Discussion on Switch-controlled Packet-level Load Balancing Solutions

Jieyu Li (China Mobile)

Weiqiang Cheng (China Mobile)

Ruixue Wang (China Mobile)

July Plenary 2025

Recap

- Regarding Load balancing issues in AI computing network, several contributions have discussed the requirements and challenges in NENDICA AICN study item, here recap some key points:
 - Unique Al traffic characteristics, large bandwidth, low entropy, cause load imbalance problem in scale-out network, which would greatly impact tail latency and Al training/inference performance.
 - Several efforts has been put forward to improve network balance in Al network. And the fine-grained packet spraying is almost the industrial consensus to completely solve imbalanced problem intra-network.

Classical spine-leaf network

Spine Switch

High probability of hash collision in uplink[1,2]

Leaf Switch

...

Ref: Contributions 802.1-24-0007, 1-24-0025, 1-24-0028, 1-24-0060

• This contribution intend to further discuss switch-controlled packet-level LB solution and its standardization opportunities in 802.1.

Different deployment patterns of packet-level LB

• Many mainstream venders and consortiums have put forward their packet-level LB solutions, those can be categorized into three types of deployment pattern based on different work division between network switch and endpoint.

- Dependencies: advanced NIC
- **Standardization activities**: UEC do this in its new transport layer^[1].
- Dependencies: advanced NIC, ARsupported switch.
- Standardization activities: several individual drafts about adaptive routing in IETF^[2].
- Dependencies: advanced switch.
- Standardization activities: some efforts to standardize the control plane of scheduled ethernet fabric in OCP^[3].
- The switch-controlled pattern is fully decoupled with endpoint, and "provides flexibility & speed across multiple generations and types of accelerators and NICs"^[4]

The existing switch-controlled packet-level LB solutions (1)

The existing switch-controlled LB solutions can be further divided into (1) cell-based and (2) packet-based according to the difference of basic forwarding unit.

(1). Cell-based

- Basic forwarding unit: fixed-length cell.
- Source leaf switches segment packets into cells, and spray them into all available ports.^[1]
- **Dest. leaf switches** re-order and re-assemble cells, then regain original packets.^[1]

- **Pros:** cell spraying can achieve optimal balanced load distributing multiple egress ports, regardless of the variable length of packets.
- **Cons:** complexities to assemble cells; not the standard ethernet packet structure intra-fabric thus needing two types of chips for leaf and spine switches respectively.

The existing switch-controlled packet-level LB solutions (2)

(2). Packet-based

- Basic forwarding unit: ethernet packet.
- Scheduling granularities:
 - Packet^[1];
 - Packet container, a logical group of packets to approximate a fixed-length unit.^[2]
- **Source leaf switches** insert ordering information to each packet leveraging ethernet header extension, and spray them to egress port.
- Dest. leaf switches reorder packets based on information carried in the header.
- **Pros:** compatible with ethernet forwarding, relatively low extra overhead on restoring packets compared with cell-based one.
- Cons: not extremely balancing due to slight packet-length differences.

In the perspective of constructing a fully unified and low overhead ethernet-based solution, the packet-based one is the better choice and more appropriate to consider standardization.

A simple example of possible end-to-end processing in fabric

If we do this based on ethernet packet:

① Send original flows.

- ② Aggregate into a new spray-then-reorder "flow"
- Aggregated Source: from the certain source ToR
- Aggregated Destination: toward the certain dest. ToR or dest. ToR's output port or priority.
- → New Flow Information (e.g., src. deviceID) should be carried.

- ③ Spray the new "flow"
- Granularities:
 - One packet
 - A Group of packets
- Strategies:
 - Round-robin
 - Congestion-aware
 - ..
- → Sequence information within the new 'flow' should be carried.

- 4 Re-order the "flow"
- Identify the flow based on FlowInfo
- Reorder based on SeqInfo
- Remove the extra tag.

⑤ Receive original flows.

Position consideration: Layer 2 could be the optimal option

- 1) Faster switch processing.
- 2) Oblivious to upper protocol: can be used to the cases without IP layer, pursuing the low latency.

802.1 Standardization Considerations

Benefits

- The in-network packet-level spraying can eliminate the congestion intra-network with any traffic characteristics.
- Regarding the incast congestion in the last hop, there are some valuable mechanisms can solve, like SFC (P802.1qdw) or some VoQ-based credit mechanism.
- Packet spraying intra-network + incast congestion control at edge-side ≈ no congestion in network.
- "Provides flexibility & speed across multiple generations and types of accelerates and NICs".

Considerations on IEEE 802.1 standardization opportunities

- The existing switch-controlled packet-level LB solutions are almost proprietary, and lack of international standard.
- It's appropriate for IEEE 802.1 to consider standardizing the switch-controlled per-packet LB since the emphasis on the network switch.
 - Define the extra information needed and its encapsulation way.

..

Thank You!