July 2001

doc.: IEEE 802.11-01/379r0

IEEE P802.11
Wireless LANs

Using the Host Identity Payload for WLAN authentication

Date:
June 27, 2001

Author:
Robert Moskowitz

Trusecure Corporation

15210 Sutherland, Oak Park MI, 48237

Phone: 248 968-9809

Fax: 248 968-2824

e-Mail: rgm@trusecure.com

Abstract

WLAN can benefit from a fast authentication methodology that will support corporate, public, and SoHo deployments. The Host Identity Payload (HIP) and supporting protocol meets this goal. It is very fast, consisting of four packets of which the last two can carry a datagram payload. It uses asymetric cryptography, allowing for scaling up to a large user population. It supports anonymous identities that work well in a public deployment (similar to TLS). Finally, it requires little or no infrastructure, thus well suited for SoHo situations.

The basis of HIP is a cryptographic Host Identity (HI) and a hash. The HI is used to cryptographically prove ownership of the HIP packets. The hash is used as a statistically globally unique index to the HI in the protocol. The HIP protocol is designed as a very lightweight Diffie-Hellman exchange to establish keying material for peer-to-peer privacy and authentication. A HI can be anonymous; this permits its peer to not know who it is talking too, but to always know it is talking to the owner of the anonymous HI. HIs can be well known, stored in 3rd party authenticated repositories like DNSSEC or exchange in a trusted manner between peers. These characteristics of HIs make them well suited for both public and private (large and small) network authentication.

HIP was originally developed for providing authentication in an IP world. There is a set of Internet Drafts detailing HIP’s use for IP. These drafts cover the attacks against HIP and that information is not duplicated here. The version of HIP presented here is very similar with the IP specific portions of HIP removed.

Host Identity

The Host Identity represents a statistically globally unique name for naming any system. This identity is normally associated with an IP stack, but can be used in any communication protocol. A system can have multiple identities, some 'well known', some anonymous. A system may self assert its identity, or may use a third-party authenticator like DNSSEC, PGP, or X.509 to 'notarize' the identity assertion.

To link layer protocols like 802.11, the Host Identity can provide device authentication and keying material for link packet privacy and authentication.

The preferred structure of the Host Identity is that of a public key pair. DSA is the RECOMMENDED implement algorithm for any implementation supporting public keys for the Host Identity. Other algorithms can easily replace DSA where they bring value like reduced packet size or reduced computational overhead.

HIP usage in WLAN

HIP draws on 20 years of research and deployment of authentication and key exchange systems. Its lightwieght design and use of the Host Identity makes it ideally suited for WLAN. HIP was originally designed to work over an Internetworking layer, but with minor modifications, it works well over a link layer like WLAN. The HIP exchange is only 4 packets, with packets 3 and 4 able to carry a data payload. With HIP, a mobile host would authenticate to an access point (or an adHoc peer), and in the process establish the keying material for authenticating and securing all further packets. HIP can benefit from a repository for HIs, but this is not needed in a SoHo deployment. Because HIP is public key based, it scales well and does not have the security risks that a symetric keyed authentication method has.

Open work items

When HIP was designed over IP, it used ICMP messages to handle a few error situations. An alternative to ICMP is needed at the link layer for use in WLAN.

Host Identity Tag (HIT)

The Host Identity Tag is a 128 bit field. There are two advantages of using a hash over the actual Identity in protocols. First its fix length makes for easier protocol coding and also better manages the packet size cost of this technology. Secondly, it presents a consistent format to the protocol whatever underlying identity technology is used.

When the Host Identity is a public key, HIT functions much like the SPI does in IPsec. However, instead of being an arbitrary 32-bit value that, in combination with the destination IP address and security protocol (ESP), uniquely identifies the Security Association for a datagram, HIT identifies the public key that can validate the packet authentication. HIT SHOULD be unique in the whole Host universe. If there is more than one public key for a HIT, the HIT acts as a hint for the correct public key to use.

There are two formats for HIT. Bit 0 is used to differentiate the formats. If Bit 0 is zero and Bit 1 is 1, then the rest of HIT is a 126 bits of a Hash of the key. For example, if the Identity is DSA, these bits are the least significant 126 bits of the SHA-1 [FIPS-180-1] hash of the DSA public key Host Identity.

If Bit 0 is 1 and Bit 1 is zero, then the next 62 bits is the Host Assigning Authority (HAA) field, and only the last 64 bits come from a hash of the Host Identity. This format for HIT is recommended for 'well known' systems. It is possible to support a resolution mechanism for these names in directories like DNS. Another use of HAA is in policy controls.

These formats work in a manner consistant with RFC 2373 IPv6 address assignment:

 Allocation

Prefix

Fraction of IPv6

(binary)

Address Space

 IPv6 Address space

00

1/4

 126 bit HIT

01

 HAA assigned 64 bit HIT
10

 IPv6 Address space

11

1/4

The birthday paradox sets a bound for the expectation of collisions. It is based on the square root of the number of values. A 64-bit hash, then, would put the chances of a collision at 50-50 with 2^32 hosts (4 billion). A 1% chance of collision would occur in a population of 640M and a .001% collision chance in a 20M population. A 128 bit hash will have the same .001% collision chance in a 9x10^16 population.

Host Assigning Authority (HAA) field

The 62 bits of HAA supports two levels of delegation. The first is a registered assigning authority (RAA). The second is a registered identity (RI, commonly a company). The RAA is 22 bits with values assign sequentially by ICANN. The RI is 40 bits, also assigned sequentially but by the RAA. This can be used to create a resolution mechanism in the DNS. For example if FOO is RAA number 100 and BAR is FOO's 50th registered identity, and if 1385D17FC63961F5 is the hash of the key for www.foo.com, then by using DNS Binary Labels [DNSBIN] there could be a reverse lookup record like:

\[x1385D17FC63961F5/64].\[x32/40].\[x64/23].HIT.int IN PTR www.foo.com.

Security Parameter Index (SPI) and HIP

SPIs are used in ESP to index into the security association negotiated in HIP. Use of ESP with HIP provides authentication for every packet following the HIP exchange. The ESP SPIs have added significance when used with HIP; they are a compressed representation of the HIT in every packet. Thus they MAY be used by intermediary systems in providing services like address mapping. A system does not set its own SPI; each host selects its partner's SPI. It MUST be random. The risk of collisions is too great (1% in a population of 10,000).

A different SPI MUST be used for each HIP exchange with a particular host; this is to avoid a replay attack. Additionally, when a host rekeys, the SPI MUST change. One method for SPI creation that meets these criteria, would be to concatenate the HIT with a 32 bit random number, hash this (using SHA1), and then use the high order 32 bits as the SPI.

HIP format

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

| Next Header | Payload Len | Algorithm # | RESERVED |

+-+

| |

| Host Identity Tag (HIT) |

| |

| |

+-+

| |

| HIP Key payload (opt) |

| |

+-+

| ESP (opt) |

| |

+-+

| Datagram payload |

| |

+-+

| ESP trailer (opt) |

| |

+-+

Next Header WILL be zero for those HIP packets that do not carry a transport layer. Thus Next Header SHOULD only be zero or 50 (ESP).

Payload length is the length, in bytes, of the optional HIP Key payload. It is zero if there is no payload. Thus the length of the HIP envelope is 20 plus the payload length.

The Type indicates which HIP packet this is.

The HIP Version is one byte. The current version is 1.

The HIT is always 128 bits (16 bytes).

HIP Key Payload

The HIP Key Payload is used to carry the public key associated with the HIT and related security information. The format of the HIP Key Payload is a simplification of a DNS message [DNS].

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

| RCOUNT | FQDNLGTH |

+-+

| |

/ FQDN /

/ /

| 0 – 7 bytes padding |

+-+

| RDLENGTH | TYPE |

+-+

| |

/ RDATA /

/ /

| |

+-+

. .

. .

. .

RCOUNT is the number of HIP Resource Records. If the sender does not have (or does not wish to divulge) an FQDN, a value of '.' will be used. The sender arbitrarily selects the content of the padding field.

The HIP Resource Records will either be a KEY (e.g. DSA and D-H), SIG [DNSSEC], or OPT [EDNS] record. The RDATA of the OPT record in the payload can contain any of the following:

OPT Attribute

Length

Data

Remotes_HIT

128

Remote's HIT

HIP_COOKIE

192

3 64 bit fields:

Random # I,

K or random # J,

Hash target, Ltrunc(SHA1(I|J))

or Utrunc(SHA1(I|J))

HIP_TRANSFORM
variable

ISAKMP Transform [ISAKMP]

Without first 32 bits

Using Ipsec DOI

ESP_TRANSFORM
variable

ISAKMP Transform [ISAKMP]

Without first 32 bits

Using Ipsec DOI

Remotes_SPI

32

Remote's SPI

HIP Cookie Exchange

The HIP cookie exchange serves to manage the establishment of state between the Initiator and Responder. This cookie exchange is different than other 3-way exchanges in that the Responder starts the exchange. Since the Responder starts the exchange, it can set the difficulty for the Initiator. The Responder supplies a random number I, and requires the Initiator hash it with a random number J. The resulting hash's lowest order K bits MUST match a hash target also supplied by the Responder. To accomplish this, the Initiator will have to generate a number of Js until one produces the hash target; the worst case SHOULD be 2^K hash operations. The Responder needs only hash the Initiator's J with its I to prove that the Initiator did its assigned task.

Thus the Responder can set the difficulty for Initiator, based on its concern of trust of the Initiator.

HIP Packets

There are 7 HIP packets. Four are for the HIP exchange, one as a ‘boot-strap’, and the other two are for mid-state changes.

B0 - the HI announce packet

Next Header = 0

Type = 10

HIT = Announcer's HIT

Payload Contains:

Announcer's HIT in a KEY HIT RR

Announcer's HI in a KEY RR (e.g. KEY DSA RR)

HIP SIG in a SIG RR

HIP, when applied to a link layer protocol lacks the ability for an initiator to access a repository prior to starting the HIP exchange. Thus a packet is needed to provide information that would otherwise be gleaned from a repository. This HIP packet is either self-signed in application like SoHo, or from a trust anchor in large private or public deployments. This packet SHOULD be broadcasted frequently by access points in infrastructure mode or peers in adHoc mode.

I1 - the HIP Initiator packet

Next Header = 0

Type = 1

HIT = Initiator's HIT

Payload Contains:

Responder's HIT in a KEY HIT RR

The Initiator gets the responder's HIT either from a HIP B0 packet, a DNS lookup of the responder's FQDN or from a local table.

Since this packet is so easy to spoof even if it were signed, no attempt is made to add to its generation or processing cost. Implementation MUST be able to handle a storm of I1 packets, discarding those with common content that arrive within a small time delta.

R1 - the HIP Responder packet

Next Header = 0

Type = 2

HIT = Responder's HIT

Payload Contains:

Responder's HI in a KEY RR (e.g. KEY DSA RR)

Initiator's HIT in a KEY HIT RR

Responder's Diffie-Hellman public value in a KEY DH RR

HIP TRANSFORM in a OPT RR

ESP TRANSFORM in a OPT RR

HIP COOKIE in an OPT RR

HIP SIG in a SIG RR

If the responder has multiple HIs, the HIT used MUST match Initiator's request.

The Diffie-Hellman value is ephemeral, but can be reused over a number of connections. In fact, as a defense against I1 storms, an implementation MAY use the same Diffie-Hellman value for a period of time, for example 15 minutes. By using a small number of Is for a given Diffie-Hellman value, the R1 packets can be pre-computed and delivered as quickly as I1 packets arrive. A scavenger process should clean up unused DHs and Is.

The HIP_TRANSFORM contains the encryption algorithms supported by the responder to protect the HI exchange, in order of preference.

The ESP_TRANSFORM contains the ESP modes supported by the responder, in order of preference.

HIP_COOKIE contains random I, K, and Hash Target. I is an internal pointer to the HI, HIT, and DH sent to the Initiator. It is only used as a pointer until this cookie is used in an SA. K is number of bits that the Initiator must match with the Hash Target.

The HIP SIG is calculated over the whole HIP envelope. The Initiator MUST validate this SIG. It MAY use either the HI in the packet or the HI from a DNS query.

I2 - the HIP Second Initiator packet

Next Header = 0 or 50

Type = 3

HIT = Initiator's HIT

Payload Contains:

Responder's HIT in a KEY HIT RR

Responder's SPI in an OPT RR

Initiator's Diffie-Hellman public value in a KEY DH RR

HIP TRANSFORM in a OPT RR

HIP COOKIE in an OPT RR

The following Resource Records are encrypted using the HIP Transform and are in a HIP ENCRPYT OPT RR

ESP TRANSFORM in a OPT RR

Initiator's HI in a KEY RR (e.g. KEY DSA RR)

HIP SIG in a SIG RR

If the initiator has multiple HIs, the HI and HIT used MUST match Responder's reply.

The Diffie-Hellman value is ephemeral. A scavenger process should clean up unused DHs and Js.

The HIP_TRANSFORM contains the encryptions to protect the HI exchange selected by the initiator.

HIP_COOKIE contains random I and J, and Ltrunc(SHA1(I|J)) (that is the low order bits of the SHA1 of I concatenated with J). The low order K bits of Ltrunc(SHA1(I|J)) MUST match the low order K bits of the Hash Target. J is an internal pointer to the HI, HIT, and DH sent to the Responder.

The ESP_TRANSFORM contains the ESP mode selected by the initiator.

The HIP SIG is calculated over whole HIP envelope. The Responder MUST validate this SIG. It MAY use either the HI in the packet or the HI from a DNS query.

This packet CAN have an ESP payload, as everything needed, other than the Initiator’s SPI is known. For the SPI, the Intitiator will use m (to be assigned by IANA). Once the Responder recieves this message and generates the Initator’s SPI it will substitute this value for the SPI after it has authenticated the ESP packet.

R2 - the HIP Second Responder packet

Next Header = 0 or 50

Type = 4

HIT = Responder's HIT

Payload Contains:

Initiator's LSI in an OPT RR

Initiator's SPI in an OPT RR

The following Resource Records are encrypted using the HIP Transform and are in a HIP ENCRPYT OPT RR

Responder's HI in a KEY RR (e.g. KEY DSA RR)

HIP COOKIE in an OPT RR

HIP SIG in a SIG RR

HIP_COOKIE contains random I, Ltrunc(SHA1(I|J)), and Rtrunc(SHA1(I|J)).

The HIP SIG is calculated over whole HIP envelope. The Initiator MUST validate this SIG.

This packet CAN have an ESP payload, as at this point everything needed is known.

REK - the HIP Rekey Packet

During the life of a Security Association established by HIP, one of the hosts may need to rekey. The reason for rekeying might be an approaching sequence number wrap in ESP, or a local policy on use of a key. Rekeying ends the current SA and starts a new one. The Rekey Payload permits a host to change its Diffie-Hellman key and thus the keying material for ESP. The Rekey Packet is a HIP packet with only a Diffie-Hellman RR in the HIP payload. The HIP packet is transported within the ESP to provide authentication and replay protection of the rekeying; there is no next protocol in the HIP packet. Thus the datagram looks like:

ESP[HIP(D-H)]

The HIP content is:

Next Header = 0

Type = 5

HIT = Sender's HIT

Payload Contains:

New Diffie-Hellman public value in a KEY DH RR

When a host receives a Rekey Packet, its second from next ESP packet MUST use the KEYMAT generated by the new Kij. The sending host MUST expect at least a sequence number replay window worth of ESP packets using the old Kij. Out of order delivery could result in needing the old Kij after packets start arriving using the new SA's Kij. Once past the rekeying start, the sending host can drop the old SA and its Kij.

The first packet sent by the receiving system MUST be a HIP New SPI packet. This packet supplies the new SPI for the rekeying system, which cannot send any packets until it receives this packet. If it does not receive a HIP New SPI packet within a resonable round trip delta, it MUST assume it or the HIP Rekey packet was lost and renegotiate HIP as if in a reboot condition.

NES - the HIP New SPI Packet

The HIP New SPI Packet provides the rekeying system with its new SPI. The new SPI Packet is a HIP packet with only a SPI OPT RR in the HIP payload. The HIP packet is transported within the ESP to provide authentication and replay protection. There MAY be a next protocol of HIP if the receiving host chooses to rekey at this time. Thus the datagram looks like:

ESP[HIP(SPI)]

or

ESP[HIP(SPI)[HIP(D-H)]]

The HIP content is:

Next Header = 0 or NN (HIP's protocol number)

Type = 6

HIT = Sender's HIT

Payload Contains:

Rekeyer's new SPI in an OPT RR

The sending system MAY choose to send its Rekey packet (if it is rekeying immediately by local policy) in a separate packet using the new SPI and Kij. Alternatively, the sending system COULD use the following datagram to privately rekey:

ESP[HIP(SPI)[ESP[HIP(D-H)]]]

HIP KEYMAT

HIP keying material is derived from the Diffie-Hellman Kij produced during the HIP exchange. The initiator has Kij during the creation or the I2 packet, and the responder has Kij once it receives the I2 packet. This is why I2 can already contain encrypted information. There are four keys that are derived from Kij; these are the initiator and responder HIP keys and the initiator and responder ESP keys. These four keys MUST be drawn sequentially (HIP initiator, HIP responder, ESP initiator, EXP responder, and where the ESP transform requires an encrypting and an authenticating key, they are taken sequentially) from the Kij KEYMAT. For situations where the amount of keying material desired is greater than that supplied by Kij, KEYMAT is expanded by feeding Kij into the following operation:

KEYMAT = K1 | K2 | K3 | ...

 where

K1 = SHA2-512(Kij | Resp-SPI)

K2 = SHA2-512(K1 | Resp-SPI)

K3 = SHA2-512(K2 | Resp-SPI)

etc.

In the situation where Kij is the result of a HIP rekey exchange, there is only the need from one set of ESP keys. These are then the only keys taken from Kij.

Reboot restart of HIP

If a host reboots or times out, it has lost its HIP state. If it is the initiator that loss state it simply restarts the HIP exchange. The responder sends an R1 HIP packet, but does not reset its state until it receives the I2 HIP packet. This is to handle DOS attacks that simulate a reboot of the initiator.

If it is the responder that loss state, the recovery is more involved. The initiator would send an ESP packet, the responder will reply with an ICMP Host unreachable, Protocol unreachable. After the initiator receives N such ICMP messages (default is 5; the value of N is an initiator policy), the initiator resets its state with the responder and restarts the HIP exchange.

Simulating a responder loss of state is a potential denial of service attack. The initiator can manage this attack by dropping any of the above ICMP messages if a responder ESP packet is received within some reasonable delta after it sent its ESP packet.

Sequence Number State Machine

Ioo

Initiator at no data packets sent, none received

Roo

Responder at no data packets sent, none received

I1 or R1

Initial HIP packet from Host

I2 or R2

Second HIP with data packet from Host

IE or RE

Data packet from Host with ESP

Inm or Rnm
host sent packet n, and received packet m

 +---------+

 | Ioo,Roo |<----------------------------+

 +---------+ |

 | |

 | I1->R |

 | |

 v |

 +---------+ |

 | Ioo,Roo | |

 +---------+ |

 | |

 | R1->I |

 | |

 v | After I receives

 +---------+ | x ICMPs

 | Ioo,Roo | |

 +---------+ |

 | |

 | I2->R |

 | |

 v |

 +---------+ I2->R +---------+ |

 | I1o,Ro1 |<-----------| Ioo,Rmn | |

 +---------+ +---------+ |

 | ^ |

 | R2->I | R1->I |

 | | |

 v | |

 +---------+ +---------+ |

 | I11,R11 | | Ioo,Rmn | |

 +---------+ +---------+ | +---------+

 | ^ | | Inm,Roo |-+

 | ESP | I1->R | +---------+ |

 | Packets | | ^ |

 v I reboots +---------+ | | Iesp->R | Ricmp

 +---------+ ---------->| Ioo,Rmn | | | | ->I

+->| Inm,Rmn | or timeout +---------+ +---------+ |

| +---------+ -------------------------->| Inm,Roo |<---+

| | | ^ R reboots +---------+

|NES | | +------+ or timeout

|->R |Rrky|Irky |

| |->I |->R |NES

| | +----+ |->I

| v v |

+---------+ +---------+

| In1,R1n | | I1m,Rm1 | {rekeying states}

+---------+ +---------+
HIP Policies

There are a number of variables that will influence the HIP exchanges that each host must support. All HIP implementations MUST support at least 2 HIs, one to publish and one for anonymous usage. Although anonymous HIs will be rarely used as responder HIs, they will be common for initiators. Support for multiple HIs is recommended.

Many initiators would want to use a different HI for different responders. The implementations SHOULD provide for an ACL of initiator HIT to responder HIT. This ACL SHOULD also include preferred transform and local lifetimes. For HITs with HAAs, wildcarding SHOULD be supported. Thus if a Community of Interest, like Banking gets an RAA, a single ACL could be used. A global wildcard would represent the general policy to be used. Policy selection would be from most specific to most general.

The value of K used in the HIP R1 packet can also vary by policy. K should never be greater than 8, but for trusted partners it could be as low as 1.

Responders would need a similar ACL, representing which hosts they accept HIP exchanges, and the preferred transform and local lifetimes. Wildcarding SHOULD be support supported for this ACL also.

Submission
page 1
Robert Moskowitz, Trusecure Corporation

