L4S: Ultra-Low Queuing Delay for All

Low Latency, Low Loss, Scalable throughput

Bob Briscoe
bobbriscoe.net Ltd

Nov 2018

i

With particular acknowledgement of the work of Koen De Schepper (Nokia Bell Labs),
Olga Bondarenko (Simula), Inton Tsang (Nokia) and Greg White (CableLabs) and all
the support of CableLabs.

l:\> / ‘ E The authors' contributions are part-funded by the European Community under its

Seventh Framework Programme through the Reducing Internet Transport Latency

REDUCING INTERNET TransporT Larency RLTE) project (ICT-317700). The views expressed here are solely those of the authors. SEVENTH FRAMEWORK

To introduce myself

Career in BT (1980-2015); always computing AND network
* ..., Sys-admin, distributed systems research, Edge Lab Head, Chief Researcher for
Network Infrastructure (mostly interface/protocols between hosts and network)
Standards background — only as necessary (not a standards goer)
* Ended up as IETF co-ordinator for the BT Group
* Helped create ETSI NFV, Chaired NFV Security Expert Group
* Minor interaction with IEEE (and 3GPP) via liaison statements

Expertise

 Traffic control, cross-layer
» Public policy, interactions between IPR / open-source / standards
* Grasping nettles

Lately: research consultant
* Primarily with CableLabs, independent hat on today

application profile is evolving

* increasingly nearly all apps require low delay
(and often high bit rate too)
' * Interactive web, web services
*Vvoice,
 conversational video, interactive video, &3
Interactive remote presence
* Instant messaging
* online gaming
S virtual reality, augmented reality |
. remote desktop, cloud-based apps

* video assisted remote control of
machinery & industrial processes

Main contributions to delay

* Delay: multifaceted problem [Briscoel4]

1) Caches have cut base (speed-of-light) delay,
where they can

2) Remaining major component of delay: queuing
* intermittent — solely under load

cap'

 at best, doubles the base delay; mis atych\
otherwise under-utilizes capacity :

Demo of the L4S vision @mvmsys'16
new default service for the Internet

* Multiple demanding applications over the same broadband line, in one FIFO queue
- Set-up: 40Mb/s downstream over DSL access, 7 ms base round trip time

— Outcome: per-packet L4S queuing delay: mean ~500us, 99%-ile ~1000us
zero packet drop, full utilization

* Applications unchanged (update to TCP in OS); coexists with existing TCP traffic

» Zero config

Cloud-
Rendered

Virtual

Reality "= ¥
client &

Rendered Vlews

Requested Views
B: TCP Cubic |

HGW

B Game

o e e e o e e o omm omm m 7‘ HASSCSSiOH

’ Rendered Views Web sessions
Cloud Rendered Panoramlc Interactive Video sessions +4 large downloads

* Video (part):
https://riteproject.eu/dctth/#1511dispatchwg

https://riteproject.eu/dctth/#1511dispatchwg

Myths

* you solve queuing delay in the queues
* you have to have low utilization for low delay
e congestion signals are bad

Resolving the dilemma:
Finer saw-teeth of a 'Scalable' TCP (e.g. DCTCP)

Today (typical Today (at best) A Scalable TCP
TCP on end-systems TCP on end-systems if change bottlenecks change bottlenecks
Drop-tail buffers AQM at bottlenecks alone and TCP
$— A o 4 A A
Roley 2 2 buffer kept
S 8 28| buffer size for bursts
O % =
&) Q
3 S C h
TCP saw-teet :
ke o || | 1c0
seeking capacity operating point : Y smoot :
A?M— 2Y i omt predictably low Jmore smaller
op ergolﬁlgt e saw-teeth
25 M\ 25 V
2 ,ﬁ good line
= = utilisation
- cuts delay but |
poorer line
\ \ f \ \ f \ utilisation N f

time time utilization insensitive to
config'n of operating point

We're done, aren't we?

e Hosts

e DCTCP exists
e |t's In Windows, Linux & FreeBSD

e Switches
* Need Explicit Congestion Notification (ECN) Mark K Don't
* because drop would be too frequent B : Mark

* We've got these. Why not just use them?

Tutorial: sawteeth

1988: TCP developed

e footnote: it's unscalable

1990s: Recognized TCP Reno scaling problem

2000s: TCP Cubic etc. deployed

* “less unscalable”

2015: DCTCP deployed - scalable

* only in single admin DCs 'cos does not coexist

2020s: Cubic scaling insufficient

Recovery time in round trips (log scale)
10000.0
A | —— RFC5681 TCP
%% e Cubic RTT 0.05s
& 100.0 HSTCP
—4&— Compound TCP
10.0 —@— Cubic RTT 0.5s
;/f/./ o —*— STCP (research)
M —— = DCTCP
‘ ‘ 0.1
0.1 0.001 1E-05 1E-07 Better
loss or ECN probability (log scale)
Faster

P

‘Cubic 800 Mb/s

. Cv=1/500 V L
3 v : number of congest_lon
S signals per round trip CTCP anyrate
= Cubic 100 Mb/s| =2
T— V:]/25—0 /,/; -
i "‘k T - ' //7 20ms round trlps
250 500 750 /1000 1250 1500 1,750 2,00

Fine saw-teeth are not fine... 4

...In cloud DCs, interconnected DCs

* unless the 'coexistence problem' is solved

* one 'Scalable' flow with frequent sawteeth
looks like many 'Classic' flows to a 'Classic' TCP flow

* 5o the Classic flow starves itself

: A aNA

Scalable

\ \ b\

10

Problem: very high level summary

* Problem: Classic TCP is the elephant in the room
 Solution: build another room without the elephant

11

Solution: very high level summary

* Problem: Classic TCP is the elephant in the room
 Solution: build another room without the elephant

12

Coexistence: Solution

e At bottlenecks...

 DualQ Coupled AQM@&@: a 'semi-permeable membrane' that:
* |solates latency (separate queues for L4S & Classic)
* but pools bandwidth (shared by apps/transport, not by network)

L4S E/
ECN

Classifier

L4S
marker

1

V\‘p

Coupling;

P

strict priority
scheduler

]

Classic @&

—>

r: packet rate
p: drop/mark probability

Details: [l4s-arch], [dualg-agm]

Classic
drop or
marking

2

13

Coexistence: Solution (2)

» Identifier for L4S classifier (1)?
* ECT(1) codepoint in IP header (v4&Vv6)

—>

L4S E/
ECN

Classifier

L4S
marker

O

w

Coupling',:

ECT(1)
CE

Codepoint ECN bits

01
11

strict priority
scheduler

)

Classic @&

—>

Details: [RFC8311] [ecn-l4s-id]

Classic
drop or
marking

)

14

Other solutions - In context

Priority classes (Differentiated Services)?
 only solves latency if low latency traffic is a small proportion of the link (not for all)
« complementary to L4S to schedule bandwidth allocation (where required)

DCB, 802.1Qau (Congestion Naotification), PFC (Priority-based Flow Control)

* Not applicable to multi-subnet
* Necessary for sub-RTT traffic flows
« Complementary to L4S which provides interconnect and interaction with L4, L7 (see later)

Single Queue Active Queue Management (AQM)
 a solution 'for all' — promising direction
* but Classic TCP (literally) remains as the elephant in the room — min queue doubles RTT

Per-microflow queue and per-queue AQM (per-flow queuing)?

* isolates each flow from the delay of others, but overkill...
1.individual app flows not always visible to network (e.g. encrypted aggregates)
2.computationally expensive
3.anyway, doesn't protect a flow from the delay it inflicts on itself

BBR (Google research)
« Attempt to reduce queuing delay without changing network
* Queuing delay similar to single queue AQM (doubles RTT or more), plus spikes
* Problems interacting with AQM: toggles between starving others or itself

Deployment scenarios

* Non-blocking core

* ingress and egress bottleneck would typically give
nearly all the benefit

* e.g. all the outputs of the top-of-rack switch \
» and ingress to inter-DC WAN links

/ W
N
L1
%
I‘-

* Blocking core
* DualQ Coupled AQM is simple
 not infeasible for DC core switches

16

L4S maturity status

IETF: L4S adopted for standardization (experimental status)

 Architecture, ldentifiers and Network AQM: approaching WG last-call Dec-2018 or Jan-
2019

* Host Congestion Control: DCTCP [RFC8257] + “TCP Prague Requirements” [ecn-I4s-id]
- Some adopted for standardization, others still IRTF (research)

Numerous companies involved

e equipment vendors
« operators

* OS developers

* hardware developers

Mostly access network bottleneck scenarios
- DSL, DOCSIS, LTE

One merchant Si implementation of DualQ Coupled AQM
 for core, metro, backhaul SoC solutions in switches
* 'Inits birth throes' 'will take some time for testing' (Nov-18)

L4S

where IETF / IEEE joint work Is needed

Engineering

* DualQ Coupled AQM algorithms for switches
* two simple examples in [dualg-agm]: DualP12 & Curvy RED

* instantaneous queue (no filtering/smoothing)
— unlike Classic AQMs (e.g. RED)

* must measure queue delay in time units
— variable drain rates between dualQs (needed for priority Qs anyway)

* virtual queue [RFC5670] [HULL]

- near-zero queue
- ECN marks as if link is slightly lower capacity

* Simplifying 802.1p / Diffserv QoS arrangements
* L4S for latency, 802.1p or RFC2474 for bandwidth [|4s-diffserv]

19

research / open issues /
opportunities

TCP Prague
« Safety & performance enhancements to DCTCP
e Sub-single-packet window
* RTT-independence
« Getting up to Speed fast with no overshoot [paced-chirping]
Removal of L4 edge gateways
* No rate mismatch at DC border
Relaxation of Ordering Requirements
* All L4S sources required to use RACK
Queue Protection algorithms (policing)
* At ToR or hypervisor [conex-dc-policing]
Integration of L2 (sub-RTT DCB) and L3 (super-RTT L4S) Congestion Control
 credit-based remote queue protection from edge [conex-dc-policing]
 potential for single FIFO as common storage and data queue

20

Benefits of universal RACK to links (1/2)

* as well as e2e (layer-4) benefits,
RACK offers potential for link (layer-2) performance

Improvements

* as flow rates scale up

—with 3 DupACK rule

* reordering tolerance
time scales down

 for multi-channel
(bonded) links,
skew tolerance time
scales down

—with rule relative to RTT

e tolerance time
remains constant

(given min practical e2e RTT
remains fairly constant)

1

e.g. RTT=24ms

3 DupACK

12 pkts / RTT 6ms rule

—_

96 pkts / RTT

MY

multi-channel
(bonded) link

750us

“RACK adaptation range >RACK min, e.g. RTTV

(0 VM sender

edge bottlenecks by capacity design = M recever

[><l congestion policer

A : : uest OS
Edge policing like Diffserv ypervisor
— but congestion policing (per guest) switching
isolation within FIFO queue

bottleneck congestion policer

* in a well-provisioned link, policer rarely intervenes

* but whenever needed, it limits queue growth

policer
incoming x
packet
stream

bucket

|

4

FIFO

buffer
= ——p

Y
— — >
AQM
__/- B _’b
p) outgoing packet stream

foreach pkt {
1 = classify_user (pkt)
d; += w;* (thew—ty) //fill
Lo = Chen
d, -=s *p //drain
if (d;<0) {drop(pkt)}

s:. packet size
p: drop prob of AQM

23

L4S: more Info

* Landing Page: https://riteproject.eu/dctth/ Search “DCttH”

* [Briscoel4] Briscoe, B., Brunstrom, A., Petlund, A., Hayes, D., Ros, D., Tsang, I.-J., Gjessing, S., Fairhurst, G., Griwodz, C. & Welzl, M.,
"Reducing Internet Latency: A Survey of Techniques and their Merits,” IEEE Communications Surveys & Tutorials 16(4) IEEE (Nov 2014)

* [RFC7560] Kuhlewind, M., Scheffenegger, R. & Briscoe, B. “Problem Statement and Requirements for Increased Accuracy in Explicit
Congestion Notification (ECN) Feedback” IETF RFC7560 (2015)

* [Briscoel7] Briscoe, B., Scheffenegger, R. & Kuihlewind, M., "More Accurate ECN Feedback in TCP," IETF Internet Draft draft-ietf-tcpm-
accurate-ecn-07 (Nov 2018) (Work in Progress)

* [4s-id] De Schepper, K., Briscoe (Ed.), B. & Tsang, 1.-J., "ldentifying Modified Explicit Congestion Notification (ECN) Semantics for Ultra-Low
Queuing Delay," Internet Engineering Task Force Internet Draft draft-ietf-tsvwg-ecn-14s-id-05 (Nov 2018) (Work in Progress)

* [dualg-agm] De Schepper, K., Briscoe (Ed.), B., Bondarenko, O. & Tsang, I.-J., "DualQ Coupled AQM for Low Latency, Low Loss and
Scalable Throughput,” Internet Engineering Task Force Internet Draft draft-ietf-tsvwg-agm-dualg-coupled-08 (Nov 2018) (Work in Progress)

* [l4s-arch] Briscoe (Ed.), B., De Schepper, K. & Bagnulo, M., "Low Latency, Low Loss, Scalable Throughput (L4S) Internet Service:
Architecture,” Internet Engineering Task Force Internet Draft draft-ietf-tsvwg-l4s-arch-03 (Nov 2018) (Work in Progress)

* [l4s-diffserv] Briscoe, B., "Interactions between L4S and Diffserv," Internet Engineering Task Force Internet Draft draft-briscoe-tsvwg-l4s-
diffserv-02 (Nov 2018) (Work in Progress)

* [conex-dc-policing] Briscoe, B. & Sridharan, M., "Network Performance Isolation in Data Centres using Congestion Policing," Internet
Engineering Task Force Internet Draft draft-briscoe-conex-data-centre-02 (February 2014) (Work in progress)

* [PI12] De Schepper, K., Bondarenko, O., Tsang, I.-J. & Briscoe, B., "Pl2 : A Linearized AQM for both Classic and Scalable TCP," In: Proc. ACM
CoNEXT 2016 pp.105-119 ACM (December 2016)

 [DCttH] De Schepper, K., Bondarenko, O., Tsang, |.-J. & Briscoe, B., ""Data Centre to the Home": Deployable Ultra-Low Queuing Delay for
All," (January 2017) (Under Submission)

* [HULL] Alizadeh, M., Kabbani, A., Edsall, T., Prabhakar, B., Vahdat, A. & Yasuda, M., "Less Is More: Trading a Little Bandwidth for Ultra-Low
Latency in the Data Center," In: Proc. USENIX Symposium on Networked Systems Design and Implementation (NSDI'12) (April 2012)

* [paced-chirping] Misund, J & Briscoe, B. “Flow-start: Faster and Less Overshoot with Paced Chirping” IRTF Internet Congestion Control
Research Group (July 2018)

24

https://datatracker.ietf.org/meeting/102/materials/slides-102-iccrg-flow-start-faster-and-less-overshoot-with-paced-chirping-00

Conclusions

Enables previously infeasible interactive apps
Technical problem: 'Classic' TCP

Technical solution:

e "Scalable" TCP with L4S ECN codepoint
* Incremental deployment via DualQ Coupled AQM

Low Latency for all Traffic

* the classic queue is for legacy, not for life
* |eaves only bandwidth to manage

25

Q&A

large saw teeth can ruin the quality of your experience

26

DCTCP Throughput-Latency Tradeoff

-
- -
-
- -
-
-

<. Lower Bound from
DCTCP Fluid Model

9000} Throughput > 94% as
K->0

85007

Throughput (Mbps)

—e—DCTCP (N = 2)
—=—DCTCP (N = 25)
——TCP (N=2)

—%—TCP (N = 25)
7500

0 5 10 15 20 25
Marking Threshold K (% of BDP)

For TCP: 8000)

Throughput - 75%

Parameters:
link capacity = 10Gbps
RTT = 480us
smoothing constant (at source), g = 0.05.

18

Why is performance so much better? toom:
Immediate signalling

* Today's AQMs defer drop for 1 worst-case RTT

1)to allow time for a worst-case RTT response
because: the network doesn't know each packet's RTT

2)to avoid drop unless the queue proves persistent
because: drop is an impairment as well as a signal

..........

* Using ECN for L4S makes it feasible to signal immediately
— because ECN is a signal but not an impairment

Signal immediately é

Response o L4S

to signals (Scalable K] it

smoothed O E/ marker : ""h‘b’me
over own RTT EHEN media

! server
E\‘ Classic V[

— drop or
marking

Immediate / Classic
%response sender

Problem with the Classic approach:
a flow with RTT=5ms
gets no signal for 20 round-trips 28

Signal smoothed over ~100ms

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Outline Design – First Step edge bottlenecks by capacity design
	bottleneck congestion policer
	Slide 24
	Slide 25
	Slide 26
	Throughput-Latency Tradeoff
	Slide 28

