

# The Lossless Network in the Data Center

IEEE 802 Industry Connections, November 2017 Paul Congdon





### Our Digital Lives are driving Innovation in the DC



Interactive Speech Recognition



Interactive Image Recognition



Human / Machine Interaction

Autonomous Driving







#### **Three Critical Use Cases**

### Online Data Intensive (OLDI) Services



#### Tail Latency is Critical

OLDI applications have real-time deadlines and run in parallel on 1000s of servers. Incast is a naturally occurring phenomenon. Tail latency reduces the quality of results

#### **Deep Learning**



#### Training Scale is Network Limited

Massively parallel HPC applications, such AI training, are dependent on low latency and high throughput network. Billions of parameters. Scales out is limited by network performance.

#### **NVMe over Fabrics**





#### Loss and Latency Sensitive

Disaggregated resource pooling, such as NVMe over Fabrics, use RDMA and run over converged network infrastructure. Low latency and loss are critical.





### We are dealing with massive amounts of data and computing







### **Congestion Creates the Problems**





### The Impact of Congestion in Lossless Network

- The impact of congestion on network performance can be very serious.
- As shown in paper (Pedro J. Garcia et al, IEEE Micro 2006)<sup>[1]</sup>:





Network Throughput and Generated Traffic

Average Packet Latency

Network Performance Degrades Dramatically after Congestion Appears

[1] Garcia, Pedro Javier, et al. "Efficient, scalable congestion management for interconnection networks." *IEEE Micro* 26.5 (2006): 52-66.





### **Dealing with Congestion today**

ECMP - Equal Cost MultiPath Routing

Explicit Congestion Notification (ECN) + Priority-based Flow Control (PFC)





### Ongoing challenges with congestion

**ECMP Collisions** 

30G 30G 30G 15G 30G 30G 15/G 40G 40G Links Links

ECN Control Loop Delay Head-of-line Blocking





### Potential New Lossless Technologies for the Data Center

#### Goal = No Loss

- No Packet Loss
- No Latency Loss
- No Throughput Loss

#### Solutions

- Virtual Input Queuing VIQ
- Dynamic Virtual Lanes DVL
- Load-Aware Packet Spraying LPS
- Push & Pull Hybrid Scheduling PPH





### VIQ (Virtual Input Queues): Resolve Internal Packet Loss

Incast Congestion leading to internal packet loss



Coordinated egress-ingress queuing



VIQ could be looked as: that on out port, assign a dedicated queue for every in port. Memory changes from sharing to virtually monopolized according to in ports. So that every in port could get fair scheduling. The tail latency of business could be controlled effectively.





#### **DVL (Dynamic Virtual Lanes)**



- I. Identify the flow causing congestion and isolate locally
- 2. Signal to neighbor when congested queue fills
- 3. Upstream isolates the flow too, eliminating head-of-line blocking
- 4. If congested queue continues to fill, invoke PFC for lossless





### LPS (Load-Aware Packet Spraying)

LPS = Packet Spraying + Endpoint Reordering + Load-Aware





### **PPH (Push & Pull Hybrid Scheduling)**

PPH = Congestion aware edge switch scheduling

Push when load is light

Pull when load is high







#### **Innovation for the Lossless Network**

#### Coping with Congestion

#### Ingress thresholds unrelated to egress buffer availability. Incast causes internal packet loss.

Source

Network

Destination



Unbalanced load sharing. Elephant flow collisions block mice flows.

Unscheduled and network resource unaware many-toone communication leads to incast packet loss

#### Mitigating Congestion



Allow time for end-to-end congestion control. Move congested flows out of the way. Eliminate head-of-line blocking.

Load-balance flows at higher Spread the granularity. Use congestion awareness to avoid collisions

Source Schedule **Appropriately** Network Destination

Isolate

Congestion

Load

Scheduling decision integrated the information from source, network and destination.

#### **Innovation**

**Virtual Input Queues** 

**Dynamic Virtual Lane** 

**Load-aware Packet Spraying** 

**Push & Pull Hybrid Scheduling** 





## **Thank You**



