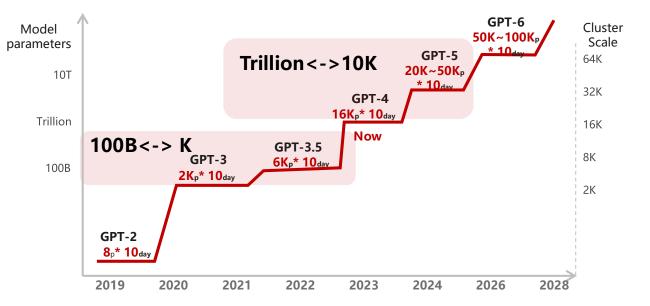
Study Item Proposal: Network for Al Computing

Lily Lyu (Huawei)

Jan 2024


Background

Al large model – new surge of Al computing

• Al large models show emergent abilities, attracting industry's attention.

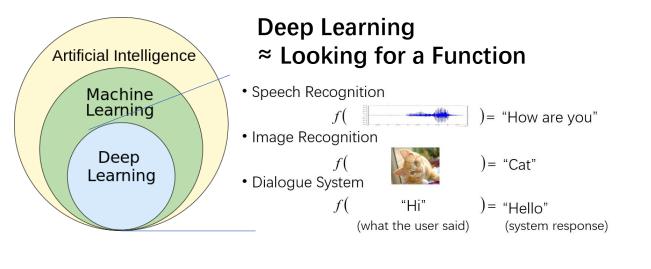
Emergent abilities that are not present in smaller-scale models but are present in large-scale models, which are qualitative changes resulted by quantitative changes (training compute, number of model parameters and training dataset size) --- Google&Standford, 2022

• Al large models evolve very fast, requiring large scale network.

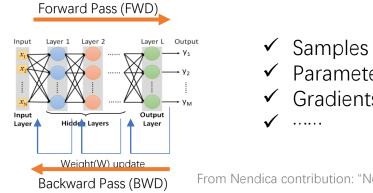
Network development

Industry activities:

UEC <u>https://ultraethernet.org/</u>


IETF AI DC side meetings
https://github.com/Yingzhen-ietf/AIDC-IETF117
https://github.com/Yingzhen-ietf/AIDC-IETF118

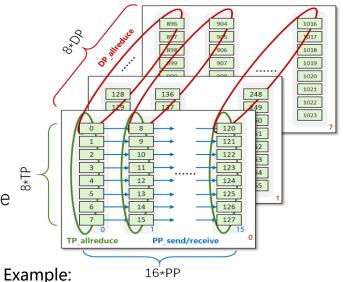
Nendica contributions:


- Requirements for AI Fabric
- Congestion Signaling (CSIG)
- Network for AI datacenters
- Load balancing challenges in AI fabric

There's a lot of interest in network improvement in order to support Al large model.

Important to Know How AI Works

DNN-based Architecture for deep learning (DNN: Deep Neural Network)

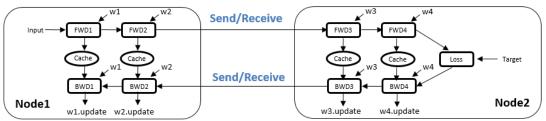


✓ Parameters Gradients

From Nendica contribution: "Network for Al datacenters"

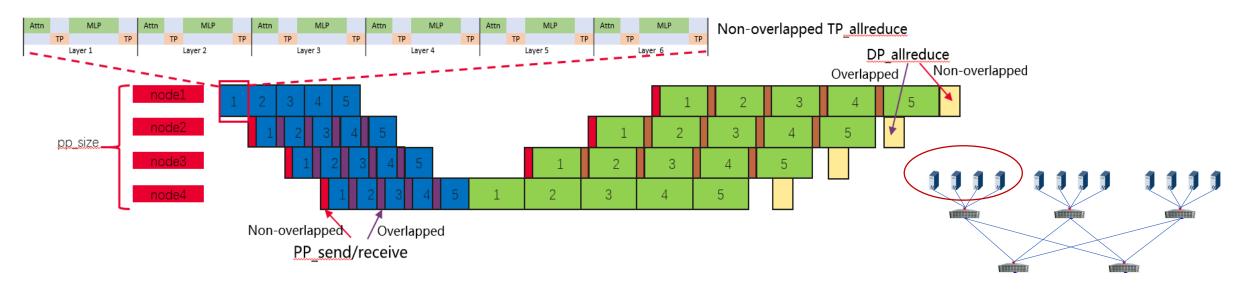
Keys to AI Training:

- **Compute** (FLOPS) decides how fast to train a model.
 - Days trained * Number of GPUs * single GPU FLOPS \approx (peta)FLOPS-day of model
- **Memory size** determines if the model can be trained.
 - Memory must be big enough to store model parameters and intermediate values generated during FWD and BWD.
 - Large model cannot fit into a single GPU memory, model parallelism has to be ٠ used.
- Parallelism enables model training.
 - Model parallelism and data parallelism

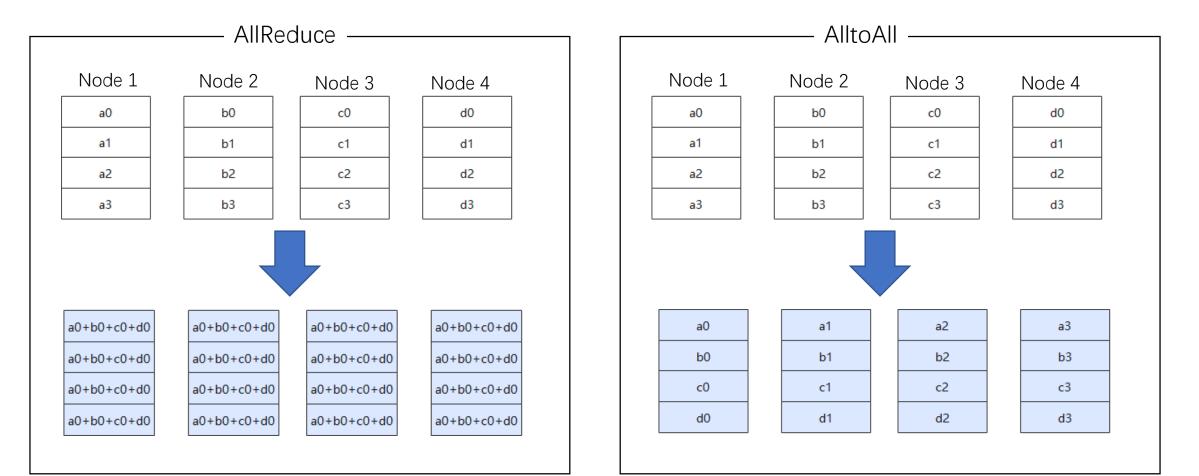

GPT3 175B, 1024 GPUs, DP=8, TP=8, PP=16

Important to Understand Communication in AI (1/3)

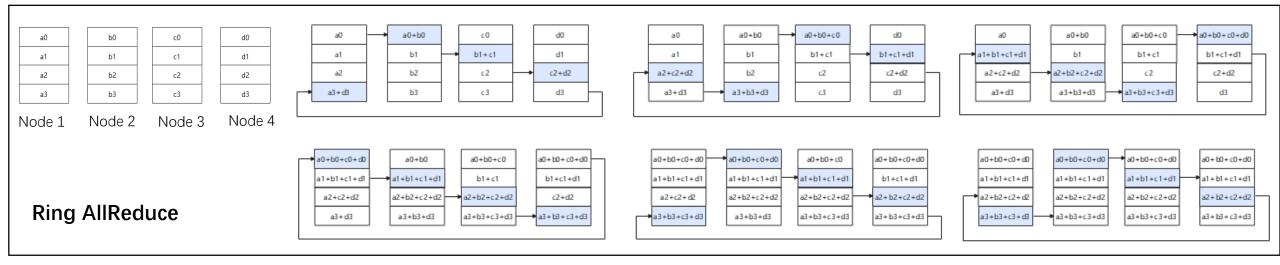
Overlap communication and computation as much as possible to optimize training.


- TP Communication is hard to be overlapped with computation.
- PP Communication can be overlapped with computation.
- DP Communication can be overlapped with computation.

TP/PP/DP may have overlap.


From Nendica contribution: "Network for AI datacenters"

Example:


Important to Understand Communication in AI (2/3)

• AllReduce and AlltoAll are typical collective communication operations in Al training.

Important to Understand Communication in AI (3/3)

- Collective communication can have different implementations.
 - Needs comprehensive considerations (e.g. network topology, message size) to design proper implementation.

aO

a1

a2+b2+c2+d2

a3+b3+c3+d3

Half Doubling AllReduce

aO	b0	c0	d0
a1	b1	c1	d1
a2	b2	c2	d2
a3	b3	c3	d3

Node 1 Node 2

2 Node 3 Node 4

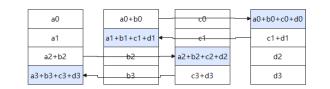
aO		a0+b0	c0		c0+d0
a1		a1+b1	c1	} →	c1+d1
a2+b2	•	b2	c2+d2	•	d2
a3+b3	•	b3	c3+d3	←	d3

a2+b2+c2+d2

a3+b3+c3+d3

a0+b0+c0+d0

a1+b1+c1+d1

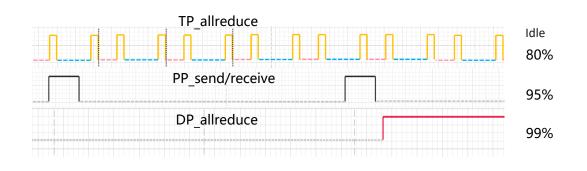

d2

d3

a0+b0+c0+d0

a1+b1+c1+d1

h3



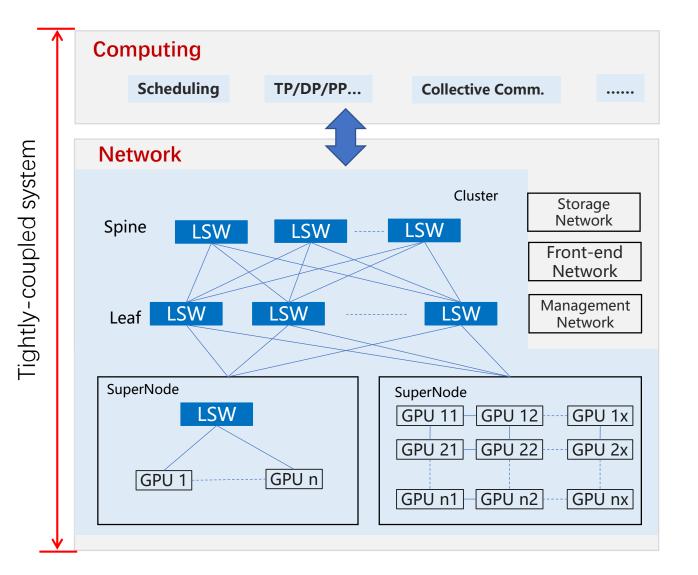
a0+b0+c0+d0	-	a0+b0+c0+d0	a0+b0+c0+d0	•	a0+b0+c0+d0
a1+b1+c1+d1	•	a1+b1+c1+d1	a1+b1+c1+d1	•	a1+b1+c1+d1
a2+b2+c2+d2		a2+b2+c2+d2	a2+b2+c2+d2		a2+b2+c2+d2
a3+b3+c3+d3		a3+b3+c3+d3	a3+b3+c3+d3		a3+b3+c3+d3

Need to Notice New Traffic Pattern

Sparse communication but requiring large bandwidth

- The distribution of traffic is regular in both space and time dimensions.
 - The flow of traffic is regular.
 - Communication pair is predictable.
 - Maximum number of connections on a GPU is TP-1+DP-1+1 (TP/DP/PP)
 - TP/DP/PP logical planes show periodic bursts of traffic.
 - The burst frequency : TP>PP>DP
 - Link is idle in most of time.

• Single GPU requires large bandwidth for traffic communication


Parallel Mode	Communication (1 GPU 1 time)			
ТР	100s GB level			
РР	100s MB level			
DP	GB level			

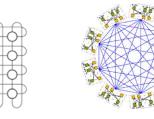
• E.g. Meta uses 200Gbps per GPU(A100) in its LLM models.

MODEL NAME	RELEASE DATE	MODEL SIZE	DATASET SIZE	TRAINING ZETA (IE21) FLOPS	TRAINING HW (COMPUTE)	TRAINING HW (NETWORK)	CPU HOURS (# CPUS X HOURS)
OPT	May 2022	175 B	300 B	430	1K A100	IB 200Gbps per GPU 25.6 TB/s bisection BW	800K
LLaMA	Feb 2023	65 B	1.4 T	600	2K A100	IB 200Gbps per GPU 51.2 TB/s bisection BW	١м
LLaMA2	July 2023	34 B	2 T	400	2K A100	RoCE 200Gbps per GPU 51.2 TB/s bisection BW	1М
LLaMA2	July 2023	70 B	2 T	800	2K A100	IB 200Gbps per GPU 51.2 TB/s bisection BW	1.7M

From <u>https://www.nextplatform.com/2023/09/26/meta-platforms-is-determined-to-make-ethernet-work-for-ai/</u>

Systematic View On AI Computing Network (1/2)

Systematic View On AI Computing Network (2/2)


Total compute = single GPU compute * Scale * Efficiency * Availability

Challenge:

 Interconnection of large number of GPUs (K->10K->100K)

Consideration:

- Topology optimization for super-node and cluster network
 - Direct topology, e.g. torus, dragonfly+

Challenge:

•

Communication costs hinder linear expansion of computing power

Consideration:

Coordination between computing and network.

Computing

- Decide compute resource
- Decide parallelism strategy
- Decide collective communication implementation

- Forward packets following traffic policy, balancing the load on network.
- Take first-aid action on in-flight traffic, absorbing unexpected burst.
 - Align FC/CC/AR with traffic policy
 - Coordinate FC/CC/AR

Challenge:

• Components in large scale system frequently fail.

Consideration:

- Combination of hot swap, automatic path migration , and checkpointing
- Backtracking to the last checkpoint has a high penalty
- Avoid it whenever possible with APM plus load balancing, followed by retransmission of lost packets
- Combine with AR for immediate response after failure detection

Quote from Nendica contribution: "Network for Al datacenters"

Study Item Proposal

Study item: AI computing Network

Purpose:

- Understand the requirement of network for AI computing.
- Look for potential standardization opportunity in IEEE802.

Scope:

- Study main factors (parallelism, collective communication) in AI training which impact traffic.
- Analyze the major challenges for the network.
- Investigate future network technologies.
- Identify potential standard work.

Leader:

Lily Lyu (Huawei)

Supporters:

José Duato (Royal Spanish Academy of Sciences)

Liang Guo (China Academy of Informational and Communication Technology)

Jesús Escudero (UCLM)

Thank You!