The challenges of per-packet Load Balancing in AICN

Jieyu Li (China Mobile)

2024.09

Purpose

 About the part of load balancing challenges in AICN study item draft report^[1], one major comment is that it's inappropriate to put a unpublished experiment data into the report.

• This contribution intent to give a discussion about the related problem and experiment.

[1] https://mentor.ieee.org/802.1/dcn/24/1-24-0028-04-ICne-aicn-report-draft.pdf

Background

- Traditional ECMP-based per-flow load balancing solutions perform poorly in AICN
 - Severe hash collision due to the low entropy and high bandwidth AI traffic.
- Per-packet LB solution is widely considered as the technology trend to avoid per-flow LB's drawbacks for AI network
- Take further insights on the challenges of per-packet LB
 - The main side-effect of per-packet LB is causing packets of a flow arriving at receiver out of order, and the change from network in-order to out-of-order delivery makes some troubles:
 - Re-ordering

. . . .

Reliability problem: loss packet recovery

 This contribution mainly discuss the loss packet recovery problem under network out-oforder delivery.

Packet Loss Recovery

- Packet loss is inevitable, even in lossless RDMA network:
 - Queue overflow, caused by congestion.
 - Packet corruption, caused by bit error.
 - Silent packet loss, caused by some silent faults in switch/router.
- How to recover loss packet?
 - Link-level retransmission, not supported in DC ethernet yet.
 - End-to-end level retransmission, implemented in RDMA NIC.
- In commodity RDMA NIC, there are two general methods to trigger packet retransmission^[1]:
 - a) Receive out-of-order packets at the receiver.
 - Network provide in-order delivery.
 - Go-back-N, and Selective Retransmission protocol.
 - b) Wait for a timeout to expire at the sender^{[2].}
 - Network don't need provide in-order delivery.
 - Per-packet adaptive routing.

 In per-packet Load balancing (e.g., AR), if network no longer provide in-order delivery, RNIC can only rely on timeout mechanism to recover loss packet^[2].

[1] Gao Y X, Tian C, Chen W, et al. Analyzing and Optimizing Packet Corruption in RDMA Network[J]. Journal of Computer Science and Technology, 2022, 37(4): 743-762. [2] Hoefler T, Roweth D, Underwood K, et al. Datacenter ethernet and rdma: Issues at hyperscale[J]. arXiv preprint arXiv:2302.03337, 2023.

Experiment settings

• To verify the effect of packet loss under out-of-order delivery, compared with in-order delivery.

Topology

- There are two servers connected by an network impairment emulator, and each server is equipped with a Nvidia DPU (BlueField3).
- The network impairment emulator (BW=100Gbps) is used to cause packet loss in here.

Test case

- Generate RDMA flow in server A, set packet loss rate in network emulator, and record the flow completion time(FCT) under three condition:
 - 1. Enable RNIC Go-back-N protocol;
 - 2. Enable RNIC selective retransmission(SR) protocol;
 - 3. Enable RNIC adaptive routing(AR);

Retransmission is triggered by out-of-order packets

Retransmission is triggered by timeout.

Results

- Flow size=32MB
- Set packet loss rate=0.1%, the right figure show the cumulative probability distribution of FCT under four conditions.
 - Blue line: the reference with no packet loss, P99-FCT=3.6ms.
 - Orange line: enable Go-back-N, P99-FCT=5.8ms.
 - Red line: enable SR, P99-FCT=5.05ms.
 - Green line: enable AR, P99-FCT=7.8ms.
- The P99-FCT of AR is 34% higher than GBN, and 54% higher than SR.
- Change packet loss rate into 0.05% and 0.02%, as show in the right table, the P99-FCT of AR still obviously higher than non-AR conditions(GBN and SR).

Figure. The CDF of FCT under different protocols

Packet loss rate	Go-Back-N	SR	AR
0.02%	4.88ms	4.86ms	5.44ms (+11.4%,+11.9%)
0.05%	5.09ms	higher 4.98ms	6.65ms (+30.6%,33.5%)
0.1%	5.8ms	5.05ms	7.8ms (34.5%,+54.5%)

Table. The P99-FCT of different protocol under different loss rate

• Out-of-order delivery under packet spraying potentially has higher recovery time of loss packet than in-order delivery.

Thank You !