
AICN Clarification

Lily Lyu November Plenary 2024

AICN: Connecting Accelerators for AI Training

Neural Network

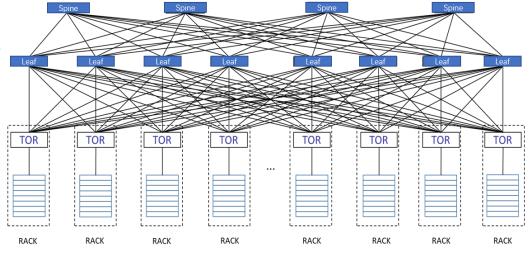


This is AI model, not the 'network' we are talking about. But it impacts the network development.

Scale-up

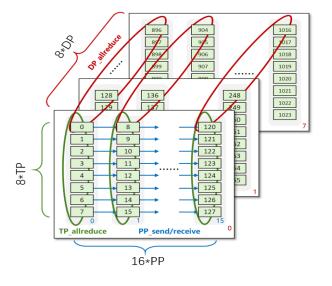
Bus technology evolves, trying to connect more GPUs in bus domain.

Fully Connected NVLink across 256 GPUs


https://developer.nvidia.com/blog/announcing-nvidia-dgx-gh200-first-100-terabyte-gpu-memory-system/

- PCle, NVLink, CXL ···
 - Ultra high bandwidth: e.g NVLink5.0 is a 1.8TB/s bidirectional, direct GPUto-GPU interconnect
- Server-scale -> rack-scale->pod-scale
 - 10 -> 1000 GPUs

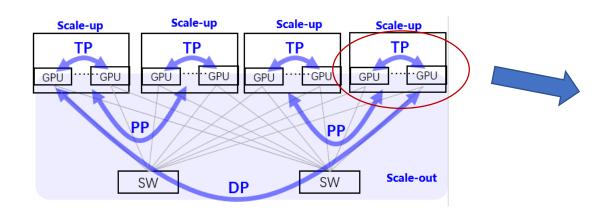
Scale-out **AICN focus**

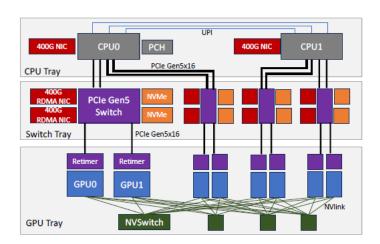

Network technology evolves, trying to improve performance (reliability, latency, throughput)

- Infiniband, Ethernet (RoCEv2), ...
 - High bandwidth: 800GE->1.6TGE
- Pod-scale -> across DC scale
 - Towards 10K+ GPUs

3D Parallelism Deployment

3D Parallelism

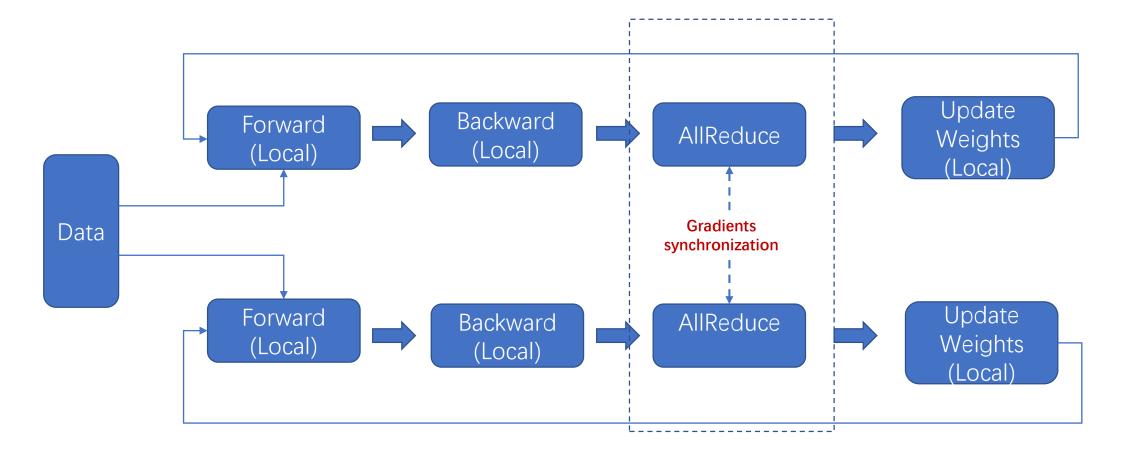



GPT-3 example:

- L=96(layer number), h=12288(hidden dimension), b=1536(global batch size), s=2048(sequence length)
- T=8, P=8, D=16 (totally 8*8*16=1024 GPUs)
- AllReduce = reduce scatter + all gather, introduces 2 times traffic amount
- 2 bytes for each parameter

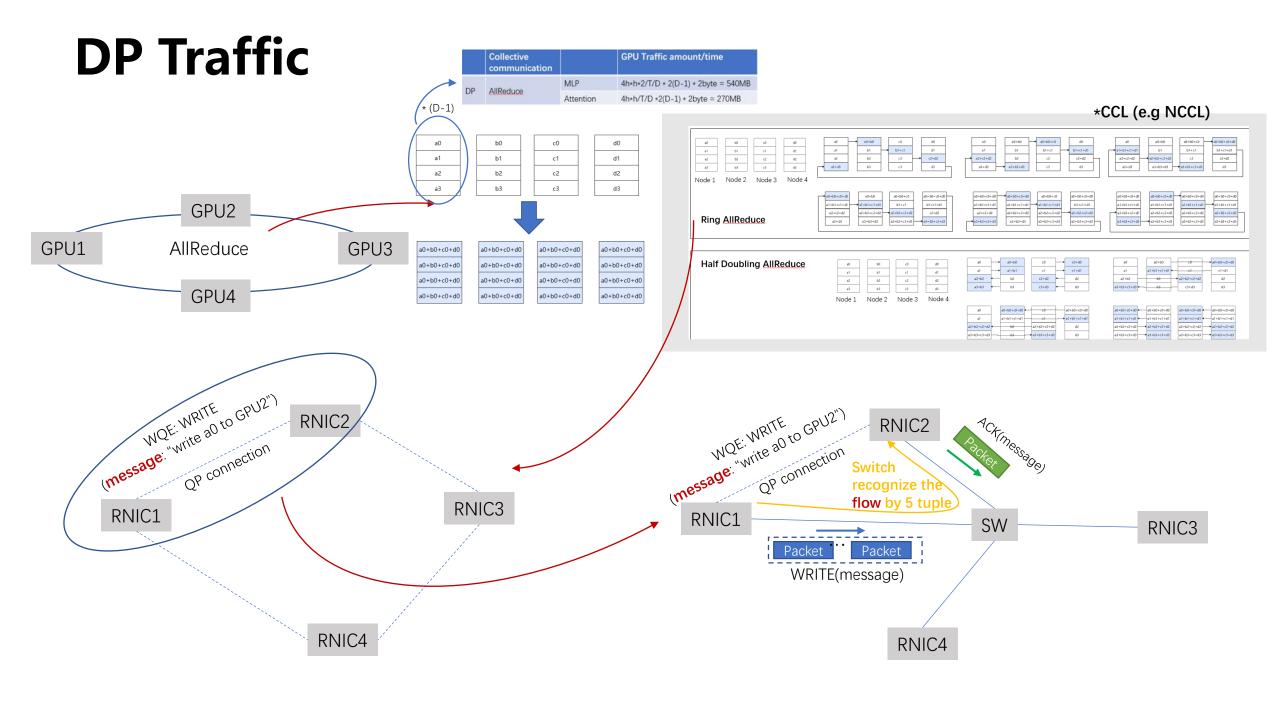
	Collective communication		GPU Traffic amount/time	Times/iteration	GPU traffic amount/iteration
DP	AllReduce	MLP	4h*h*2/T/D * 2(D-1) * 2byte = 540MB	L/P=12	12*(540+270) = 9.49GB
		Attention	4h*h/T/D *2(D-1) * 2byte = 270MB	L/P=12	
PP	Send/Receive	Transformer	<u>b/D</u> * s * h * 2byte = 4.5GB	2	4.5*2 = 9GB
TP	AllReduce	MLP	b/D*s*h/T * 2(T-1) * 2byte = 7.875GB	2 * L/P =24	7.875*24*2= 378GB
		Attention	b/D*s*h/T * 2(T-1) * 2byte = 7.875GB	2 * L/P =24	

High data volume, deployed in scale-up domain



1:1 mapping between GPUs and NICs.

Sigcomm2024: RDMA over Ethernet for Distributed Al Training at Meta Scale


Figure 4: Grand Teton platform

DP Traffic

The forward pass completes on each of the ranks followed by the backward pass.

During the backward pass, gradients are synchronized using collective communication AllReduce.

DP Traffic Pattern

Burstiness

Gradients synchronization happens just during backward pass. It repeats iteration by iteration, involving multiple GPUs' communication at the same time.

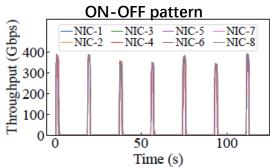
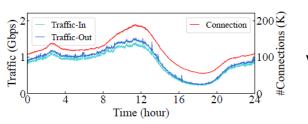


Figure 2: NIC egress traffic pattern during production model training.

Sigcomm2024: Alibaba HPN: A Data Center Network for Large Language Model Training


"On the time dimension, the flows usually exhibit the "on and off" nature in the time granularity of milliseconds"

Sigcomm2024: RDMA over Ethernet for Distributed Al Training at Meta Scale

Low Entropy

Regular communication between predictable communication pairs.

"a general cloud computing instance typically generates hundreds of thousands of connections; on the contrary, each node in the LLM training generates very few connections."

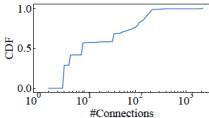


Figure 1: Traditional cloud computing traffic pattern.

Figure 3: Number of connections per

Sigcomm2024: Alibaba HPN: A Data Center Network for Large Language Model Training

"Flow entropy per NIC is log(M). M is number of channels used in NCCL."

Sigcomm2024: RDMA over Ethernet for Distributed Al Training at Meta Scale

Elephant Flows

Even no clear definition, >1MB is usually considered as elephant flow.

Few connection & huge data volume → >1MB flow is common

"flows receiving more than 1048555 bytes (approximately 1 MB) will be identified as elephant flows. An elephant flow will time out from the ETRAP flow table if it has less than 500 bytes data over a period of 500 microseconds."

https://www.cisco.com/c/en/us/products/collateral/switches/nexus-9000-series-switches/white-paper-c11-738488.html

"For each burst, the intensity of each flow could reach up to the line rate of NICs."

Sigcomm2024: RDMA over Ethernet for Distributed Al Training at Meta Scale

Thanks!