Study Item Proposal: Network for Al Computing

Lily Lyu (Huawei)

Jan 2024

Background

Al large model – new surge of Al computing

• Al large models show emergent abilities, attracting industry's attention.

Emergent abilities that are not present in smaller-scale models but are present in large-scale models, which are qualitative changes resulted by quantitative changes (training compute, number of model parameters and training dataset size)

--- Google&Standford, 2022

Al large models evolve very fast, requiring large scale network.

Network development

Industry activities:

- https://ultraethernet.org/
- IETF AI DC(datacenter) side meetings https://github.com/Yingzhen-ietf/AIDC-IETF117 https://github.com/Yingzhen-ietf/AIDC-IETF118

Nendica contributions:

- Requirements for Al Fabric
- Congestion Signaling (CSIG)
- Network for Al datacenters
- Load balancing challenges in Al fabric

There's a lot of interest in network improvement in order to support Al large model.

Important to Know How Al Works

DNN-based Architecture for deep learning (DNN: Deep Neural Network)

- ✓ Samples
- **Parameters**
- Gradients
- **√**

From Nendica contribution: "Network for Al datacenters"

Keys to AI Training:

- **Compute** (FLOPS, floating point operations per second) decides how fast to train a model.
 - Days trained * Number of GPUs * single GPU FLOPS ≈ (peta)FLOPS-day of model
- Memory size determines if the model can be trained.
 - Memory must be big enough to store model parameters and intermediate values generated during FWD and BWD.
 - Large model cannot fit into a single GPU memory, model parallelism has to be used.
- Parallelism enables model training.
 - Model parallelism and data parallelism

DP(data parallelism) =8, TP(tensor parallelism)=8,

PP(pipeline parallelism)=16

Example:

Important to Understand Communication in AI (1/3)

Overlap communication and computation as much as possible to optimize training.

- TP Communication is hard to be overlapped with computation.
- PP Communication can be overlapped with computation.
- DP Communication can be overlapped with computation.

TP/PP/DP may have overlap.

From Nendica contribution: "Network for Al datacenters"

Attn: attention

MPL: multilayer perceptron

Important to Understand Communication in AI (2/3)

AllReduce and AlltoAll are typical collective communication operations in Al training.

Important to Understand Communication in AI (3/3)

- Collective communication can have different implementations.
 - Needs comprehensive considerations (e.g. network topology, message size) to design proper implementation.

Need to Notice New Traffic Pattern

Sparse communication but requiring large bandwidth

- The distribution of traffic is regular in both space and time dimensions.
 - The flow of traffic is regular.
 - Communication pair is predictable.
 - Maximum number of connections on a GPU is TP-1+DP-1+1 (TP/DP/PP)
 - TP/DP/PP logical planes show periodic bursts of traffic.
 - The burst frequency: TP>PP>DP
 - Link is idle in most of time.

• Single GPU requires large bandwidth for traffic communication

Parallel Mode	Communication (1 GPU 1 time)		
TP	100s GB level		
PP	100s MB level		
DP	GB level		

• E.g. Meta uses 200Gbps per GPU(A100) in its LLM models.

MODEL NAME	RELEASE DATE	MODEL SIZE	DATASET SIZE	TRAINING ZETA (1E21) FLOPS	TRAINING HW (COMPUTE)	TRAINING HW (NETWORK)	(# GPUS X HOURS)
ОРТ	May 2022	175 B	300 B	430	1K A100	IB 200Gbps per GPU 25.6 TB/s bisection BW	800K
LLaMA	Feb 2023	65 B	1.4 T	600	2K A100	IB 200Gbps per GPU 51.2 TB/s bisection BW	1М
LLaMA2	July 2023	34 B	2 T	400	2K A100	RoCE 200Gbps per GPU 51.2 TB/s bisection BW	1М
LLaMA2	July 2023	70 B	2 T	800	2K A100	IB 200Gbps per GPU 51.2 TB/s bisection BW	1.7M

From https://www.nextplatform.com/2023/09/26/meta-platforms-is-determined-to-make-ethernet-work-for-ai/

Systematic View On AI Computing Network (1/2)

Systematic View On AI Computing Network (2/2)

Total compute = single GPU compute * Scale * Efficiency * Availability

Challenge:

Interconnection of large number of GPUs (K->10K->100K)

Consideration:

- Topology optimization for super-node and cluster network
 - Direct topology, e.g. torus, dragonfly+

Challenge:

Communication costs hinder linear expansion of computing power

Consideration:

Coordination between computing and network.

Computing

- · Decide compute resource
- Decide parallelism strategy

- Take first-aid action on in-flight traffic, absorbing unexpected burst.
 - Align FC/CC/AR with traffic policy
 - Coordinate FC/CC/AR

FC: flow control CC: congestion control AR: adaptive routing

Challenge:

Components in large scale system frequently fail.

Consideration:

- Combination of hot swap, automatic path migration, and checkpointing
- Backtracking to the last checkpoint has a high penalty
- Avoid it whenever possible with APM plus load balancing, followed by retransmission of lost packets
- Combine with AR for immediate response after failure detection

Ouote from Nendica contribution: "Network for Al datacenters'

Study Item Proposal

Study item: Al computing Network

Purpose:

- Understand the requirement of network for Al computing.
- Look for potential standardization opportunity in IEEE802.

Scope:

- Study main factors (parallelism, collective communication) in Al training which impact traffic.
- Analyze the major challenges for the network.
- Investigate future network technologies.
- Identify potential standard work.

Deliverables:

- Informal report documenting, including
 - Al computing network requirements and challenges
 - Potential technologies
 - Possible standardization needs
 - Work item proposal

Schedule:

- Start in Jan 2024
- Propose work item in March 2024

Leader:

Lily Lyu (Huawei)

Supporters:

José Duato (Royal Spanish Academy of Sciences)

Liang Guo (China Academy of Informational and

Communication Technology)

Jesús Escudero (UCLM)

Thank You!