Source Flow Control (SFC)

Jeongkeun "JK" Lee
Principal Engineer, Intel
jk.lee@intel.com

Paul Congdon
CTO, Tallac Networks
paul.congdon@tallac.com

Agenda

- Background
- Source Flow Control (SFC)
- Performance results
- Proposed changes to Qcz

Types of congestion in data centers

- Uplink/core
 - Cause: ECMP/LAG hash collision
 - Worse at oversubscribed networks
 - Governs median latency

Incast

- Cause: many-to-one traffic pattern
- Mostly at the last-hop
- Governs max/tail latency
- Receiver NIC
 - Cause: slow software/CPU, PCIe bottleneck

Solution space

- E2e congestion control
 - Principal
 - 1. Detect congestion anywhere in e2e path
 - 2. from forward-direction data pkts
 - 3. respond at senders by adjusting TX rates
 - Part of e2e transport such as TCP, QUIC, RoCEv2
- Hop-by-hop flow control
 - Signal previous hop queue xon/xoff
 - Example: PFC
 - Goal: lossless Ethernet (Layer 2)
 - Stops upstream queues when the buffer is nearly full
 - Incurs side effects, e.g., head-of-line blocking (HoL), PFC storm, deadlock

Need for a new edge-to-edge flow control

Source Flow Control (SFC)

What is SFC?

- Edge-to-Edge signaling of congestion
- Flow control that instantly 'flattens the curve'
- Signaling + 'source' flow ctrl all in sub-RTT

SFC is/does not

- aim 100% lossless vs min switch buffering
- e2e congestion ctrl vs NIC flow ctrl
- **■** Pause Agg/Core switches → no PFC side effects
- Need greenfield deployment → ToR-only upgrade

Source Flow Control (SFC)

What is SFC?

- Edge-to-Edge signaling of congestion
- Flow control that instantly 'flattens the curve'
- Signaling + 'source' flow ctrl all in sub-RTT

SFC is/does not

- aim 100% lossless vs min switch buffering
- e2e congestion ctrl vs NIC flow ctrl
- Pause Agg/Core switches → no PFC side effects
- Need greenfield deployment → ToR-only upgrade

FAQs

Why *not* E2E congestion control?

- Faster link speed → shorter RTTs to finish a message → need sub-RTT reaction
- E2E CC relies on forward signal, packets carrying the signals delayed by the congestion
- Cannot react to incast, sudden congestion

Why not just 'backward' CNP from switches?

- CNP cuts rate by half → need multiple RTTs to flatten down the curve
- CNP reaction by sender NIC on TX wire can be slow, up to 24us
- Note) PFC reaction time: sub-microsecond by IEEE 802.1Qbb

intel

SFC data plane behavior (simplified)

Ingress Pipeline

Rcv host data data packet SFC Trigger packet Receiver-side 3. **SFC Pause Packet** ToR Mirror or Builder pkt-gen Spine SFC 4. switch pause pkt L3 routing Sender-side Snd host **SFC** ToR **Convert SFC Pause**

queueing

Egress Pipeline

Packet to PFC

system

pause pkt

Testbed topology w/ Tofino switches

Flow Completion Time

Queue Depth Reports

Information to carry in 802.1 Qcz header

- Critical for the minimal 'remote PFC' mode (SFC converting to PFC)
 - Source and destination IPs of the data pkt
 - SRC IP for reverse forwarding
 - DST IP for caching
 - We can simply swap the IPs in the SFC pause packet
 - DSCP, as needed to identify the PFC priority @ sender NIC
 - Pause time duration = drain time to reach the target queue level
- Additional info for true 'source' flow control
 - More tuples of the data pkt, e.g., L4 ports, to identify the sender flow/connection
 - Note) L4 congestion control becoming part of NIC HW

Barefoot Switching Division intel

Leveraging the Qcz Congestion Isolation Message

- Qcz CIM has Layer-2 and Layer-3 formats
- The CIM PDU contains enough of the payload to identify the offending flow
- Carrying the needed information:
 - Src / Dest IP addresses
 - DSCP
 - Additional tuples of the data pkt
- What's missing?
 - Pause time
 - Simplified format of above information (i.e not MSDU)
 - Selection of CIM Destination IP (NOT previous hop)

Table 47-2—IPv4 layer-3 CIM Encapsulation

	Octet	Length
PDU EtherType (08-00)	1	2
IPv4 Header (IETF RFC 791)	3	20
UDP Header (IETF RFC 768)	23	8
CIM PDU	31	65-529

Table 47-4—CIM PDU

	Octet	Length
Version	1	4 bits
Reserved	1	3 bits
Add/Del	1	1 bit
destination_address	2	6
source_address	8	6
vlan_identifier	14	12 bits
Encapsulated MSDU length	16	2
Encapsulated MSDU	18	48-512
	J	

Config parameters

- Ports and queues to monitor by SFC
- DSCP code points to trigger SFC for

- SFC trigger condition
 - Threshold against queue length, e.g., max ECN threshold
- Parameter for pause time
 - Target qdepth to drain, e.g., min ECN threshold
- SFC suppression, to avoid SFC for every data pkt
 - Suppression timer

Barefoot Switching Division intel

Simulation setup

Custer: 3-tier, 320 servers, full bisection, 12us base RTT

Switch buffer: 16MB, Dynamic Threshold

Congestion control: DCQCN+window, HPCC

SFC Parameters

SFC trigger threshold = ECN threshold = 100KB, SFC drain target = 10KB

Workload: RDMA writes

- <u>50% Background load</u>: shuffle, msg size follows public traces from RPC, Hadoop, DCTCP
- <u>8% incast</u> bursts: 120-to-1, msg size 250KB, synchronized start within 145us

Metrics

- FCT slowdown: FCT normalize to the FCT of same-size flow at line rate
- Goodput, switch buffer occupancy

Barefoot Switching Division intel

Large Scale Simulation with RPC Workload

HPCC (INT-based High-Precision Congestion Control)