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Motivation

• Understand what is an AI datacenter and how the emerging 
applications impact the network requirements. 

• Encourage more discussions in this area to get consensus on 
what kind of network is needed.

• Standardize potential (new) technologies to build the large 
network on an open eco-system. 



Expected Demand
• The last decade has witnessed a very rapid expansion of many DNN-based AI 

solutions

• Regardless of where they are deployed, cloud datacenters are massively used for 
AI training

• The release of ChatGPT in Nov 2022 has garnered unprecedented attention, and 
triggered the recent boom of large language models (LLMs).

• Huge datacenters are exclusively devoted to AI training and inference, and more 
are planned

• Expected size is on the order of 200K+ servers

Model Falcon_40B GPT3_175B GPT4_1.8T

Token Number 1 T 300 B 13 T

Training Time 2 months 34 days 100 days



DNN-based AI Training
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Parallelism in AI Training

• Data parallelism

– Massive parallelism: Batches are independent from each other

• Pipeline parallelism 

– Implemented when model does not fit into CPU/GPU 
memory

– It is indeed two pipelines in opposite direction, where 
each pair of stages (one from each pipeline) need to 
share memory

– Implemented with a multicore CPU/GPU with half the 
cores devoted to each of the pipelines

• Tensor parallelism
– Samples processed in batches (matrix-matrix instead of matrix-

vector)

– Tensor parallelism is critical to maximize data reuse, increasing 
performance and energy efficiency

– Benefits of tensor parallelism are maximized through scale-up 
technologies

• Expert parallelism

– Multiple experts are used to expand AI model parameters. 
Normally only one of a few of them will be running. 

DP illustration in NN

PP illustration in NN

TP illustration in NN

EP illustration in NN



Collective Communication in AI Training 

AllReduce AlltoAll

• Collective communication is defined as communication that involves a group 
of processors. It used to be in MPI, including one to many, many to one or 
many to many communications.

• Modern distributed AI training relies on parallelism, that requires collective 
communication to achieve high performance.

• AllReduce and AlltoAll are typical collective communication operations in AI 
training.



Communication Requirements for DP
• Data parallelism

– High bandwidth from secondary storage to CPUs/GPUs (for batch reading)

– Achievable by connecting groups of SSDs and CPUs/GPUs to the same switch, 
in a balanced manner

– Gradient exchanges among servers, mostly by means of calls to AllReduce

– High bandwidth requirements. Latency also matters
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Communication Requirements for MP
Depend on how the model is partitioned: Vertical slices is most usual
• Pipeline parallelism

– Split the neural network into vertical slices (each slice containing several consecutive layers)

– The results from each slice only need to be transmitted to the next pipeline stage

– Just requires a ring topology (or a topology embedding it)

– Huge bandwidth and very low latency are required

– Latency can be partially hidden thanks to batch processing

• Tensor parallelism

– Parallelism available within each pipeline stage (to be accurate, within each DNN layer)

– When processing batches, each layer requires a matrix-matrix product (both in FWD and BWD)

– This is where GPUs with tensor cores shine thanks to massive data reuse

– Each matrix element is reused as many times as rows/columns exist in the other matrix
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Viable implementations - Topology and 
Collective Communication Optimizations

• A ring can be simply embedded into a switch

– Multi-port NICs or multiple NICs per server may be needed to achieve the required bandwidth

– Attaching servers to the same switch also helps reducing latency (assuming that the required number of 
servers does not exceed the number of ports)

• The reduce phase of AllReduce can be implemented in software (possibly, with support in the NIC) 
in log time with a fat tree

– Recursive reduce. A tree is required for each reduction, but many reductions occur in parallel

– The communication is faster if different servers collect the results for different reductions

• The broadcast phase of AllReduce requires a topology with full bisection bandwidth (fat tree)

– But a tree would suffice if hardware support for broadcast was available

• Topology is less important than server bandwidth and switch/NIC features (e.g. hardware-
supported broadcast)



Realistic scenario

• The datacenter may not be exclusively devoted to AI training →
application mix with very different communication requirements

• Task-to-server allocation and collective communication may not be 
fully optimized

• Most importantly, for 200K+ servers, components will frequently 
fail



Consequences

• Application mix
– Not all traffic is collective communication 
– Network congestion and HoL blocking will occur

• Allocation and communication not optimized
– Unbalanced resource utilization
– Likely, network congestion and HoL blocking

• Components will frequently fail
– Solutions are required: combination of hot swap, 

automatic path migration (APM), and checkpointing
– Those solutions (especially APM) will unbalance traffic



Potential solutions

• Load balancing

– Load-aware packet-level load balancing mechanisms will significantly 
help to eliminate bottlenecks and fully utilize existing bandwidth

– Mandatory when implementing APM to balance traffic among the 
remaining healthy paths

• Adaptive routing with congestion control

– Adaptive routing may be used together with load balancing to further 
alleviate in-network congestion, especially when produced by faulty 
components

– Adaptive routing should only be used for in-network congestion, but 
never for incast congestion

– Thus, incast congestion still requires congestion control

– Incast congestion will likely occur during AllReduce



Why Two Similar Mechanisms(LB vs. AR)?

• Load balancing (LB) is better suited for regular, massive traffic

• Adaptive routing (AR) dynamically avoids congested network regions and 
it is best suited for very random or time-varying traffic

• Network load may vary so fast that load-aware LB may not adapt fast 
enough. In that case, AR achieves a very fast local response and quickly 
avoids rapidly arising congestion scenarios

• When a network component fails, the packets crossing the faulty 
component will be lost but will be re-transmitted

– A fast response mechanism to guide the re-transmitted packets through an 
alternative healthy path is needed. AR takes into account local faulty 
components when selecting the switch output port

– Faulty component information will later reach source NICs, and they will use it 
so that load- (and faulty-)aware LB makes the right decisions



Additional considerations

• Not all the mechanisms have the same response time

– Adaptive routing reacts much faster than e2e congestion control 
and load-aware load balancing

– Load balancing reacts faster than APM

• Not all the solutions have the same penalty

– Backtracking to the last checkpoint has a high penalty

– Avoid it whenever possible with APM plus load balancing, 
followed by retransmission of lost packets

– Combine with AR for immediate response after failure detection



Summary & Next Steps

• Network requirements for AI datacenters have been introduced.

• Viable implementations in industry to meet AI training
requirements have been shown.

• Realistic scenarios which request LB/AR/CC cooperation in addition 
to those viable implementations have been described.

• Next step: 

– Further analysis on topology/collective communication impact on 
datacenter network technologies. 

– Encourage more contributions in AI datacenters, and seek for potential 
standardization opportunities. 


