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Our Digital Lives are driving Innovation in the DC
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Three Critical Use Cases

Online Data Intensive (OLDI)
Services

Request Aggregator

Deadline = 250 ms

Deadline =50 ms

Aggregator | Aggregator * Aggregator

Deadline =10 ms

Tail Latency is Critical

OLDI applications have real-time deadlines and run in
parallel on 1000s of servers. Incast is a naturally

occurring phenomenon. Tail latency reduces the quality
of results

Deep Learning
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Training Scale is Network Limited

Massively parallel HPC applications, such Al training,
are dependent on low latency and high throughput
network. Billions of parameters. Scales out is limited by
network performance.
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NVMe over Fabrics
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& & Why NVMe over Fabrics?
l Performance Goal:

Make remote NVMe access over fabrics
equivalent t2 222! BPCIs attached NVMe,

Loss and Latency Sensitive

Disaggregated resource pooling, such as NVMe over
Fabrics, use RDMA and run over converged network
infrastructure. Low latency and loss are critical.
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We are dealing with massive amounts of data and computing
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Congestion Creates the Problems

A
Packet

Massive Compute

Massive Messaging

Parallelism can create
congestion which leads to
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The Impact of Congestion in Lossless Network

e The impact of congestion on network performance can be very serious.

e Asshown in paper (Pedro J. Garcia et al, IEEE Micro 2006):
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Network Throughput and Generated Traffic Average Packet Latency
Network Performance Degrades Dramatically after Congestion Appears

[1] Garcia, Pedro Javier, et al. "Efficient, scalable congestion management for interconnection networks." IEEE Micro 26.5 (2006): 52-66.
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Dealing with Congestion today

Explicit Congestion Notification (ECN) +
ECMP — Equal Cost MultiPath Routing Priority-based Flow Control (PFC)
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Feedback ’,*’

—— e e

ECMP

1001
|




Ongoing challenges with congestion

ECN Control Loop Delay
ECMP Collisions Head-of-line Blocking
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Potential New Lossless Technologies for the Data Center

Goal = No Loss

No Packet Loss
No Latency Loss

No Throughput Loss

Solutions

Virtual Input Queuing - VIQ
Dynamic Virtual Lanes - DVL
Load-Aware Packet Spraying - LPS
Push & Pull Hybrid Scheduling - PPH
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VIQ (Virtual Input Queues): Resolve Internal Packet Loss

Incast Congestion leading to
internal packet loss

PFC threshold

i l i 1. During incast scenario, ingress
: : IIIII i gueue counter doesn’t exceed the PFC
1 l !

e i threshold, so will not send PFC Pause
Ingress queue counter frame to upstream. Packet will always
Input 0 - e — come in from ingress port.
; : Output 2
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Y Ingress queue counter 2. But the physical egress queue has
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| . IIIII i Packet loss occurs without egress-
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ingress coordination.

PFC threshold

backlog because of convergence effect.

Coordinated egress-ingress queuing
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VIQ could be looked as: that on out port, assign a dedicated queue for
every in port. Memory changes from sharing to virtually monopolized
according to in ports. So that every in port could get fair scheduling.
The tail latency of business could be controlled effectively.
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DVL (Dynamic Virtual Lanes)
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(Virtual Queues)

1
Congested Flows

Non-Congested Flows

A Eliminate
HoL Blocking

(Virtual Queues)
1
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. |dentify the flow

causing congestion
and isolate locally

. Signal to neighbor

when congested
gueue fills

. Upstream isolates the

flow too, eliminating
head-of-line blocking

. If congested queue

continues to fill, invoke
PFC for lossless
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LPS (Load-Aware Packet Spraying)

LPS = Packet Spraying + Endpoint Reordering + Load-Aware

spray packets over
paths

©0,

Path-Congestion Feedback
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PPH (Push & Pull Hybrid Scheduling)

PPH = Congestion aware edge switch scheduling

Push when load is light
Pull when load is high
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Innovation for the Lossless Network

Coping with Congestion
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Source
Network

Destination

Ingress thresholds unrelated
to egress buffer availability.
Incast causes internal packet
loss.

Priority-based Flow Control
(Coarse grain). Victim flows
hurt by the congested flows

Unbalanced load sharing.
Elephant flow collisions block
mice flows.

Unscheduled and network
resource unaware many-to-
one communication leads to
incast packet loss

Coordinated
Resources

l

Isolate
Congestion

l

Spread the
Load

l

Schedule
Appropriately

l

Mitigating Congestion

)
)

Source

Network

Destination

Coordinate egress availability
with ingress demand. Avoid
internal switch packet loss

Allow time for end-to-end
congestion control. Move

congested flows out of the way.
Eliminate head-of-line blocking.

Load-balance flows at higher
. granularity. Use congestion
awareness to avoid collisions

Scheduling decision integrated
the information from source,
network and destination.

Innovation
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Thank You
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