IEEE 802 Nendica Report:
Intelligent Lossless Data Center Networks

Editor

<table>
<thead>
<tr>
<th>Name</th>
<th>Affiliation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Guo, Liang</td>
<td>CCI/ODCC</td>
</tr>
<tr>
<td>Congdon, Paul</td>
<td>Huawei</td>
</tr>
</tbody>
</table>

Nendica Chair

<table>
<thead>
<tr>
<th>Name</th>
<th>Affiliation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marks, Roger</td>
<td>Huawei</td>
</tr>
</tbody>
</table>

Contributors/Supporters

<table>
<thead>
<tr>
<th>Name</th>
<th>Affiliation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Li, Jie</td>
<td>CCI/ODCC</td>
</tr>
<tr>
<td>Gao, Feng</td>
<td>Baidu</td>
</tr>
<tr>
<td>Gu, Rong</td>
<td>China Mobile</td>
</tr>
<tr>
<td>Zhao, Jizhuang</td>
<td>China Telecom</td>
</tr>
<tr>
<td>Chen, Chuansheng</td>
<td>Tencent</td>
</tr>
<tr>
<td>Yin, Yue</td>
<td>Huawei</td>
</tr>
<tr>
<td>Song, Qingchun</td>
<td>Mellanox</td>
</tr>
<tr>
<td>Lui, Jun</td>
<td>Cisco</td>
</tr>
<tr>
<td>He, Zongying</td>
<td>Broadcom</td>
</tr>
<tr>
<td>Sun, Liyang</td>
<td>Huawei</td>
</tr>
</tbody>
</table>
Trademarks and Disclaimers
IEEE believes the information in this publication is accurate as of its publication date; such information is subject to change without notice. IEEE is not responsible for any inadvertent errors.

Copyright © 2020 IEEE. All rights reserved.

IEEE owns the copyright to this Work in all forms of media. Copyright in the content retrieved, displayed or output from this Work is owned by IEEE and is protected by the copyright laws of the United States and by international treaties. IEEE reserves all rights not expressly granted.

IEEE is providing the Work to you at no charge. However, the Work is not to be considered within the “Public Domain,” as IEEE is, and at all times shall remain the sole copyright holder in the Work.

Except as allowed by the copyright laws of the United States of America or applicable international treaties, you may not further copy, prepare, and/or distribute copies of the Work, nor significant portions of the Work, in any form, without prior written permission from IEEE.

Requests for permission to reprint the Work, in whole or in part, or requests for a license to reproduce and/or distribute the Work, in any form, must be submitted via email to stds-ipr@ieee.org, or in writing to:

IEEE SA Licensing and Contracts
445 Hoes Lane
Piscataway, NJ 08854

Comments on this report are welcomed by Nendica: the IEEE 802 “Network Enhancements for the Next Decade” Industry Connections Activity: <https://1.ieee802.org/802-nendica>

Comment submission instructions are available at: <https://1.ieee802.org/802-nendica/nendica-dcn>
NOTICE AND DISCLAIMER OF LIABILITY CONCERNING THE USE OF IEEE SA INDUSTRY CONNECTIONS DOCUMENTS

This IEEE Standards Association ("IEEE SA") Industry Connections publication ("Work") is not a consensus standard document. Specifically, this document is NOT AN IEEE STANDARD. Information contained in this Work has been created by, or obtained from, sources believed to be reliable, and reviewed by members of the IEEE SA Industry Connections activity that produced this Work. IEEE and the IEEE SA Industry Connections activity members expressly disclaim all warranties (express, implied, and statutory) related to this Work, including, but not limited to, the warranties of: merchantability; fitness for a particular purpose; non-infringement; quality, accuracy, effectiveness, currency, or completeness of the Work or content within the Work. In addition, IEEE and the IEEE SA Industry Connections activity members disclaim any and all conditions relating to: results; and workmanlike effort. This IEEE SA Industry Connections document is supplied “AS IS” and “WITH ALL FAULTS.”

Although the IEEE SA Industry Connections activity members who have created this Work believe that the information and guidance given in this Work serve as an enhancement to users, all persons must rely upon their own skill and judgment when making use of it. IN NO EVENT SHALL IEEE OR IEEE SA INDUSTRY CONNECTIONS ACTIVITY MEMBERS BE LIABLE FOR ANY ERRORS OR OMISSIONS OR DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO: PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS WORK, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE AND REGARDLESS OF WHETHER SUCH DAMAGE WAS FORESEEABLE.

Further, information contained in this Work may be protected by intellectual property rights held by third parties or organizations, and the use of this information may require the user to negotiate with any such rights holders in order to legally acquire the rights to do so, and such rights holders may refuse to grant such rights. Attention is also called to the possibility that implementation of any or all of this Work may require use of subject matter covered by patent rights. By publication of this Work, no position is taken by the IEEE with respect to the existence or validity of any patent rights in connection therewith. The IEEE is not responsible for identifying patent rights for which a license may be required, or for conducting inquiries into the legal validity or scope of patents claims. Users are expressly advised that determination of the validity of any patent rights, and the risk of infringement of such rights, is entirely their own responsibility. No commitment to grant licenses under patent rights on a reasonable or non-discriminatory basis has been sought or received from any rights holder. The policies and procedures under which this document was created can be viewed at http://standards.ieee.org/about/sasb/iccom/.

This Work is published with the understanding that IEEE and the IEEE SA Industry Connections activity members are supplying information through this Work, not attempting to render engineering or other professional services. If such services are required, the assistance of an appropriate professional should be sought. IEEE is not responsible for the statements and opinions advanced in this Work.
TABLE OF CONTENTS

1. INTRODUCTION ... 2
 Scope .. 2
 Purpose ... 2

2. BRINGING THE DATA CENTER TO LIFE 2
 A new world with data everywhere 2
 Today’s data center enables the digital real-time world 4

3. EVOLVING DATA CENTER REQUIREMENTS AND TECHNOLOGY 6
 Technology evolution .. 6
 Network requirements .. 10

4. CHALLENGES WITH TODAY’S DATA CENTER NETWORK 16
 High bandwidth and low latency tradeoff 16
 Deadlock free lossless network ... 16
 Congestion control issues in large-scale data center networks ... 16
 Configuration complexity of congestion control algorithms 17

5. NEW TECHNOLOGIES TO ADDRESS NEW DATA CENTER PROBLEMS .. 17
 Approaches to PFC storm elimination 17
 Improving Congestion Notification .. 17
 Intelligent congestion parameter optimization 17

6. STANDARDIZATION CONSIDERATIONS 18

7. CONCLUSION ... 18

8. CITATIONS .. 18
1 Introduction

<<Editor’s notes will be noted inside these marking and removed in future drafts>>

<<short intro and the more detailed background intro is section 2. This will be written near the end>>

This paper is an update to IEEE 802 Nendica Report: The Lossless Network for Data Centers published on August 17, 2018 [1]. This update provides additional background on evolving use cases in modern data centers and proposes solutions to new problems identified by this paper.

Scope

The scope of this report includes...

Purpose

The purpose of this report is to ...

2 Bringing the data center to life

A new world with data everywhere

<<

✓ Enterprise digital transformation needs more data for using AI
✓ Machine translation and search engines need to be able to process huge data simultaneously
✓ The era of internet celebrity webcast, all-people online games, data explosion
✓ Consumption upgrade in the new era of take-out, online takeout platform schedule and deliver massive orders
✓ The XX service of the carrier has higher requirements on data center network
✓ Data-based New World Requires Ubiquitous Data Center Technologies.

>>

Digital transformation is driving change in both our personal and professional lives. Work flows and personal interactions are turning to digital processes and automated tools that are enabled by the Cloud, Mobility, and the Internet of Things. The Intelligence behind the digital transformation is Artificial Intelligence (AI). Data centers running AI applications with massive amounts of data are recasting that data into pertinent timely information, automated human interactions, and refined
decision making. The need to interact with the data center in real-time is more important than ever in today’s world where augmented reality, voice recognition, and contextual searching demand immediate results. Data center networks must deliver unprecedented levels of performance and reliability to meet these real-time demands.

For high-performance applications, such as AI, key measures for network performance include throughput, latency, and congestion. Throughput is dependent on the total capacity of the network for quickly transmitting a large amount of data. Latency refers to the total delay on the network when performing a transaction across the data center network. When the traffic load exceeds the network capacity, congestion occurs. Packet loss is a factor that seriously affects both throughput and latency. Data loss in a network may cause a series events that deteriorate performance. For example, an upper-layer application may need to retransmit lost data in order to continue. Retransmissions can increase load on the network, causing further packet loss. In some applications, delayed results are not useful, and the ultimate results can be discarded, thus wasting resources. In other cases, the delayed result is just a small piece of the puzzle being assembled by the upper-layer application that has now been slowed down to the speed of the slowest worker. More seriously, when an application program does not support packet loss and cannot be restored to continue, a complete failure or damage can be caused.

Data centers ultimately deliver the services in this era of digital transformation to our real-time digital lives. The combination of high-speed storage and AI distributed computing render big data into fast data, access by humans, machines, and things. A high-performance, large scale data center network without packet loss is critical to the smooth operation of the modern data center.

![Data Center Diagram]

Figure 1 - How the Data Center enables our real-time digital lives
Today’s data center enables the digital real-time world

Currently, digital transformation of various industries is accelerating. According to analysis data, 64% of enterprises have become the explorers and practitioners of digital transformation <<IDC reference>>. Among 2000 multinational companies, 67% of CEOs have made digitalization the core of their corporate strategies <<Gartner reference>>.

A large amount of data will be generated during the digitalization process, becoming a core asset, and enabling a new emergence of Artificial Intelligence Applications as seen in Figure W. Huawei GIIV predicts that the data volume will reach 180 ZB in 2025 <<Huawei reference>>. However, data is not the “end-in-itself”. Knowledge and wisdom extracted from data are eternal values. However, the proportion of unstructured data (such as raw voice, video, and image data) increases continuously, and will reach over 95% in the future. The current big data analytics method is helpless. If manual processing is used, the data volume will be far greater than the processing capability of all human beings. The AI algorithm based on machine computing for deep learning can filter out massive invalid data and automatically reorganize useful information, providing more efficient decision-making suggestions and smarter behavior guidance.

Figure 2 – Emerging Artificial Intelligence Applications

AI applications are emerging everywhere, as shown in Figure 2.
Cloud data centers improve the performance of these applications. Cloud data centers are designed to scale and act more like a service support center. They are application-centric and use the cloud platform to quickly distribute IT resources. While the data centers are application centric, they are founded on big data as shown in Figure 3.

So, within data centers, understanding how to efficiently process data based on the needs of different applications is a key focus area. Data centers must know where to reserve storage in order to efficiently transmit the data to the computing engines of the applications.

<< Notes:

✓ **AI related services**: AI cloud data center improves these applications performance: smart manufacturing/finance/energy/transportation (cloud data centers go to AI era. A cloud data center is more like a service support center. It is application-centric and uses the cloud platform to quickly distribute IT resources. The data center for AI services evolves into a business value center based on the cloud data center. The data center focuses on how to efficiently process data based on AI)

✓ **Distributed storage**: Stay ahead of rapid storage growth driven by new data sources and evolving technologies, a flexible storage efficiency is critical for customers to maximize the revenue of every bit. The development of high speed storage technology will help users to access the content more conveniently. Other data center technologies should be evolved together with distributed storage to ensure customers can obtain high input and output speed.

✓ **Cloud Database**: A cloud database may be a native service within a public cloud provider, or it may be a database from a cloud agnostic software vendor, designed for cloud architectures and requirements. Data centers make use of new technologies to address distributed cloud databases modern high performance application requirements.

>>
Evolving data center requirements and technology

Technology evolution

Take AI training of self-driving cars as an example, the deep learning algorithm relies heavily on massive sample data and high-performance computing capabilities. Training data collected is close to the P level (1PB = 1024 TB) per day. If traditional hard disk storage and common CPUs are used to process the data, it takes at least one year to complete the training, which is almost impossible. To improve AI data processing efficiency, revolutionary changes are occurring in the storage and computing fields. The development of high-speed storage technology will help users to access the content more conveniently. Other data center technologies should be evolved together with distributed storage to ensure customers can obtain high input and output speed. Storage performance needs to improve by an order of magnitude to achieve more than 1 million input/output operations per second (IOPS) [Jim Handy, Thomas Coughlin. SNIA Survey: Users Share Their Storage Performance Needs. 2014 SNIA].

Storage media evolve from HDDs to SSDs to meet real-time data access requirements, reducing the medium latency by more than 100 times. With the significant improvement of storage media and computing capabilities, the current network communication latency becomes the bottleneck of further performance improvement in high-performance data center clusters. The communication latency accounts for more than 60% of the total storage E2E latency, that is, more than half of the time of precious storage media is idle.

Figure Z – Network performance becomes the shortest plank

In general, with the evolution of storage media and computing processors, the communication duration accounts for more than 50% of the total communication duration, hindering the further improvement of computing and storage efficiency. [AI, This Is the Intelligent and Lossless Data Center Network You Want. https://www cio com/article/3347337/ai-this-is-the-intelligent-and-lossless-data-center-network-you-want html]. Only when the communication duration is reduced close to time cost of computing and storage, the ‘short planks’ in the bucket principle can be
eliminated (see in Figure Z), and the computing and storage performance can be effectively improved.

✓ The development of fast storage provides necessary media for big data (distributed storage)
 • Storage performance needs to improve by an order of magnitude to achieve more than 1 million input/output operations per second (IOPS).
 • Communication latency has recently increased from 10% to 60% of storage E2E latency.
✓ Computing speed improvement (distributed computing)

AI computing model complexity is exploding

AI training is becoming increasingly complex with the development of services. For example, there are 7 ExaFLOPS and 60 million parameters in the Microsoft Resnet in 2015. The number came to 20 ExaFLOPS and 300 million parameters when Baidu trained their deep speech system in 2016. In 2017, the Google NMT used 105 ExaFLOPS and 8.7 billion parameters. [Ettikan Kandasamy Karuppiah. REAL WORLD PROBLEM SIMPLIFICATION USING DEEP LEARNING / AI.2017].

AI inference is the next great challenge so there must be an explosion of network design. The new characteristics of AI algorithm and huge computing workload require evolution of data center network.

Characteristics of AI computing

Traditional data center services (web, video, and file storage) are transaction-based and the calculation results are deterministic. For such tasks, there is no correlation or dependency between single calculation and network communication, and the occurrence time and duration of the entire calculation and communication are random. AI computing is based on target optimization and

$$\arg \max_{\theta} L(\{x_i, y_i\}_{i=1}^N ; \theta) + \Omega(\theta)$$

Figure B - Machine learning algorithm
iterative convergence is required in the computing process, which causes high spatial correlation in the computing process of AI services and temporally similar communication modes.

A typical AI algorithm refers to an optimization process for a target. The computing scale and features mainly involve models, input data, and weight parameters.

To solve the Big Data problem, the computing model and input data need to be large (for a 100 MB node, the AI model for 10K rules requires more than 4 TB memory), for which a single server cannot provide enough storage capacity. In addition, because the computing time needs to be shortened and increasingly concurrent AI computing of multiple nodes is required, DCNs must be used to perform large-scale and concurrent distributed AI computing.

Distributed AI computing has the following two modes: model parallel computing and data parallel computing. For model parallel computing, each node computes one part of the algorithm. After computing is complete, all data fragmented across models needs to be transferred to other nodes, as shown in Figure C.

For parallel data computing, each node loads the entire AI algorithm model. Multiple nodes can calculate the same model at the same time, but only part of the input data is input to each node. When a node completes a round of calculation, all relevant nodes need to aggregate updated information about obtained weight parameters, and then obtain the corresponding globally updated data. Each weight parameter update requires that all nodes upload and obtain the information synchronously.

No matter the development of distributed storage or distributed AI training, data center network comes to the communication pressure. The waiting time for GPU communication exceeds 50% of the job completion time [Omar, NANOG 76].
Cloud-based AI platforms
- Combines CPUs, storage and networking to simulate cognitive functions such as problem-solving, learning, reasoning, social intelligence
- Data Center resource planning and utilization are critical to success

SmartNIC become the computer in front of computer
- SmartNIC is a NIC with all NIC functions regardless CPU/FPGA. Host CPU only request to install NIC driver.
- SmartNIC has independent OS and is able to run some applications independently.
 - SmartNIC can be used to accelerate application
 ▪ Accelerate computing, storage...
 - SmartNIC can be used to offload host CPU to run specific application more efficient
 - SmartNIC is part of computing resource. Participate the application computing together with host CPU and GPU.
 ▪ Complement of CPU and GPU computing resource
 ▪ SmartNIC is not the replacement of CPU and GPU, major applications still run on CPU/GPU
 - SmartNIC can be the independent domain than host domain and protect the host domain
 ▪ Offload OVS to SmartNIC to isolate the data classification from hypervisor
 - SmartNIC can be emulated to other PCIe devices to support more advanced application
 ▪ NVMe emulation
- SmartNIC is programmable and easy use
 - Open source software, major Linux
 - Easy to program, no special request for programmer
- SmartNIC is not proprietary NIC, one NIC fits many applications, easy for user to program
Network requirements

✓ New protocol is widely used for high performance

RDMA (Remote Direct Memory Access) is a new technology designed to solve the problem of server-side data processing latency in network applications, which transfers data directly from one computer's memory to another without the intervention of both operating systems. This allows for high bandwidth, low latency network communication and is particularly suitable for use in massively parallel computer environments. By transferring telegrams directly into the storage space of the other computer through the network, data can be quickly transferred from one system to the storage space of another system, reducing or eliminating the need for multiple copies of data telegrams during transmission, thus freeing up memory bandwidth and CPU cycles and greatly improving system performance. Figure E shows the principle of RDMA protocol.

RDMA's development in the transport layer/network layer currently goes through 3 technologies, Infiniband, iWarp and RoCEv1/RoCEv2.

Infiniband

In 2000, the IBTA (InfiniBand Trade Association) released the first RDMA technology, Infiniband, which is a customized network technology for RDMA multi-layered, new design from the hardware perspective to ensure the reliability of data transmission. The InfiniBand technology uses RDMA technology to provide direct read and write access to remote nodes. RDMA used InfiniBand as the transport layer in its early days, so it must use InfiniBan switches and InfiniBan network cards to implement.

iWarp (Internet Wide Area RDMA Protocol)
Internet wide area RDMA protocol, also known as RDMA over TCP protocol, is the IEEE/IETF proposed RDMA technology. It uses the TCP protocol to host the RDMA protocol. This allows RDMA to be used in a standard Ethernet environment (switch) and the network card requirement is an iWARP enabled network card. In fact iWARP can be implemented in software, but this takes away the performance advantage of RDMA.

RoCE (RDMA over Converged Ethernet)

In April 2010, the IBTA released RoCEv1, which was released as an add-on to the Infiniband Architecture Specification, so it is also known as IBoE (InfiniBand over Ethernet). The RoCE standard replaces the TCP/IP network layer with an IB network layer on top of the Ethernet link layer and does not support IP routing. The Ethernet type is 0x8915. In RoCE, the link layer header of the infiniband is removed and the GUID used to represent the address is converted to an Ethernet MAC. infiniband relies on lossless physical transport, and RoCE relies on lossless Ethernet transport.

RoCEv2

Since the RoCEv1 data frame does not have an IP header, it can only communicate within a 2-tier network. To solve this problem, in 2014 IBTA proposed RoCE V2, which extends RoCEv1 by replacing GRH (Global Routing Header) with a UDP header + IP header. Because RoCE v2 packets are routable at Layer 3, they are sometimes referred to as "Routable RoCE" or "RRoCE" for short. As shown in the figure below.

RoCE technology can be implemented through a common Ethernet switch, but the server needs to support RoCE network cards. Since RoCEv2 is a UDP protocol, although the UDP protocol is relatively high efficiency, but unlike the TCP protocol, there is a retransmission mechanism to ensure reliable
transmission, once there is a packet loss, must rely on the upper layer of the application found and then do retransmission, which will greatly reduce the transmission efficiency of RDMA. So in order to play out the true effect of RoCE, it is necessary to build a lossless network environment for RDMA without losing packets.

RoCE can run in both lossless and compromised network environments, called Resilient RoCE if running in a compromised network environment, and Lossless RoCE if running in a compromised network environment.

RDMA is more and more widely used in market, especially in OTT companies. There have been tens of thousands of servers supporting RDMA, carrying our databases, cloud storage, data analysis systems, HPC and machine learning applications in production. Applications have reported impressive improvements by adopting RDMA [HPCC, Singcomm2019]. For instance, distributed machine learning training has been accelerated by 100+ times compared with the TCP/IP version, and the I/O speed of SSD-based cloud storage has been boosted by about 50 times compared to the TCP/IP version. These improvements majorly stem from the hardware offloading characteristic of RDMA.

High I/O throughput with low-latency storage network

In distributed storage, a file is distributed to multiple server storage for IO acceleration and redundancy. When an application requests to read a file, it will concurrently access different data parts of multiple servers, and the data will be aggregated to the switch at the same time. Figure X shows the distributed storage service model.

When the performance improvement of storage media, storage media protocol develops from HDD to SSD to NVMe (Non-Volatile Memory Express). The new storage media technology NVMe has decreased access time for 1,000 times compared with previous HDD interface. Figure X shows that the HD = 2-5 ms seek, SATA SSD = 0.2 ms seek, NVMe SSD = 0.02 ms seek. Shorter bars are better,

<table>
<thead>
<tr>
<th>Technology</th>
<th>Data Rates (Gbit/s)</th>
<th>Latency</th>
<th>Key Technology</th>
<th>Advantage</th>
<th>Disadvantage</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCP/IP over Ethernet</td>
<td>10, 25, 40, 50, 56, 100, or 200</td>
<td>500-1000 ns</td>
<td>TCP/IP Socket programming interface</td>
<td>Wide application scope, low price, and good compatibility</td>
<td>Low network usage, poor average performance, and unstable link transmission rate</td>
</tr>
<tr>
<td>Infiniband</td>
<td>40, 56, 100, or 200</td>
<td>300-500 ns</td>
<td>InfiniBand network protocol and architecture Verbs programming interface</td>
<td>Good performance</td>
<td>Large-scale networks not supported, and specific NICs and switches required</td>
</tr>
<tr>
<td>RoCE/RoCEv2</td>
<td>40, 56, 100, or 200</td>
<td>300-500 ns</td>
<td>InfiniBand network layer or transport layer and Ethernet link layer Verbs programming interface</td>
<td>Compatibility with traditional Ethernet technologies, cost-effectiveness, and good performance</td>
<td>Specific NICs required Still have many challenges to</td>
</tr>
<tr>
<td>Omni-Path</td>
<td>100</td>
<td>100 ns</td>
<td>OPA network architecture Verbs programming interface</td>
<td>Good performance</td>
<td>Single manufacturer and specific NICs and switches required</td>
</tr>
</tbody>
</table>

Table X - Compares RDMA Network Technologies
but this is an overall average. Some drives in each category might do better, some will do worse. [https://www.pcworld.com/article/2899351/everything-you-need-to-know-about-nvme.html]

When NVMe protocol helps storage media has much faster speed, what will be the bottleneck of distributed storage for fast data? Figure X shows a classical distributed storage traffic model. In this traffic model, when data is aggregated each time, incast (many to one) is very easy to occur.
Incast is a network transport pathology that affects many-to-one communication patterns in datacenters. Incast increases the queuing delay of flows, and decreases application level throughput to far below the link bandwidth [TCP incast solutions in data center networks: A classification and survey, https://www.sciencedirect.com/science/article/pii/S1084804519302553]. The problem especially affects computing paradigms in which distributed processing cannot progress until all parallel threads in a stage complete.

Since the incast will increase the latency and the concurrency of the distributed storage system will be affected. Therefore, the performance of distributed (IOPS) is limited by network latency. Figure X shows that network latency will be bottleneck in SSD scenario.

Consequently, in order to ensure the IOPS performance of NVMe over fabric, the latency problem must be resolved first.

- High I/O throughput with low-latency storage network
- As media access speeds increase, network latency becomes the bottleneck
- Storage interface protocols evolve from Serial Attached SCSI (SAS) to Non-Volatile Memory Express (NVMe)
- Reducing dynamic latency (latency from queuing and packet loss) is key to reducing the NVMe over Fabric latency

Ultra-low latency network for distributed computing

As the number of AI algorithms and AI applications continue to increase, and the distributed AI computing architecture emerges, AI computing has become implemented on a large scale. To ensure enough interaction takes place between such distributed information, there are more stringent requirements regarding communication volume and performance. Facebook recently tested the distributed machine learning platform Caffe2, in which the latest multi-GPU servers are used for parallel acceleration. In the test, computing tasks on eight servers resulted in insufficient resources on the 100 Gbit/s InfiniBand network [It is unclear how fast the scaling drops off after 64 accelerators, but odds are there are network contention issues as the cluster of machines gets larger. https://www.nextplatform.com/2017/04/19/machine-learning-gets-infiniband-boost-caffe2/]. As a result, it proved difficult to achieve linear computing acceleration of multiple nodes. The network performance greatly restricts horizontal extension of the AI system.
Figure X shows that the incast problem is also frequent in AI training. There is a large amount of parameters synchronized in each iteration. The workers will download model and upload the new calculation result ΔM to parameter servers. If the amount of communication parameters in each iteration remains unchanged, a shorter computing time results in a higher network pressure.

The high-bandwidth and low-latency DCN with only physical links cannot meet requirements of large-scale and highly concurrent AI/HPC applications. In the iteration process of distributed AI computing, a large amount of burst traffic is generated within milliseconds. In addition, because a parameter server (PS) architecture is used to update parameter weights of the new model for data parallelization, the incast traffic model at a fixed time is easily formed. In this case, packet loss, congestion, and load imbalance occur on the network. As a result, the Flow Completion Time (FCT) of some data flows is too long. Distributed AI computing is synchronous. If few flows are delayed, more computing processes are affected. Consequently, the completion time of the entire application is delayed. This is what we call the tail latency. Tail latency is the small percentage of response times from a system, out of all of responses to the input/output (I/O) requests it serves, that take the longest in comparison to the bulk of its response times. It is very critical to the whole
distributed computing system. Figure X shows how tail latency injures the whole system performance.

Consequently, in order to minimize the FCT to complete the entire computing task, we need to reduce the tail delay as much as possible. Because the microbursts in data center network are within milliseconds, the tail delay needs to be controlled within milliseconds to ensure optimal system performance.

✓ Ultra-low latency network for distributed computing
DCN Requirement of distributed AI computing
As the number of AI algorithms and AI applications continue to increase, and the distributed AI computing architecture emerges, AI computing has become implemented on a large scale. To ensure enough interaction takes place between such distributed information, there are more stringent requirements regarding communication volume and performance. Facebook recently tested the distributed machine learning platform Caffe2, in which the latest multi-GPU servers are used for parallel acceleration. In the test, computing tasks on eight servers resulted in insufficient resources on the 100 Gbit/s InfiniBand network. As a result, it proved difficult to achieve linear computing acceleration of multiple nodes. The network performance greatly restricts horizontal extension of the AI system.

• Controlling the tail latency of these applications is critical. It must be measured in microseconds, not milliseconds

4 Challenges with today’s data center network

High bandwidth and low latency tradeoff
✓ It’s difficult to achieve high bandwidth and low latency simultaneously
✓ Experimentation shows the tradeoff still exists after varying algorithms, parameters, traffic patterns and link loads
✓ Reason explanation about why tradeoff exists

Deadlock free lossless network
✓ High-performance RDMA applications requires lossless network (Zero packet loss and low latency)
✓ Lossless Ethernet requires Priority-based Flow Control (PFC, in IEEE802.1Qbb)
✓ PFC storm may cause severe deadlock problem in data center
✓ Example deadlock problem in a CLOS network

Congestion control issues in large-scale data center networks
✓ How large scale today’s data center is?
Use cases for TCP and RoCE flows mixture
Smart-buffer mechanisms in mainstream switch chips
SLAs cannot be guarantee when TCP and RoCE traffic coexists

Configuration complexity of congestion control algorithms

- Tuning RDMA networks is an important factor to achieving high-performance
- Current method of parameters configuration can be a complex operation
- Congestion control algorithms usually require collaboration between the NIC and switch
- Traditional PFC manual configuration needs complex calculation with lots of parameters
- Excessive headroom leads to reduce the number of lossless queues while too little headroom leads to packet loss

5 New technologies to address new data center problems

Approaches to PFC storm elimination

- Tuning RDMA networks is an important factor to achieving high-performance
- Current method of parameters configuration can be a complex operation
- Congestion control algorithms usually require collaboration between the NIC and switch
- Traditional PFC manual configuration needs complex calculation with lots of parameters
- Excessive headroom leads to reduce the number of lossless queues while too little headroom leads to packet loss

Improving Congestion Notification

- Improved Explicit Congestion Notification
- Enhanced version of Quantized Congestion Notification (originally IEEE 802.1Qau)
- Intelligent Methods of improving QoS support in mixed traffic environments
- Test verification (ODCC lossless DCN test specification and result)

Intelligent congestion parameter optimization

- Intelligent heuristic algorithms for identifying congestion parameters
- Methods for dynamic optimization based on services
- Test verification (ODCC lossless DCN test specification and result)

Buffer optimization of lossless queues

- Intelligent headroom calculation
- Self-adaptive headroom configuration
Standardization considerations
Things for the IEEE 802 and IETF to consider. Possibly others as well – SNIA, IBTA, NVMe, etc..

Conclusion
Closing words...

Citations