

L4S: Ultra-Low Queuing Delay for All
Low Latency, Low Loss, Scalable throughput

Bob Briscoe
bobbriscoe.net Ltd

Nov 2018

The authors' contributions are part-funded by the European Community under its
Seventh Framework Programme through the Reducing Internet Transport Latency
(RITE) project (ICT-317700). The views expressed here are solely those of the authors.

With particular acknowledgement of the work of Koen De Schepper (Nokia Bell Labs),
Olga Bondarenko (Simula), Inton Tsang (Nokia) and Greg White (CableLabs) and all

the support of CableLabs.

 2

To introduce myself

● Career in BT (1980-2015); always computing AND network
● …, sys-admin, distributed systems research, Edge Lab Head, Chief Researcher for

Network Infrastructure (mostly interface/protocols between hosts and network)

● Standards background – only as necessary (not a standards goer)
● Ended up as IETF co-ordinator for the BT Group
● Helped create ETSI NFV, Chaired NFV Security Expert Group
● Minor interaction with IEEE (and 3GPP) via liaison statements

● Expertise
● Traffic control, cross-layer
● Public policy, interactions between IPR / open-source / standards
● Grasping nettles

● Lately: research consultant
● Primarily with CableLabs, independent hat on today

 3

application profile is evolving
● increasingly nearly all apps require low delay

(and often high bit rate too)
● interactive web, web services
● voice,
● conversational video, interactive video,
interactive remote presence

● instant messaging
● online gaming
● virtual reality, augmented reality
● remote desktop, cloud-based apps
● video assisted remote control of
 machinery & industrial processes

Main contributions to delay

● Delay: multifaceted problem [Briscoe14]

1)Caches have cut base (speed-of-light) delay,
where they can

2)Remaining major component of delay: queuing
● intermittent – solely under load
● at best, doubles the base delay;

otherwise under-utilizes capacity

structural

e2e

path

capacity
mismatch

intra-
host

Demo of the L4S vision @MMSys'16
new default service for the Internet
● Multiple demanding applications over the same broadband line, in one FIFO queue

– Set-up: 40Mb/s downstream over DSL access, 7 ms base round trip time
– Outcome: per-packet L4S queuing delay: mean ~50 s, 99%-ile ~10000𝜇 s 𝜇

zero packet drop, full utilization
● Applications unchanged (update to TCP in OS); coexists with existing TCP traffic
● Zero config

Rendered Views

Requested Views

Rendered Views
Requested Views

A: 'Scalable' TCP

B: TCP Cubic

Cloud-
Rendered

Virtual
Reality

client

AQM
Server

Web sessions
HAS session

Game
bench-
mark

BNG

DSLAM

Dashboard
HGW

router

A/V
Proxy

Web
& A/V
Proxy

VR
Proxy

Cloud-Rendered Panoramic Interactive Video sessions

● Video (part):
https://riteproject.eu/dctth/#1511dispatchwg

+4 large downloads

https://riteproject.eu/dctth/#1511dispatchwg

 6

Myths

● you solve queuing delay in the queues
● you have to have low utilization for low delay
● congestion signals are bad

Resolving the dilemma:
Finer saw-teeth of a 'Scalable' TCP (e.g. DCTCP)

li
ne

ut
il

is
at

io
n

bu
ff

er
oc

cu
pa

nc
y

b u f f e r s i z e

AQM
operating

point

shallower
operating
point

good line
utilisation

lower queuing
delay and more
predictably low

buffer kept
for bursts

TCP saw-teeth
seeking the

operating point smooth TCP:
more smaller

saw-teeth

Today (at best)
TCP on end-systems
AQM at bottlenecks

if change bottlenecks
alone

A Scalable TCP
change bottlenecks
and TCP

cuts delay but
poorer line
utilisation

time utilization insensitive to
config'n of operating point

li
ne

ut
il

is
at

io
n

bu
ff

er
oc

cu
pa

nc
y

TCP saw-teeth
seeking capacity

Today (typical)
TCP on end-systems
Drop-tail buffers

time

 8

We're done, aren't we?

● Hosts
● DCTCP exists
● it's in Windows, Linux & FreeBSD

● Switches
● Need Explicit Congestion Notification (ECN)
● because drop would be too frequent

● We've got these. Why not just use them?

B
KMark Don’t

Mark

DCTCP any rate
v = 2

Tutorial: sawteeth
● 1988: TCP developed

● footnote: it's unscalable

● 1990s: Recognized TCP Reno scaling problem
● 2000s: TCP Cubic etc. deployed

● “less unscalable”

● 2015: DCTCP deployed - scalable
● only in single admin DCs 'cos does not coexist

● 2020s: Cubic scaling insufficient

W
,

w
in

do
w

20ms round trips

1,000250 500 750 1,250 1,500 1,750 2,000

Cubic 100 Mb/s
v=1/250

Cubic 800 Mb/s
v= 1/500

DCTCP any rate
v = 2

v : number of congestion
signals per round trip

v : number of congestion
signals per round trip

1E-071E-050.0010.1
0.1

1.0

10.0

100.0

1000.0

10000.0

Recovery time in round trips (log scale)

RFC5681 TCP
Cubic RTT 0.05s
HSTCP
Compound TCP
Cubic RTT 0.5s
STCP (research)
DCTCP

loss or ECN probability (log scale)
Better

Faster

 10

Fine saw-teeth are not fine...

...in cloud DCs, interconnected DCs
● unless the 'coexistence problem' is solved

● one 'Scalable' flow with frequent sawteeth
looks like many 'Classic' flows to a 'Classic' TCP flow

● so the Classic flow starves itself

Classic

Scalable

Classic

Classic

 11

TCP

Problem: very high level summary

● Problem: Classic TCP is the elephant in the room
● Solution: build another room without the elephant

 12

TCP

Solution: very high level summary

● Problem: Classic TCP is the elephant in the room
● Solution: build another room without the elephant

L4S

 13

1 23

Coexistence: Solution
● At bottlenecks...

● DualQ Coupled AQM (1) & (2): a 'semi-permeable membrane' that:
● isolates latency (separate queues for L4S & Classic)
● but pools bandwidth (shared by apps/transport, not by network)

ECN
Classifier

strict priority
scheduler

 L4S

Classic

1

L4S
marker

Classic
drop or
marking

Classic
sender

 Scalable
sender

Coupling

r∝1/ p

r∝1/√ p
p2

p

r: packet rate
p: drop/mark probability
r: packet rate
p: drop/mark probability

21

Details: [l4s-arch], [dualq-aqm]

 14

1

Coexistence: Solution (2)

● Identifier for L4S classifier (1)?
● ECT(1) codepoint in IP header (v4&v6)

ECN
Classifier

strict priority
scheduler

 L4S

Classic

1

L4S
marker

Classic
drop or
marking

Classic
sender

 Scalable
sender

Coupling

1

Details: [RFC8311] [ecn-l4s-id]

Codepoint ECN bits

Not-ECT 00

ECT(0) 10

ECT(1) 01

CE 11

Other solutions - in context
● Priority classes (Differentiated Services)?

● only solves latency if low latency traffic is a small proportion of the link (not for all)
● complementary to L4S to schedule bandwidth allocation (where required)

● DCB, 802.1Qau (Congestion Notification), PFC (Priority-based Flow Control)
● Not applicable to multi-subnet
● Necessary for sub-RTT traffic flows
● Complementary to L4S which provides interconnect and interaction with L4, L7 (see later)

● Single Queue Active Queue Management (AQM)
● a solution 'for all' – promising direction
● but Classic TCP (literally) remains as the elephant in the room – min queue doubles RTT

● Per-microflow queue and per-queue AQM (per-flow queuing)?
● isolates each flow from the delay of others, but overkill...

1.individual app flows not always visible to network (e.g. encrypted aggregates)

2.computationally expensive

3.anyway, doesn't protect a flow from the delay it inflicts on itself

● BBR (Google research)
● Attempt to reduce queuing delay without changing network
● Queuing delay similar to single queue AQM (doubles RTT or more), plus spikes
● Problems interacting with AQM: toggles between starving others or itself

 16

Deployment scenarios

● Non-blocking core
● ingress and egress bottleneck would typically give

nearly all the benefit
● e.g. all the outputs of the top-of-rack switch
● and ingress to inter-DC WAN links

● Blocking core
● DualQ Coupled AQM is simple
● not infeasible for DC core switches

L4S maturity status

● IETF: L4S adopted for standardization (experimental status)
● Architecture, Identifiers and Network AQM: approaching WG last-call Dec-2018 or Jan-

2019
● Host Congestion Control: DCTCP [RFC8257] + “TCP Prague Requirements” [ecn-l4s-id]

– Some adopted for standardization, others still IRTF (research)

● Numerous companies involved
● equipment vendors
● operators
● OS developers
● hardware developers

● Mostly access network bottleneck scenarios
● DSL, DOCSIS, LTE

● One merchant Si implementation of DualQ Coupled AQM
● for core, metro, backhaul SoC solutions in switches
● 'in its birth throes' 'will take some time for testing' (Nov-18)

L4S

where IETF / IEEE joint work is needed

 19

Engineering

● DualQ Coupled AQM algorithms for switches
● two simple examples in [dualq-aqm]: DualPI2 & Curvy RED
● instantaneous queue (no filtering/smoothing)

– unlike Classic AQMs (e.g. RED)

● must measure queue delay in time units
– variable drain rates between dualQs (needed for priority Qs anyway)

● virtual queue [RFC5670] [HULL]
– near-zero queue
– ECN marks as if link is slightly lower capacity

● Simplifying 802.1p / Diffserv QoS arrangements
● L4S for latency, 802.1p or RFC2474 for bandwidth [l4s-diffserv]

 20

research / open issues /
opportunities

● TCP Prague
● Safety & performance enhancements to DCTCP
● Sub-single-packet window
● RTT-independence
● Getting up to Speed fast with no overshoot [paced-chirping]

● Removal of L4 edge gateways
● No rate mismatch at DC border

● Relaxation of Ordering Requirements
● All L4S sources required to use RACK

● Queue Protection algorithms (policing)
● At ToR or hypervisor [conex-dc-policing]

● integration of L2 (sub-RTT DCB) and L3 (super-RTT L4S) Congestion Control
● credit-based remote queue protection from edge [conex-dc-policing]
● potential for single FIFO as common storage and data queue

© CableLabs, 2018. Do not share this material with anyone other than CableLabs Members, and vendors under CableLabs NDA if applicable.21

e.g. RTT=24ms

12 pkts / RTT

96 pkts / RTT

6ms

750μs

RACK min, e.g. RTT/8

3 DupACK
rule

3 DupACK
rule

RACK adaptation range

Benefits of universal RACK to links (1/2)

● as well as e2e (layer-4) benefits,
RACK offers potential for link (layer-2) performance
improvements

● as flow rates scale up
– with 3 DupACK rule

● reordering tolerance
time scales down

● for multi-channel
(bonded) links,
skew tolerance time
scales down

– with rule relative to RTT
● tolerance time

remains constant

(given min practical e2e RTT
remains fairly constant)

multi-channel
(bonded) link





© British Telecommunications plc

22

edge bottlenecks by capacity design

• Edge policing like Diffserv
– but congestion policing (per guest)

• isolation within FIFO queue

• no config on switches

hosts

switches

VM sender
VM receiver
congestion policer

guest OS
hypervisor
switching

w

© British Telecommunications plc

23

bottleneck congestion policer

foreach pkt {
i = classify_user(pkt)
di += wi*(tnow-ti) //fill
ti = tnow

di -= s * p //drain
if (di<0) {drop(pkt)}

}

s: packet size
p: drop prob of AQM

• in a well-provisioned link, policer rarely intervenes
• but whenever needed, it limits queue growth

network
policer

incoming
packet
stream

meter

w1 w2 wi

… di(t)
ci

congestion
token

bucket

Y

FIFO
buffer

p(t)

AQM

…

outgoing packet stream

 24

L4S: more info
● Landing Page: https://riteproject.eu/dctth/ Search “DCttH”

● [Briscoe14] Briscoe, B., Brunstrom, A., Petlund, A., Hayes, D., Ros, D., Tsang, I.-J., Gjessing, S., Fairhurst, G., Griwodz, C. & Welzl, M.,
"Reducing Internet Latency: A Survey of Techniques and their Merits," IEEE Communications Surveys & Tutorials 16(4) IEEE (Nov 2014)

● [RFC7560] Kühlewind, M., Scheffenegger, R. & Briscoe, B. “Problem Statement and Requirements for Increased Accuracy in Explicit
Congestion Notification (ECN) Feedback” IETF RFC7560 (2015)

● [Briscoe17] Briscoe, B., Scheffenegger, R. & Kühlewind, M., "More Accurate ECN Feedback in TCP," IETF Internet Draft draft-ietf-tcpm-
accurate-ecn-07 (Nov 2018) (Work in Progress)

● [l4s-id] De Schepper, K., Briscoe (Ed.), B. & Tsang, I.-J., "Identifying Modified Explicit Congestion Notification (ECN) Semantics for Ultra-Low
Queuing Delay," Internet Engineering Task Force Internet Draft draft-ietf-tsvwg-ecn-l4s-id-05 (Nov 2018) (Work in Progress)

● [dualq-aqm] De Schepper, K., Briscoe (Ed.), B., Bondarenko, O. & Tsang, I.-J., "DualQ Coupled AQM for Low Latency, Low Loss and
Scalable Throughput," Internet Engineering Task Force Internet Draft draft-ietf-tsvwg-aqm-dualq-coupled-08 (Nov 2018) (Work in Progress)

● [l4s-arch] Briscoe (Ed.), B., De Schepper, K. & Bagnulo, M., "Low Latency, Low Loss, Scalable Throughput (L4S) Internet Service:
Architecture," Internet Engineering Task Force Internet Draft draft-ietf-tsvwg-l4s-arch-03 (Nov 2018) (Work in Progress)

● [l4s-diffserv] Briscoe, B., "Interactions between L4S and Diffserv," Internet Engineering Task Force Internet Draft draft-briscoe-tsvwg-l4s-
diffserv-02 (Nov 2018) (Work in Progress)

● [conex-dc-policing] Briscoe, B. & Sridharan, M., "Network Performance Isolation in Data Centres using Congestion Policing," Internet
Engineering Task Force Internet Draft draft-briscoe-conex-data-centre-02 (February 2014) (Work in progress)

● [PI2] De Schepper, K., Bondarenko, O., Tsang, I.-J. & Briscoe, B., "PI2 : A Linearized AQM for both Classic and Scalable TCP," In: Proc. ACM
CoNEXT 2016 pp.105-119 ACM (December 2016)

● [DCttH] De Schepper, K., Bondarenko, O., Tsang, I.-J. & Briscoe, B., "`Data Centre to the Home': Deployable Ultra-Low Queuing Delay for
All," (January 2017) (Under Submission)

● [HULL] Alizadeh, M., Kabbani, A., Edsall, T., Prabhakar, B., Vahdat, A. & Yasuda, M., "Less Is More: Trading a Little Bandwidth for Ultra-Low
Latency in the Data Center," In: Proc. USENIX Symposium on Networked Systems Design and Implementation (NSDI'12) (April 2012)

● [paced-chirping] Misund, J & Briscoe, B. “Flow-start: Faster and Less Overshoot with Paced Chirping” IRTF Internet Congestion Control
Research Group (July 2018)

https://datatracker.ietf.org/meeting/102/materials/slides-102-iccrg-flow-start-faster-and-less-overshoot-with-paced-chirping-00

 25

Conclusions

● Enables previously infeasible interactive apps
● Technical problem: 'Classic' TCP
● Technical solution:

● "Scalable" TCP with L4S ECN codepoint
● Incremental deployment via DualQ Coupled AQM

● Low Latency for all Traffic
● the classic queue is for legacy, not for life
● leaves only bandwidth to manage

 26

Q&A

large saw teeth can ruin the quality of your experience

18

Parameters:
link capacity = 10Gbps
RTT = 480μs
smoothing constant (at source), g = 0.05.

For TCP:
Throughput → 75%

DCTCP Throughput-Latency TradeoffDCTCP Throughput-Latency Tradeoff

Throughput > 94% as
K  0

 28

Why is performance so much better?
Immediate signalling

● Today's AQMs defer drop for 1 worst-case RTT
1)to allow time for a worst-case RTT response

because: the network doesn't know each packet's RTT

2)to avoid drop unless the queue proves persistent
because: drop is an impairment as well as a signal

● Using ECN for L4S makes it feasible to signal immediately
– because ECN is a signal but not an impairment

L4S
marker

Classic
drop or
marking

Classic
sender

 Scalable
sender

Signal smoothed over ~100ms

Immediate
response

Signal immediately

Response
to signals
smoothed

over own RTT

Problem with the Classic approach:
a flow with RTT=5ms

gets no signal for 20 round-trips

4ms

home
media
server

20ms
CDN

100ms
origin

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Outline Design – First Step edge bottlenecks by capacity design
	bottleneck congestion policer
	Slide 24
	Slide 25
	Slide 26
	Throughput-Latency Tradeoff
	Slide 28

