute a tag, in the literature called a Message Authentication Code, using a keyed cryptographic function. The code is transported with the data over an unprotected channel with the data it protects, and its value verified by the receiver, using the same key with the cryptographic function. Since 802.11 already uses the acronym MAC for something other than a Message Authentication Code, this specification deviates from established practice and refers to such a code as a Message Integrity Code, or MIC.

The AES mode of operation chosen for IEEE 802.11 ESNs is Offset Codebook, or OCB, mode. OCB mode was designed for use with any block cipher, and is an efficient construction providing both data privacy by encrypting the underlying data stream and message integrity by computing an associated MIC. OCB mode provides both functions using a single pass over the data, using a single key. It is highly parallelizable. OCB mode is also a very efficient construction, in that it requires n+1 encryptions per n-block data element to both encrypt and add the MIC; similarly, it takes only n+1 decryptions to decrypt the data and verify its integrity. This is known to be optimal, i.e., the very best that is theoretically possible.

8.2.3.3.1 Notation

In the following algorithm descriptions utilizes the notation an to mean the bit value a repeated n times.

The notation a (b denotes the exclusive or (XOR) of the bitwise values of a and b.

The notation |a| denotes the bit length of a

The notation a (x denotes a GF(2128) or finite field multiplication of point a with x. This is best described as:

[image: image1.wmf]î

í

ì

=

=

Å

<<

<<

=

·

1

)

(

0

)

(

10000111

0

)

1

(

1

120

a

firstbit

a

firstbit

a

a

x

a

The notation a (x-1denotes a GF(2128) or finite field division of point a by x. This is best described as:

[image: image2.wmf]î

í

ì

=

=

Å

>>

>>

=

·

-

1

)

(

0

)

(

1000011

10

)

1

(

1

120

1

a

lastbit

a

lastbit

a

a

x

a

The notation ntz(a) denotes the number of trailing zero bits in the binary representation of a (alternately, it is defined as the largest integer x that 2x divides a)

AES_EncryptK(S) means to AES-encrypt the symbol S under the 128-bit key K. Similarly, AES_DecryptK(S) means to AES-decrypt the symbol S under the 128-bit key K.

8.2.3.3.2 OCB mode encipherment
OCB is 802.11 ESN’s mode of operation for AES. The OCB algorithm employs the AES block cipher to achieve both data privacy and integrity using one shared key, K and a single nonce. In OCB mode, the nonce need not be pseudorandom, the only constraint in the use of the nonce is that it must never be reused with the same key, K. This relaxation allows us to use replay sequence counter as part of the nonce. The replay counter is a 5byte counter that is use to further prevent replay attacks. A full description of how the replay counter is used follows in section 8.2.3.5.3. A full description for the nonce composition is described in section 8.2.3.5.3.3.

[image: image3.wmf]AES

Nonce

Composition

Offset

0

L

K

 AES

M

m

K

Offset

m+1

Offset

m+1

L

ntz(m+1)

Bit Length

L

-1

Pad

AES

M

1

K

Offset

1

Offset

1

Offset

1

L

1

AES

M

m-1

K

Offset

m

Offset

m

Offset

m

L

ntz(m)

AES

M

2

K

Offset

2

Offset

2

Offset

2

L

2

K

AES

AssociatedData +

M

1

 +

...+ M

m-1

 + Zm + C

i

0*

Offset

m+1

Prefix

128bit MIC

Z

m

Replay Counter C

1

 C

2

 C

m-1

 C

m

 MIC

Figure 1AES Encipherment Block Diagram

Referring to Figure 1 and following from left to right and top to bottom, encipherment begins with a key K that has been distributed to cooperating stations by an external key management service.

The algorithm begins by partitioning the plaintext data into m 128-bit blocks, {M1, M2, …, Mm} where

[image: image4.wmf]ú

ú

ù

ê

ê

é

=

128

M

m

The number of blocks to be encrypted, m, also determines how big the offset codebook must be : (log2 m (. The offset codebook, L, is used to compute the Offset value used in the encryption process. Once the key has been distributed, it is used to encrypt a 128-bit zero string (0128) to produce the first entry of the offset codebook, L:

L[0] = AES_EncryptK(0128)

The remaining entries in the offset codebook are derived from L[0] by applying a finited field multiplication:

For i=1 to (log2 m (L[i] = L[i-1] (x

and L[-1] = L[0] (x-1
On each use of OCB mode, a unique Nonce value must also be selected. This means that an 802.11 ESN-capable implementation must provide a new Nonce for each frame it encapsulates. As is typical in many encryption algorithms, the Nonce is a value that is used to perturb the encipherment to ensure both data privacy and integrity. As the 802.11 ESN implementation of AES is restricted to 128bit blocks, so shall the Nonce be a 128bit value. The Nonce is composed of the replay counter, the source MAC address and if specified, the QoS selector field. The composition of the Nonce if fully described in section 8.2.3.5.3.3. In OCB mode, the Nonce value is used during initialization to compute the first offset value for encryption:

Offset0 = AES_EncryptK (Nonce (L[0])

The Offset value is used to both pre-whiten and post-whiten data as part of the encryption process. The initial Offset0 value is used to compute the subsequent offsets used in the encipherment of the ciphertexts Ci:

Offseti = Offseti-1 (L[ntz(i)]

We can now describe how to encrypt the data to be protected and then how to compute the MIC.

As stated earlier, OCB mode encryption begins by partitioning the data into m 128-bit blocks. Let M1, M2, …, Mm denote the data blocks of data. Block i for i = 1, 2, …., (m – 1) is transformed into ciphertext, Ci, by pre-whitening the block with Offset by xor’ing the two values together, then AES encrypting the result under the key K and then post-whitening the encrypted result with the same Offseti:

Ci = AES_EncryptK(Mi (Offseti) (Offseti
Since not all data frames are exact multiples of 128 bits, the last block is treated differently to account for its true block length. Rather than pre-whitening the last block Mm , its bit length is xor’ed with both L[-1] and Offset then AES encrypted. The first | Mm| bits of the resulting encryption is then xor’ed with the block, Mm to arrive at the last ciphertext block, Cm .

The last ciphertext block, Cm, is computed by first AES encrypting the pre-whitened bit length of the last block Mm and then post-whitening the encrypted result. The pre-whitening is achieved by xor’ing the bit length of block Mm , L[-1] and Offsetm. The post-whitening is achieved by xor’ing the last block, Mm and the first | Mm | bits of the encrypted result. Thus the last ciphertext block is

Zm = AES_EncryptK (| Mm | (L[-1] (Offsetm)

Cm = Mm ((the first | Mm | bits of Zm)

Note that the last ciphertext block, Cm is also the same bit length as its corresponding data block Mm.

The MIC is computed from the plaintext, the encrypted pre-whitened last block length (Zm), the last ciphertext bock, Ci and Offsetm. To fully authenticate each data packet, the Associated Data block is also xor’ed into the MIC. The AssociatedData block is a block composed of the destination address provided in the frame header. Section 8.2.3.5.3.4 fully describes how the Associated Data block is constructed. The MIC is computed by AES encrypting the xor of Associated Data, data blocks M1 thru Mm-1, Zm , Ci and Offsetm

MIC = AES_EncryptK (AssociatedData (M1 (M2 (….(Mm-1 (Zm (Cm0* (Offsetm+1)

Where Cm0* denotes the padding of the last ciphertext block, Cm with zeroes to comprise a full 128bit block. The above computation of the MIC results in a full 128 bit integrity check value which must then be truncated to 64 bits. That is to say, for the 802.11 ESN implementation of OCB, only the first 8 bytes of the above MIC will be sent in the frame.

8.2.3.3.2 OCB mode decipherment

[image: image5.wmf]AES

Nonce

Composition

Offset

0

L

K

 AES

M

m

Offset

m+1

Offset

m+1

L

ntz(m+1)

Bit Length

L

-1

K

AES

Offset

m+1

Prefix

128bit MIC

M

1

K

Offset

1

Offset

1

L

1

Offset

1

AES

-1

M

2

K

Offset

2

Offset

2

Offset

2

L

2

AES

-1

M

m-1

K

Offset

m

Offset

m

L

m

Offset

m

AES

-1

AssociatedData +

M

0

 +

...+ M

m-1

 + Z

m

+ C

i

0*

K

Z

m

Pad

Replay Counter C

1

 C

2

 C

m-1

 C

m

 MIC

Tag

==

MIC

?

Tag

Figure 2 AES Decipherment Block Diagram

Referring to Figure 2 and following from left to right and from top to bottom, decipherment begins with a key K that has been distributed to cooperating stations by an external key management service. The decipherment algorithm basically reverses the encipherment process. The data is first decrypted, then the MIC is checked and finally, the sequence number is checked.

Initialization is the same as encipherment. The ciphertext block Ci, where i=1, 2, ….m-1 is transformed into data block Mi by unpost-whitening the block with Offseti , and un-postwhitening the decrypted unpost-whitened result.

is transformed into plaintext block Mi, by unpost-whitening the block with Offseti by xor’ing the two values together, then AES decrypting the result under the key K and the unnre-whitening the decrypted result with the same Offseti:

Ci = AES_DecryptK(Mi (Offseti) (Offseti

As the last plaintext block was treated differently in encipherment, the transformation reflects similar steps to recover the plaintext data. The last plaintext block, Mm, is computed by first AES encrypting the pre-whitened bit length of the last block Cm and then post-whitening the encrypted result. The pre-whitening is achieved by xor’ing the bit length of block Cm , L[-1] and Offsetm. The post-whitening is achieved by xor’ing the last block, Cm and the first | Cm | bits of the encrypted result. Thus the last plaintext block is

Zm = AES_Decrypt(| Cm | (L[-1] (Offsetm)

Mm = Cm ((the first | Cm | bits of Zm)

Once the message is decrypted, the MIC can be computed based on both the Associated Data block and the deciphered plaintext. The computed MIC can be checked against the one provided in the frame. In this case, only the first 8bytes (e.g. 64bits) are compared. If the two do not match, then the message has been altered in transit; if the two match, then it is extremely unlikely (1 chance in 2128) for the message to have been altered.

8.2.3.4 AES MPDU expansion

[image: image6.wmf]

Data

(PDU)

>=1

MIC

8

Note: The encipherment process has expanded the original MPDU by 16 Octets, 6 for the replay counter field,

and 8 for the Message Integrity Check (MIC). A

s the Replay counter field is also used as the Nonce, it replaces

what has been known as the IV field. However, bits 30 and 31 of the Replay Counter are overwritten by the

keyed bits. The MIC is calculated on the Data fields only.

Encrypted

(Note)

Replay

Counter

6

KeyID

Bits

 30:31

Replay Sequence No

Figure 3 Construction of expanded AES MPDU

Figure 3 shows the encrypted MPDU as constructed by WEP when using the AES algorithm as specified in the next section.

The AES mechanism is invisible to the entities outside the 802.11 MAC data path.

8.2.3.5 AES algorithm specification

The 802.11 AES algorithm consists of three parts: a key derivation procedure, an encapsulation procedure, and a decapsulation procedure. It is based on 128-bit AES in OCB mode.

The three steps are utilized as follows:

a) When an association is established, Upper Layer Authentication assigns an association key K. Once this is done, the 802.11 MAC uses the key derivation algorithm to derive the unicast keys from the (Re)associate Request and Response and the association key K. This will produce transmit and receive keys for both parties in the association. The transmit key of one party becomes the receive key of the other, and vice versa.

b) Once the transmit key has been derived, the 802.11 MAC uses the encapsulation algorithm with the transmit key to protect all unicast MDSUs it sends over the association.

c) Once the receive key has been derived, the 802.11 MAC uses the decapsulation algorithm with the receive key to decapsulate all unicast MDSUs it receives over the association. Once the keys are known to be established by both association peers, the MAC discard any MDSUs received over the association that are unprotected by the encapsulation algorithm.

Upper Layer Authentication may also assign a broadcast/multicast key. The implementation uses this key as configured, without derivation. Once this is established, the MAC treats it just as a derived key: it utilizes the to protect all broadcast/multicast MDSUs it sends, and discards any broadcast/multicast MDSUs received that are not protected by this key.

The data overhead of the AES algorithm is 14 bytes with this construction. This includes a 5-byte replay counter, the single KeyID byte inherited from WEP, and a 64-bit Message Integrity Code (MIC) used to detect forgeries.

Note 1. The AES Algorithm assumes Upper Layer Authentication. The AES Algorithm may employ statically configured keys if the Upper Layer Authentication implementation supports these, but how this is accomplished is an implementation question outside the scope of this specification.

Note 2. It is impossible to detect when the entropy of a key has been completely consumed without coordinating sequence spaces used for the replay counters. Similarly, the replay protection counter requires that peers exchange random data utilized by key derivation to synchronize the replay counter. In addition, peers must somehow exchange knowledge of when the replay counter will exceed its sequence space. Since 802.11 uses (Re)associate messages for this function, an IBSS desiring security must implement (Re)associate messages. It is naïve to believe that cryptographic mechanisms can provide any guarantees of any sort without these exchanges.

Note 3. The AES Algorithm architecturally lies above the MAC retry function. This is required since an MDSU may be accepted by the local MAC but its acknowledgement lost in transit to the peer. If the MAC were to lie below the MAC retry function, then it would be impossible to recover from this state, as the replay protection function would discard all further retries.

8.2.3.5.1 AES algorithm key derivation

The IEEE 802.11 AES algorithm does not directly use the unicast keys. Upper Layer Authentication configures the unicast key to use. This unicast key configured by Upper Layer Authentication is called the association key. The 802.11 MAC derives the unicast keys it actually uses over the association from the configured association key. The key derivation algorithm is applied to all unicast keys, regardless of whether they were distributed manually or by some automated key management technique; how Upper Layer Authentication obtained the key it configures is outside the scope of the AES algorithm. Note also that the 802.11 MAC derives AES keys, regardless of any derivation procedures employed by Upper Layer Authentication.

The key derivation algorithm uses the 802.11 Associate or Reassociate Request and Response messages establishing the association. These messages must include Nonce Elements when the AES algorithm is used. It is a protocol error to use the AES algorithm without including Nonce Elements in the Associate or Reassociate messages establishing the association. The derivation procedure also includes the MAC addresses of the association peers in the computation, so the derived keys are tied to communication between a particular pair of 802.11 systems.

The derived keys are per-association, and a different key is derived for each direction of the association.

The IEEE 802.11 AES algorithm uses multicast/broadcast keys directly, without any key derivation step.

The key derivation algorithm uses the AES-128-CBC-MAC algorithm. Denote the CBC-MAC of a text string A under the key K by CBC-MACK(A). This quantity is defined by the algorithm for half-duplex channel comprising the association.

CBC-MACK(A):

partition A into 128-bit blocks A = A1 || … || An–1 || pad(An)

IV0 (0128
for I = 1 to n–1 do

IVi (AES_EncryptK(Ai (IVi–1)

the result is AES_EncryptK(pad(An) (IVn–1)

That is, the algorithm begins by partitioning A into a sequence of n concatenated 128-bit blocks A1 || … || An–1 || pad(An), padding the last block with trailing zero bits as necessary to extend it to the full 128-bit block size; the notation “||” denotes the concatenation operator. Next the algorithm creates an all-zeros initialization vector IV. The Algorithm XORs the IV with each block A1 … An–1 pad(An) in succession to compute the next IV, finally returning the last IV as its result.

Appendix ?? provides test vectors and results that can be used to verify the correctness of the CBC-MAC implementation used to derive association unicast keys.

To derive the AES Algorithm association unicast keys from the association key K, first concatenate the following fields from the (Re)associate messages used to establish this association, in the order specified:

a) the MAC address MACI from the initiating STA’s (Re)associate request message;

b) the MAC address MACR from the responding STA’s (Re)associate response message;

c) the Nonce Element NI from the initiating STA’s (Re)associate request message;

d) the Nonce Element NR from the responding STA’s (Re)associate response message;

e) if present, the ASE ASEI from the initiating STA’s (Re)associate request message;

f) if present, the ASE ASER from the responding STA’s (Re)associate response message;

g) if present, the UCSE UCSEI from the initiating STA’s (Re)associate request message;

h) if present, the UCSE UCSE from the responding STA’s (Re)associate response message;

i) if present, the UCSE UCSEI from the initiating STA’s (Re)associate request message; and

j) if present, the UCSE UCSE from the responding STA’s (Re)associate response message:

C = MACI || MACR || NI || NR || ASEI || ASER || UCSEI || UCSER || MCSEI || MCSER
Then compute the per-association unicast key from the initiating STA to the responding STA as the CBC-MAC of the concatenation of this string C and the byte value 0x01:

STAInit-to-STAResp-Key = CBC-MACK(C || 0x01 || 0-pad)

To properly compute the STAInit-to-STAResp-Key, the CBC-MAC algorithm must take an input stream that is a multiple of 16 bytes. Thus, the concatenation of C and 0x01 must be followed with the required number of 0x00 bytes to padding the stream into a 16 byte multiple stream.

Thus, this is the requestor’s transmit key and the responder’s receive key. Similarly, compute the key to protect unicast traffic from the responding STA to the initiating STA as the CBC-MAC of the concatentation of this string C and the byte value 0x02:

STAResp-to-STAInit-Key = CBC-MACK(C || 0x02 || 0-pad)

Like the STAInit-to-STAResp-Key derivation, the STAResp-to-STAInit-Key computation may have to pad it’s input stream to force it to be a 16-byte multiple.

This derives the responding STA’s transmit key and the initiating STA’s receive key.

The unicast key derivation algorithm performs four functions. First, it protects all the fields extracted from the (Re)associate messages utilized to establish the association from undetected modification by an adversary. Second, assuming the Nonce Elements convey random data, it randomizes the keys actually used to protect the association data traffic, thereby making it unlikely that any key will ever be reused across different associations. Third, providing different keys for each direction of traffic flow protects each party from reflection attacks, where an adversary plays back a STA’s messages to itself. Finally, it “stretches” the entropy of the underlying association key, so that very low cost systems can maintain reasonable security guarantees without requiring frequent manual rekeying.

CBC-MAC is known to be a secure construction when the underlying block cipher is secure.

8.2.3.5.2 Transmit State

Each conformant 802.11 system implementing the AES Algorithm must maintain the following unicast transmit state for an association:

a) the derived association transmit key or its key schedule, as specified above in Clause 8.2.3.5.1; the implementation must use this to protect all unicast MSDUs this STA sends over this association;

b) a 40-bit replay counter for each QoS service class utilized by this association; the implementation uses each of these to construct unique per-MSDU nonces. The value of each replay counter of the state must be set to zero when the corresponding transmit key is derived; and

c) a 48-bit counter 802dot11SentAesBlocks, to count the total number of blocks protected by the association transmit key and AES algorithm across all QoS service classes, initially set to zero. The implementation must use this to limit the total number of blocks that may be protected by a single key.

This state is called the STA’s transmit unicast context for this association.

The broadcast/multicast transmit state a conformant implementation must maintain is similar, with the BSS broadcast/multicast key replacing the association transmit key, viz.,

a) the configured BSS broadcast/multicast key or its key schedule; if configured, the implementation must this use to protect all broadcast/multicast MSDUs this STA sends within this BSS;

b) a 40-bit replay counter for each QoS service class utilized with broadcast/multicast transfers in this BSS; this is used to construct the per-MSDU nonce; unlike unicast MSDUs it is not used for replay protection. The value of each replay counter of the state is set to zero when the corresponding transmit key is derived; and

c) a 48-bit counter 802dot11SentAesBlocks, to count the total number of blocks protected by the broadcast/multicast key across all QoS service classes, using AES algorithm, and initially set to zero. This is used to place an absolute upper bound the total number of blocks that this STA may protect by the key.

This state is called the STA’s broadcast/multicast context. This specification refers to either state as transmit context or simply context when there is no ambiguity.

As an implementation note, it is computationally more efficient to compute and maintain the AES-OCB key schedule rather than save the key itself. Unlike WEP, the key schedule need be set up only once per association, not on every MSDU.

8.2.3.5.3 Transmit Encapsulation

The steps to encapsulate data for transmission are the following:

a) Select the appropriate context based on the MSDU;

b) Increment block count and the appropriate replay counter, based on the MSDU service class;

c) Construct the OCB nonce using the replay counter, MSDU service class, and source MAC address;

d) Construct an associated data block from the destination MAC address;

e) AES-OCB encrypt the MSDU and associated data

f) Construct the Replay-Counter field of the final AES-protected MSDU payload.

g) Construct the MSDU payload from the replay counter, OCB encrypted data, and the OCB tag.

The following sub-clauses describe each of the steps in greater detail.

8.2.3.5.3.1 Context Selection

To encrypt data, the transmitter first checks whether the MSDU is unicast or multicast/broadcast. It selects the correct transit state, described in Clause 8.2.3.5.2 above, depending on whether this is a unicast or a broadcast/multicast MSDU, and upon the association over which the fragment must travel. If an appropriate transmit context exists, a conformant implementation must use it to protect any MSDUs it sends. In particular, the AES Algorithm does not support some QoS traffic classes sent in plaintext and others protected.

8.2.3.5.3.2 Increment the block count and replay counter

The implementation computes the total number of blocks to be protected in the MSDU. This is defined as

b = ((# MSDU data bytes)/AES-Block-Size(+1,

where (a(means to round a up to the nearest integer, and AES-Block-Size = 16. The 1 is added to include the associated data, described in clause 8.2.3.5.3.4 below, in the total count.

If adding the number of blocks b will cause the context’s value of 802dot11SentAesBlocks to wrap—i.e., if b + 802dot11SentAesBlocks > 248—then the cryptographic protection afforded by the key are considered exhausted, and it is a protocol error to use the key any further. The sender must not transmit another MSDU on this association or broadcast/multicast channel until the key is replaced with a new one. The encapsulation algorithm must halt with an error in this case.

Otherwise, from the selected context and the MSDU QoS service class, the implementation selects appropriate 40-bit per-service-class replay counter.

If the value of the selected replay counter is 240–1 = 1099511627775 (or greater), then another valid nonce cannot be constructed. That is, using this replay counter means that more than one MSDU would be protected by the same <key, nonce> pair, voiding the security guarantees. Once again, the sender must not transmit another MSDU on this association or broadcast/multicast channel until the key is replaced, and the encapsulation algorithm must halt with an error.

Otherwise, the value of the selected replay counter is less than 1099511627775, and it is still feasible to construct another valid nonce. The implementation adds b to 802dot11SentAesBlocks and 1 to the replay counter, and proceeds to the next step.

8.2.3.5.3.3 Construct the OCB nonce

The OCB algorithm requires a unique nonce be used for each message it encrypts for its security guarantees to be valid. Using the just-incremented replay counter from clause 8.2.3.5.3.2, the implementation must construct the OCB nonce as the concatenation of (a) the MSDU source MAC address, (b) its QoS service class, (c) the sequence number encoded as a little-Endian value—i.e., with its most significant bit first and least significant bit last—and a 16-bit representation of 0:

nonce (Source-MAC-Address || QoS-Service-Class || Little-Endian(SeqNum) || 016

The Source-MAC-Address and QoS-Service-Class are encoded in the nonce in the same byte order as in their MSDU encoding. This nonce construction guarantees nonce unicity of these values.

An 802.11 implementation can construct a duplicate nonce by using another station’s MAC address as its own. Such a construction is non-conformant. This can be a security problem for broadcast/multicast. If a deployment experiences a rash of duplicate nonces for broadcast multicast, it indicates either a non-conformant implementation, a “traitor” within the BSS—i.e., a party intentionally misbehaving—or a compromise of the BSS broadcast/multicast key.

8.2.3.5.3.4 Construct associated data

In order to detect attempts to redirect the MSDU to the wrong party, it is necessary to protect the destination address. This is accomplished by constructing a block of data called the associated data block. This block is used to construct the MSDU data payload, but is never transmitted. This can be done, because the receiver can correctly recreate this block to extract the data.

To construct the associated data, the implementation must append 80 zero bits to the destination MAC address, with the destination MAC address encoded in the same byte order as the MAC header:

associated-data (Destination-MAC-Address || 080.

8.2.3.5.3.5 Protect the MSDU and associated data

The implementation must use the AES transmit key TK constructed in clause 8.2.3.5.3.1 and the nonce constructed in clause 8.2.3.5.3.3 to OCB encrypt the associated-data constructed in clause 8.2.3.5.3.4 followed by the plaintext MSDU data. This results in two outputs:

a) An OCB-ciphertext string. This string contains the same number of bytes as the MSDU and associated data taken together; and

b) A 64-bit OCB-tag.

Symbolically,

OCB-ciphertext || OCB-tag (OCB-Encrypt(TK, nonce, associated-data || MSDU-data)

Note that the first 16 bytes of the ciphertext is simply the encrypted associated data.

8.2.3.5.3.6 Encode the ReplayCounter

As defined in Clause 8.2.3.4 above, the AES-Algorithm Replay Counter is a six-byte field. It is used to convey the MSDU sequence number to the peer, to be used to construct the nonce and to detect replayed MSDUs. This field is constructed as follows:

The replay counter computed in clause 8.2.3.5.3.2 is encoded into the Replay Counter field. This is accomplished by first encoding the number as a 40-bit Little-Endian integer SN—most significant bit first, least significant bit last. Next the three most significant bytes of SN are encoded into the first three bytes of the Replay Counter field. Following these three bytes is the KeyID byte, which is always 0 for the AES Algorithm. To complete the Replay Counter field the final two bytes of SN are encoded as the final two bytes of the Replay Counter field. Symbolically,

SN (Little-Endian(Replay Counter)

Partition SN into a sequence of bytes: SN = SN1 || SN2 || SN3 || SN4 || SN5
KeyID (08
Replay Counter field(SN1 || SN2 || SN3 || KeyID || SN4 || SN5
With this format the first 4 bytes of the Replay-Counter match the Basic WEP IV field. This format is intended to simplify the hardware for implementations that must be backward compatible with Basic WEP.

8.2.3.5.3.7 Construct the MSDU payload

Finally, all the elements are assembled in the final MSDU payload. The AES-protected MSDU payload consists of the concatenation of the Relay Counter field, the OCB-ciphertext with the first block (16 bytes) discarded, and the OCB-tag:

MSDU-Data (Replay-Counter || Truncate(OCB-ciphertext) || OCB-tag.

Here, the Replay Counter field was computed in Clause 8.2.3.5.3.6, and OCB-ciphertext and OCB-tag in Clause 8.2.3.5.3.5, and Truncate(A) means to discard the first 16 bytes of the string A.

8.2.3.5.3.8 Discussion

The MSDU AES-protected payload Replay Counter field can be constructed at any step after the replay counter is incremented (Clause 8.2.3.5.3.2).

To execute this algorithm successfully, it is not actually necessary to actually encrypt the associated-data. An analysis of the OCB algorithm reveals that it is only necessary to XOR the associated-data as block zero into the OCB checksum, and to begin to encrypt the “real” MSDU-data with OCB Offset1 instead of Offset0.

8.2.3.5.4 Receive State

A conformant implementation must maintain the following unicast receive state for an association using the AES algorithm:

a) the derived association receive key or its key schedule;

b) a replay window for each QoS service class utilized for this association. The window is initialized by setting the replay counter to zero. That is, no replay sequence numbers have been consumed when the corresponding receive key is derived;

c) a 32-bit counter 802dot11AesFormatErrors, to indicate the number of MSDUs received with an invalid format, initialized to zero;

d) a 32-bit counter 802dot11SpentKeyErrors, to indicate the number of MSDUs received since all the entropy of the context’s receive key was consumed;

e) a 32-bit counter 802dot11AesReplays, to indicate the number of received unicast fragments discarded by the replay mechanism, initialized to zero;

f) a 32-bit counter 802dot11AesDecryptErrors, to indicate the number of received fragments discarded by the OCB decryption mechanism, initialized to zero; and

g) a 48-bit counter 802dot11RecvdAesBlocks, to track the total number of protected blocks received.

This specification refers to this as the unicast receive context. Since the KeyID byte of each MSDU is zero, the receiver locates the unicast context using the MSDU Transmit and Receive addresses. Note that an AP must also include a context type, indicating that this context record provides context for the AES Algorithm (as opposed to, e.g., Basic WEP).

When a broadcast/multicast key is configured, the implementation must maintain a similar receive state for broadcast/multicast receive state, with the BSS broadcast/multicast key replacing the association transmit key, viz.,

a) the configured BSS broadcast/multicast key or its associated key schedule; this is used to decapsulate all broadcast/multicast MSDUs this STA receives over this association;

b) a 32-bit counter 802dot11AesFormatErrors, to indicate the number of MSDUs received with an invalid format, initialized to zero;

c) a 32-bit counter 802dot11SpentKeyErrors, to indicate the number of MSDUs received since all the entropy of the context’s broadcast/multicast key was consumed;

d) a 32-bit counter 802dot11AesReplays, to indicate the number of received unicast fragments discarded by the replay mechanism, initialized to zero;

e) a 32-bit counter 802dot11AesDecryptErrors, to indicate the number of received fragments discarded by the OCB decryption mechanism, initialized to zero; and

f) a 48-bit counter 802dot11RecvdAesBlocks, to track the total number of protected blocks received.

This is called the broadcast/unicast receive context. Notice that a broadcast/multicast receive context maintains no replay window. This is because it is in principle impossible to detect broadcast/multicast replays using symmetric key techniques. In particular, any party holding the broadcast/multicast key can masquerade as any other member of the group, so can intrude on another’s sequence space without detection.

As an implementation note, it is computationally more efficient to compute and maintain the AES-OCB key schedule rather than save the key itself. Unlike WEP4, the key schedule need be set up only once per association, not on every MSDU.

8.2.3.5.5 AES Decapsulation Algorithm

The steps to decapsulate data received over a protected association or broadcast/multicast channel are the reverse of the encapsulation steps:

a) Select the appropriate context based on the received MSDU;

b) perform some basic sanity checks on the packet;

c) extract the sequence number from the MSDU Replay-Counter;

d) construct the OCB nonce using the sequence number, MSDU service class, and source MAC address from the received MSDU;

e) construct the encrypted associated data from the source MAC address and prepend it to the ciphertext body;

f) using the constructed nonce and receive key from the selected context, decrypt the MSDU data;

g) If the MSDU is unicast, verify it is not a replay.

The following sub-clauses describe each of the steps in greater detail.

8.2.3.5.5.1 Select Context

Since the KeyID bits are zero, the recipient must select the appropriate context for the received MSDU based on the Transmit and Receive MAC addresses. If the Receive address is broadcast/multicast, then the selected context becomes the broadcast context. If not, the receiver verifies there is a context for the frame. If the selected context is for the AES Algorithm, then the receiver continues with the AES decapsulation algorithm.

Note that if the AES algorithm is utilized by an association, the receiver must treat all MSDUs as protected. Without this provision, it is trivial for an attacker to forge a valid message by simply sending a cleartext message. Hence all implementations must maintain some state indicating whether AES protection should be applied to received MSDUs, whether or not the WEP bit from the MAC header is asserted.

8.2.3.5.5.2 Basic sanity checks

If an applicable AES context is present, it must discard the received MSDU if it does not consist of at least 22 bytes and increment the context’s 802dot11AesFormatErrors counter. This includes 8 bytes of LLC and SNAP headers, and 14 bytes of AES Algorithm overhead bytes.

A second check is the total number of blocks. The implementation computes the total number of blocks protected in the MSDU. This is defined as

b = ((# MSDU data bytes – 14)/AES-Block-Size(+1,

where (a(means to round a up to the nearest integer, and AES-Block-Size = 16. The 1 is added to account for the encrypted associated data that was not sent with the message but will be reconstructed in Clause 8.2.3.5.5.5 below. The 14 is removed to account for the MSDU Replay Counter field and the OCB-tag field.

If adding the number of blocks b will cause the value of 802dot11RecvdAesBlocks from the context selected in clause 8.2.3.5.5.1 to wrap—i.e., if b + 802dot11RecvdAesBlocks > 248—then the cryptographic protection afforded by the key are considered exhausted, and it is a protocol error to use the key any further. The receiver must discard the MSDU and increment the context’s 802dot11SpentKeyErrors counter. The decapsulation must algorithm halts with an error in this case.

8.2.3.5.5.3 Extract sequence number

The MSDU sequence number is needed to construct the OCB nonce and, in the case of a unicast MSDU, to provide replay protection. The little-Endian encoding of the MSDU sequence number can be extracted from the Replay-Counter field by dropping the 4th byte, i.e., the KeyID byte:

if Replay-Counter = RC1 || RC2 || RC3 || RC4 || RC5 || RC6 then

Little-Endian(SeqNum) (RC1 || RC2 || RC3 || RC5 || RC6
8.2.3.5.5.4 Construct the OCB nonce

The MAC implementation constructs the OCB nonce as the concatenation of (a) the received MSDU’s source MAC address, (b) its QoS service class, (c) the replay counter encoded as a little-Endian value—i.e., with its most significant bit first and least significant bit last—and a 16-bit representation of 0:

nonce (Source-MAC-Address || QoS-Service-Class || Little-Endian(SeqNum) || 016
Here the Source-MAC-Address and QoS-Service-Class are taken in the same byte order as they are encoded into the MAC header of the MSDU.

8.2.3.5.5.5 Construct the associated data

In order to properly decrypt the MSDU, it is necessary to restore the encrypted associated data block. This can be done, because the receiver can correctly recreate this block to extract the data.

To construct the associated data, append 80 zero bits to the destination MAC address:

associated-data (Destination-MAC-Address || 080.

To encrypt it, use the context receive key RK and the 0th-OCB mode offset:

missing-block (Offset0 (AES_EncryptRK(Offset0 (associated-data).

The data block to decrypt is formed by concatenating the MSDU ciphertext block to the missing-block:

data-to-decrypt = missing-block || MSDU-ciphertext.
The MSDU-ciphertext is all of the MSDU data field, exclusive of the first six and eight bytes—the Replay Counter and the OCB-tag.

8.2.3.5.5.6 Decrypt the MSDU data

Use the nonce constructed in clause 8.2.3.5.5.4 and the AES key from the context selected in clause 8.2.3.5.5.1 to OCB decrypt the encrypted data. The input to this algorithm is the data-to-decrypt from Clause 8.2.3.5.5.5 and the OCB-tag from the MSDU data field. The OCB decryption algorithm will result in two one of outputs:

a) A verification of the tag, and the decrypted plaintext;

b) Failure, because the decryption algorithm detected a change in the underlying data.

If the OCB decryption reports failure, the receiver must increment the context’s 802dot11AesDecryptErrors counter, and the decapsulation algorithm must halt.

8.2.3.5.5.7 Unicast replay verification

If the received MSDU was unicast, the last check determines whether it is fresh or represents a replay. The receiver skip must this step for broadcast/multicast MSDUs, because it is infeasible to reliably determine replays using symmetric key techniques, and public key techniques are too expensive for bulk data handling.

To determine whether a unicast represents a replay, the receiver tests whether the MSDU replay counter SeqNum extracted from the MSDU Replay Counter field is a fresh value. It if fresh if the pair <QoS-Service-Class, SeqNum> has never been received in a valid MSDU for the context’s key, and a replay otherwise. If the MSDU’s sequence number is a replay, the receiver discards the MSDU, increments the 802dot11AesReplays counter, and halts the decapsulation.

The 802.11 implementation may use any suitable technique to guarantee that the pair <QoS-Service-Class, SeqNum> is fresh—e.g., it might maintain a sliding replay window, or it can maintain a list of all MSDU sequence numbers correctly received thus far, etc.

8.2.3.5.5.8 Completion

If the MSDU has not been discarded due to the processing described in Clauses 8.2.3.5.5.1 through 8.2.3.5.5.7, then the receiver must update the 802dot11RecvdBlocks counter by adding to it the value b computed in Clause 8.2.3.5.5.2, to indicate the number of blocks decapsulated, and the decapsulation completed successfully.

8.2.3.5.3.9 Discussion

To execute this algorithm successfully, it is not actually necessary to actually re-encrypt the associated-data. An analysis of the OCB algorithm reveals that it is only necessary to XOR the associated-data as block zero into the OCB checksum, and to begin to decrypt the “real” MSDU-data with OCB Offset1 instead of Offset0.

As a practical matter an implementation generally will validate the Replay-Counter of a received unicast MSDU early in the receive decapsulation process. This minimizes the expenditure of resources on a forged MSDU. However, the sequence number extracted from the Replay-Counter field cannot be trusted as valid until after the AES-OCB decryption step in clause 8.2.3.5.5.6.

Submission
page 7
Nancy Cam-Winget/Atheros and

 Jesse Walker/Intel

_1055355341.unknown

_1056225360.vsd

_1056225393.vsd

_1056132418.doc

Encrypted (Note)

KeyID

Bits 30:31

Replay Sequence No

Data

(PDU)

>=1

MIC

8

Note: The encipherment process has expanded the original MPDU by 16 Octets, 6 for the replay counter field, and 8 for the Message Integrity Check (MIC). As the Replay counter field is also used as the Nonce, it replaces what has been known as the IV field. However, bits 30 and 31 of the Replay Counter are overwritten by the keyed bits. The MIC is calculated on the Data fields only.

Replay Counter

6

_1055161961.unknown

_1055155774.unknown

