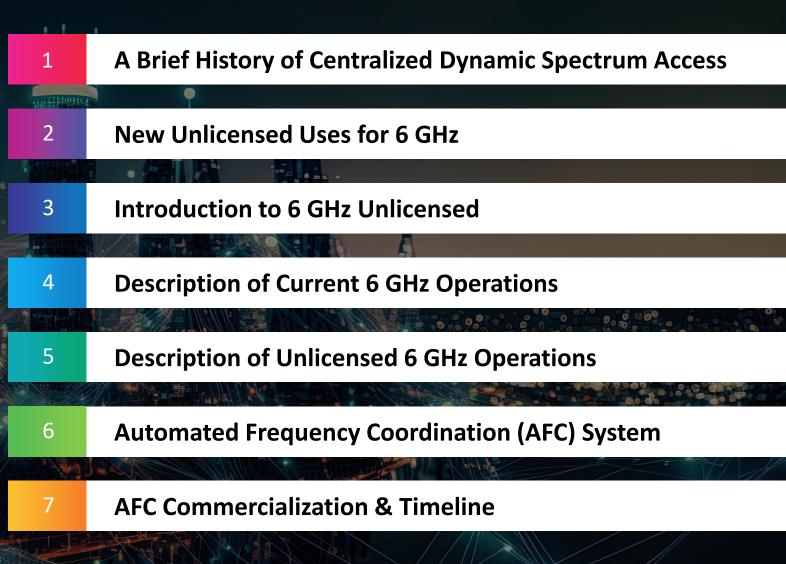


Centralized Dynamic Spectrum Access History, Background and Details of AFC



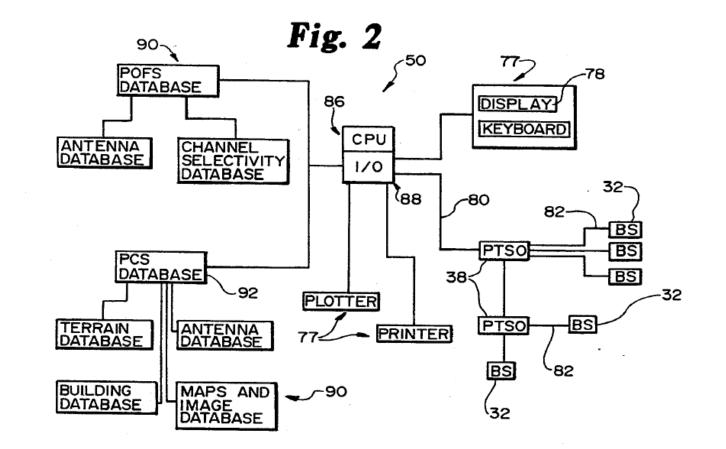
Mark Gibson Sr. Director, Spectrum Regulatory & Policy mark.gibson@commscope.com

March 2024

Topics

Centralized Dynamic Spectrum Access History up to AFC

A Brief History of Centralized DSA


Frequency-Agile Sharing Technology (FAST)

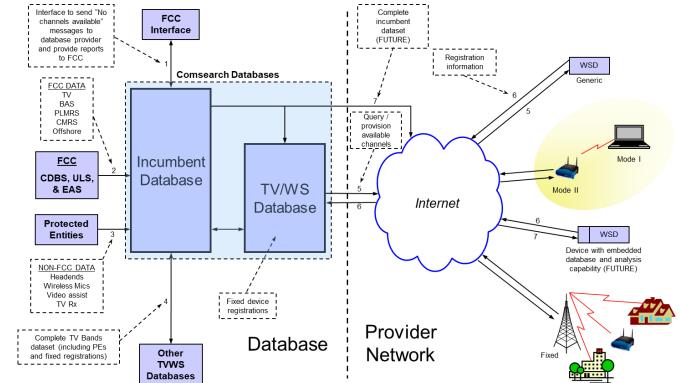
BACKGROUND

- Proposed in 1995 by American Personal Communications (APC)
- System sensed transmit frequency and used database to determine location of potential victim receiver
- Used for PCS
- Used Comsearch Private Operational Fixed Service (POFS) databases
- Merited a "Pioneer Preference Award" from the FCC
- Deployed in the Washington DC area

LESSONS LEARNED

• No incentive to continue with technology

From APC Patent Application


TV White Space

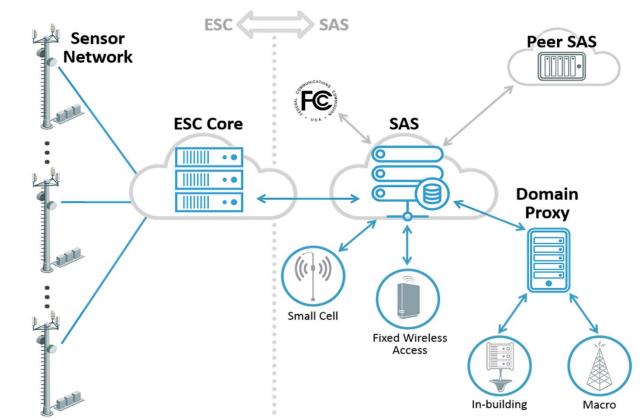
BACKGROUND

- Established by FCC in 2007
- Commercial TVWS database administrators built and operated databases that allow unlicensed devices to share unused TV channels at specific locations
- FCC selected ten TVWS database administrators
- Upper portion of the TV band in the U.S. reallocated to mobile, severely limiting remaining TV White Space and market
- TVWS database testing done serially by FCC took several months
- RED took over all database operations
- Fewer than 300 TVWS deployments
- Several international TVWS applications

LESSONS LEARNED

- Band plagued by regulatory uncertainty
- FCC database testing delayed rollout
- Never really addressed Enforcement

From Comsearch TVWS DBA Proposal


Citizens Broadband Radio Service (CBRS) Spectrum Access System (SAS)

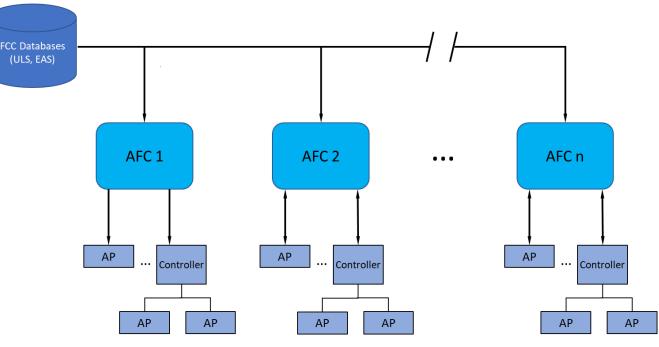
BACKGROUND

- Established by FCC in 2015
- Used to allow for commercial access to the CBRS band and not cause interference into commercial and DoD incumbents using a SAS
- FCC selected ten SAS administrators and four ESC providers (who are also SAS admins)
- SASs have been in commercial operation since Jan 27, 2020
- SASs allow CBRS devices (CBSDs) to share spectrum with other CBRS users and incumbents
- ESC providers have built coastal sensor networks to protect Navy radar operations
- SAS testing & certification took almost two years
- Numerous engagements with DoD required
- NTIA now considering IIC

LESSONS LEARNED

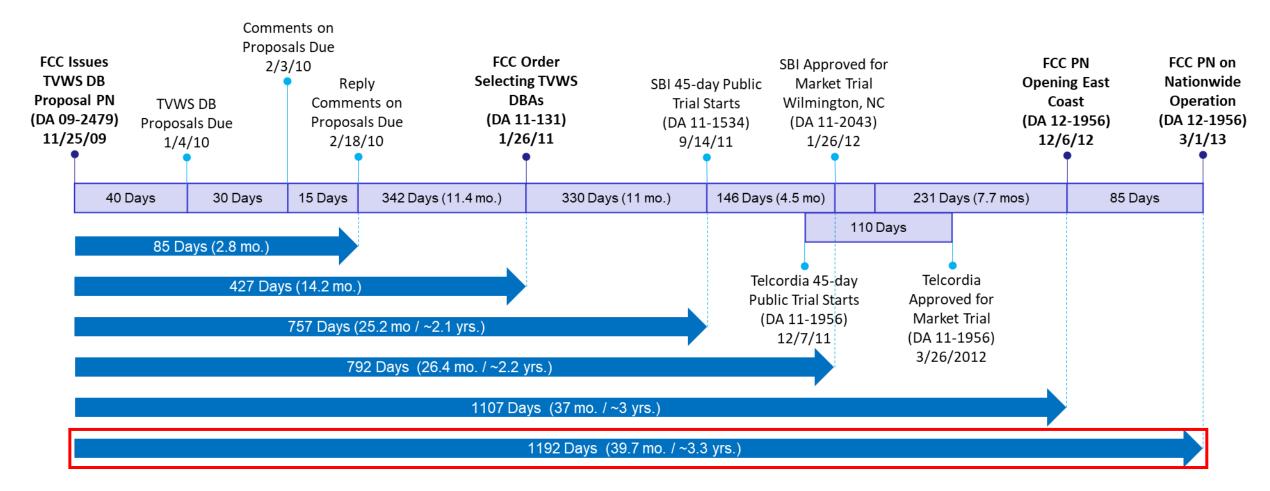
- Certification process was long and complicated
- Incumbents are generally over-protected
- Concerns about role of SASs in Enforcement
- Future sharing needs to be more forward-thinking considering imminent replacement of ESC with IIC

CommScope SAS Architecture

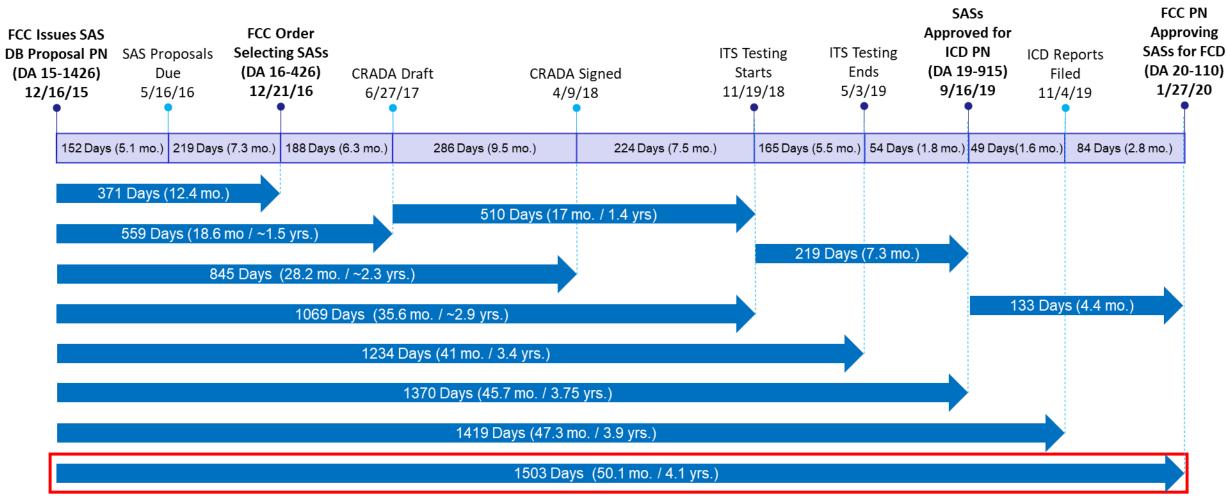

Automated Frequency Coordination (AFC) for 6 GHz

BACKGROUND

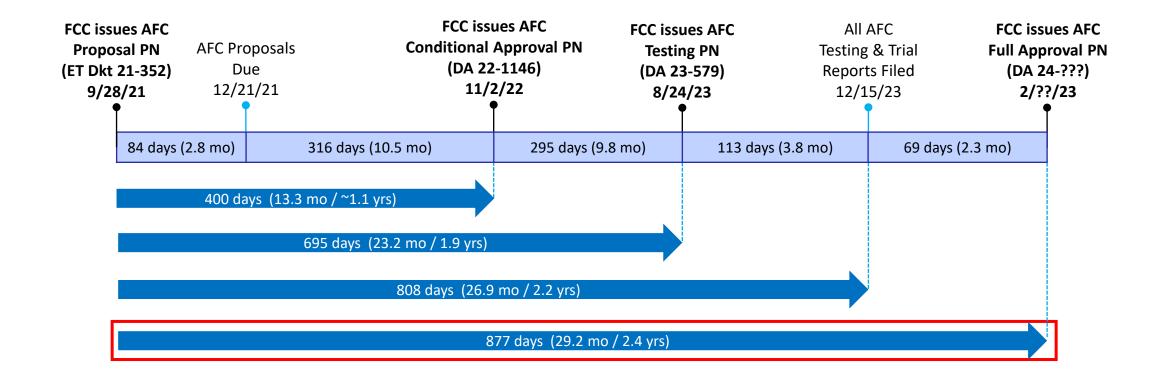
- Established by FCC in 2020
- Used to allow for standard power unlicensed devices to operate in 6 GHz band and not cause harmful interference into incumbents using the AFC
- WInnForum & Wi-Fi Alliance developed specifications and recommendations
- FCC directed formation of a Multi-stakeholder Group (MSG) to address issues specific to technical and operational aspects of the AFC
- Several open issues: testing, certification, enforcement, etc.
- AFC systems should be certified for commercial operation very soon


LESSONS LEARNED (so far)

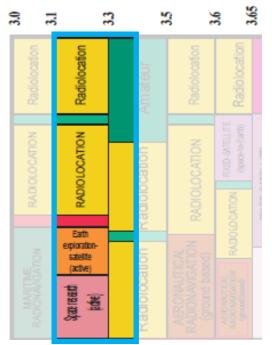
- MSG didn't work out
- Enforcement is afterthought


AFC Functional Architecture

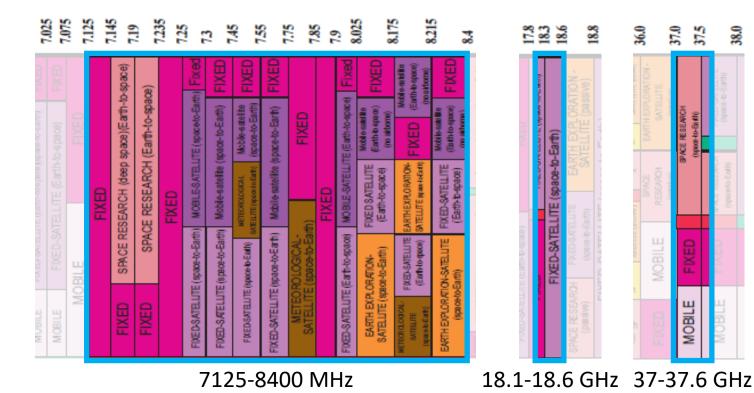
TV White Space Database FCC Testing & Certification Timeline


Challenges: TVWS Certification Timing & Complexity

CBRS SAS FCC Testing & Certification Timeline


Challenges: SAS Certification Timing & Complexity

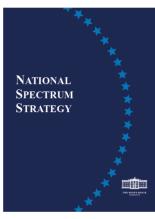
AFC FCC Testing & Certification Timeline



Challenges: AFC Certification Timing & Complexity

Sharing in the Spectrum Pipeline

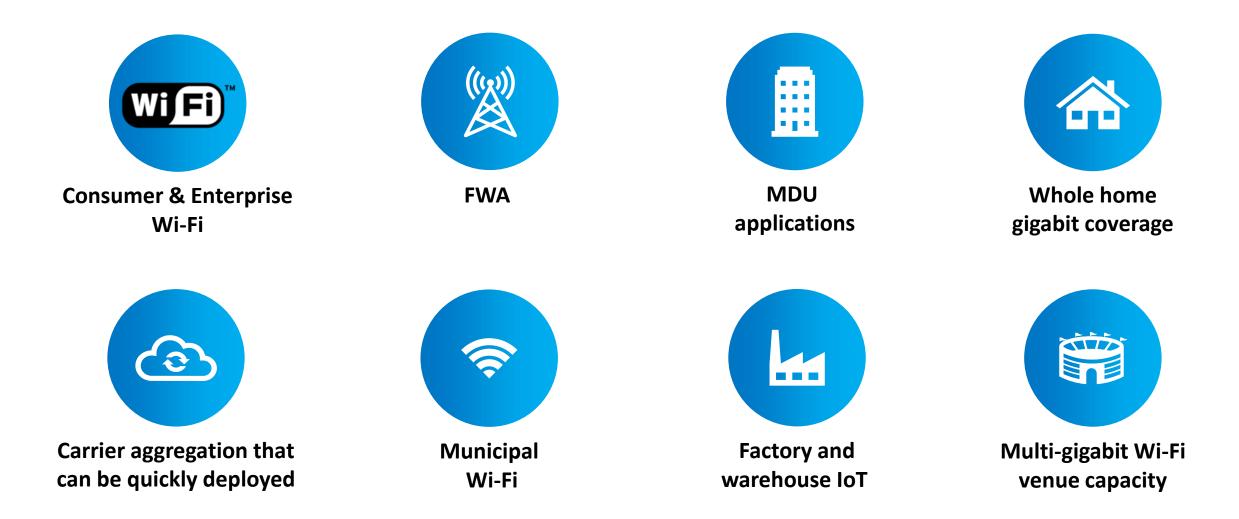
ABIONAUTICAL RADIONANGATION ABIONAUTICAL RADIONAUGATION ABIONAUTICAL RADIONAUGATION AE DOMAI FILICAL AE DOMAI FILICAL AE DOMAI FILICAL RADIONAVIGATION RADIONAVIGATION (Earth-b-space)		RADIONWINGATION-SATELLITE (Earth-to-space) R.ADIONAVIGATION-SATELLITE
		R ADIONAVIGATION-SATELLITE
CAL PADION	ABRONAUTICAL RADIO WINIGATION	(snarpuloue amni snarpulous narpe)



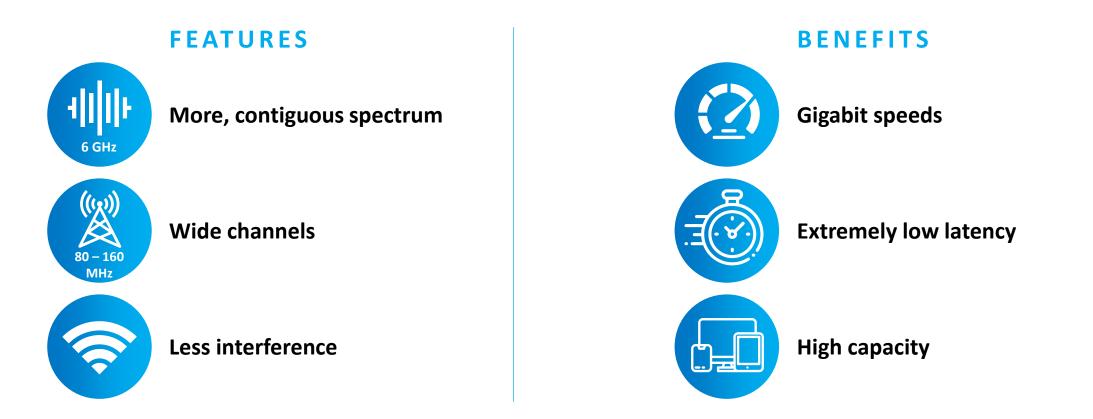
37.5

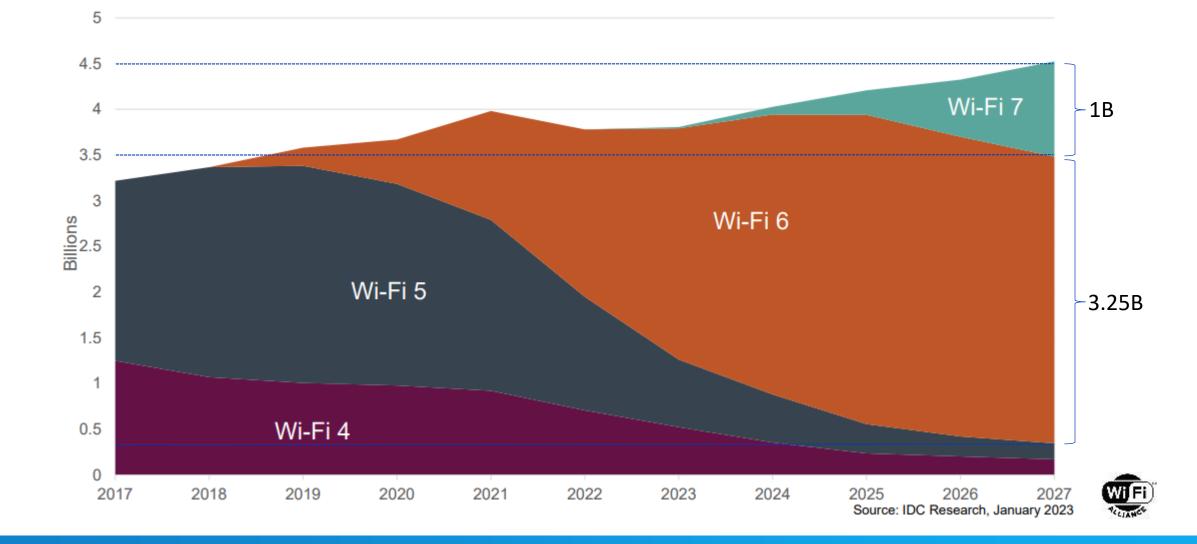
38.0

3100-3450 MHz


5030-5091 MHz

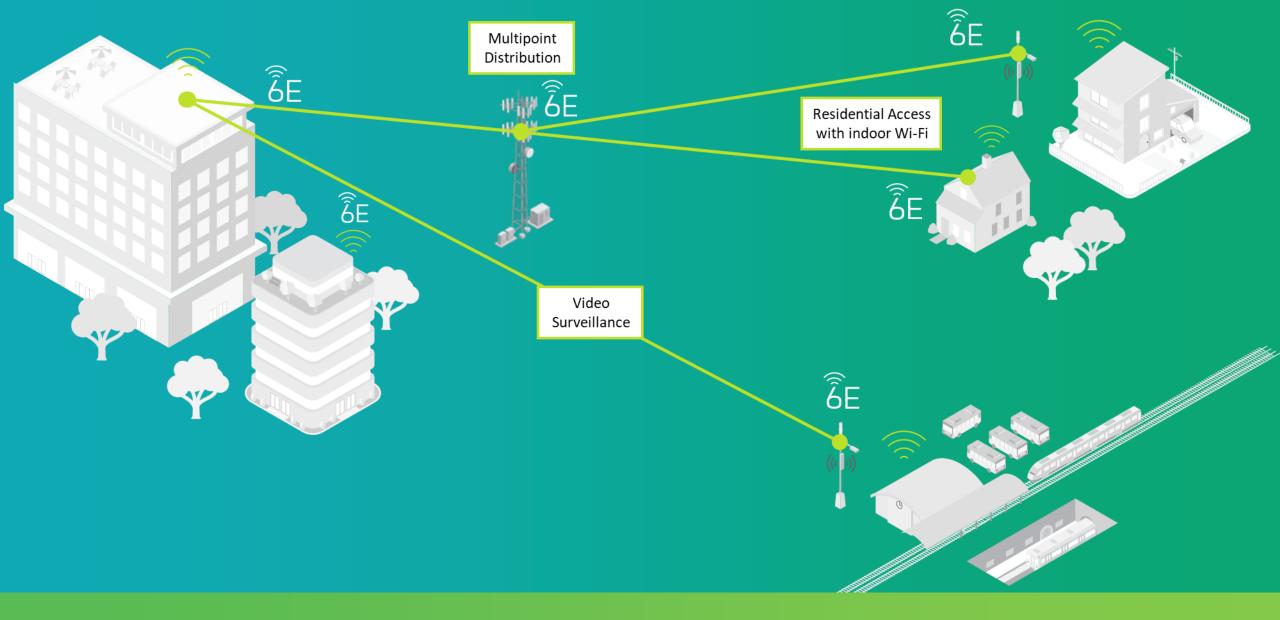
"... the U.S. will set measurable goals for advancing the state of technology for spectrum access, with an emphasis on dynamic forms of sharing." National Spectrum Strategy


New Unlicensed Uses for 6 GHz

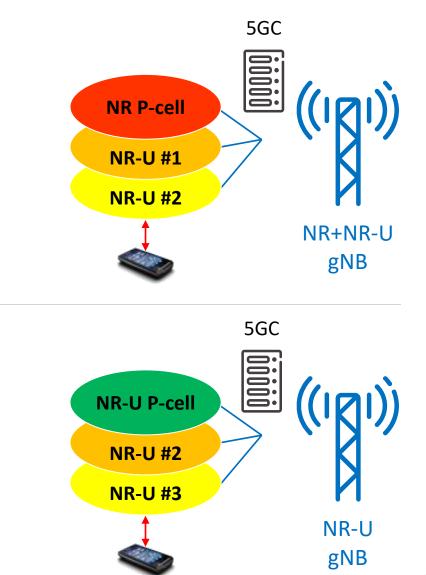

General Use Case Examples

Opportunities for Wi-Fi

Wi-Fi 6E brings Wi-Fi into 6 GHz


Wi-Fi 6 & Wi-Fi 7 Adoption

Robust 6 GHz Wi-Fi Device Ecosystem

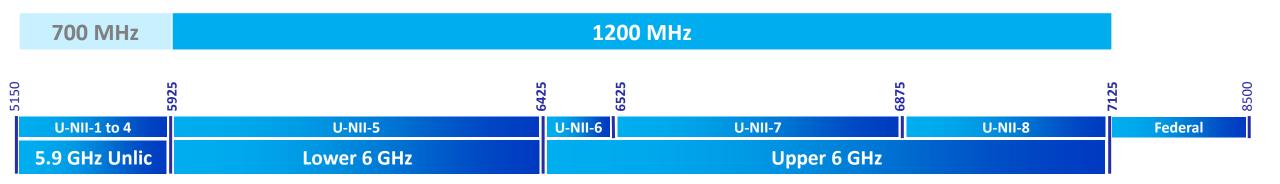


In-home Use

Fixed Wireless Broadband

- 1. Carrier aggregation between licensed band P-cell and multiple unlicensed NR-U S-cells like LAA
 - Outdoor and indoors
 - Standard Power yields up to 8x range increase!

2. Fully standalone NR-U operation unlike LAA


Flexible UL / DL balance for UL-heavy applications

NR-U Deployment Scenarios

Introduction to 6 GHz Unlicensed

The 6 GHz Unlicensed Allocation is the Largest Ever Adds 1200 MHz to the U-NII* bands...

*U-NII = Unlicensed National Information Infrastructure

... but there are many incumbents

1			1	1	1		I		ļ.
	C-band FSS uplink	Extended	C-band FSS uplink		C-band FSS upli	nk (planne	ed band)		
Fixed Satellite Service (FSS)					SiriusXM fe	ederlink u	plink		
		1			NGSO Feeder Dov	vnlink of N	ЛSS		
Fixed	Common Carrier (CC), Operational FS (OFS)			CC, OFS	1	Exclu		CC, OFS	
Microwave	Local Television Transmission Service (LTTS)					§ 10: freq			
	Private operational fixed point-to-point microwave	OFS	1		1	I	l	I	
Fixed	Local television transmission service	LTTS					LTTS		
Mobile	Television broadcast auxiliary service	BAS					BAS		
	Cable television relay service	CARS					CARS		
EESS/SRS		ſ	Passive Ser	nsor (Measurer	ments over Ocean	5)			
and RAS	ا Radio astronomy service (665	0-6675.2 MH	lz) RAS			Pas	sive sens	sor	
					I				
700 MHz		120	DO MHz	1	1		1		
		, u		I IO	1	LO I	Ь	LO	1
5925			6700	6725	6875	6975	7025	7075	7125
U-NII-1 to 4	U-NII-5	U-NII-6		U-NII-7			U-NII-8		
.9 GHz Unlic	Lower 6 GHz			Uppe	r 6 GHz				

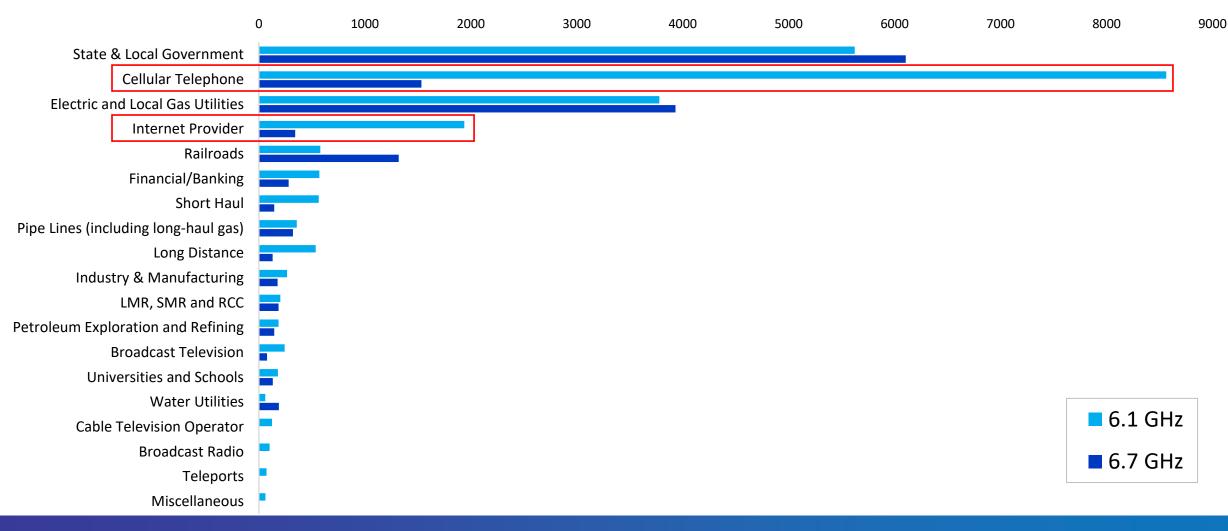
Federal

5150

Description of Current 6 GHz Operations

There are many incumbents

\uparrow				1		1	
	C-band FSS uplink	Extended	C-band FSS uplink	C-band FSS	5 Uplink (planned band)		
Fixed Satellite Service (FSS)				SiriusX	M feederlink uplink		
5014100 (155)				NGSO Feede	r Downlink of MSS		
Fixed	Common Carrier (CC), Operational FS (OFS)			CC, OFS	Excluded § 101.147	CC, OFS	
Microwave	Local Television Transmission Service (LTTS)				freq plan		
	Private operational fixed point-to-point microwave	OFS					
Fixed	Local television transmission service	LTTS			LTTS		
Mobile	Television broadcast auxiliary service	BAS			BAS		
	Cable television relay service	CARS			CARS		
EESS/SRS			Passive sense	or (measurements over oc	ceans)		
and RAS	Radio astronomy service (665	0-6675.2 MI	Hz) RAS		Passive sen	sor	
# of M/W Links # of Freqs	26,000	-		15,000	4,600		
# of Freqs # of Temp/Mobile Lic of Temp/Mobile Freqs	71,000 - -	- 400 2,300		30,000 - -	5,200 355 900		
5925	6425		67 00	6725	6875 6975 7025	7075 7125	
U-NII-1 to 4	U-NII-5	U-NII-6	U	-NII-7	U-NII-8		Fe
5.9 GHz Unlic	Lower 6 GHz			Upper 6 GHz			


6 GHz Microwave Operations Nationwide

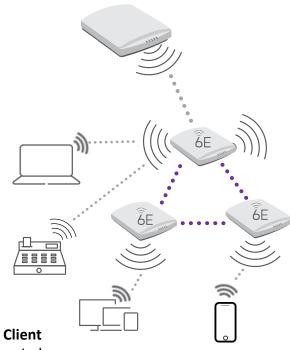
All 6 GHz Users

NUMBER OF MICROWAVE PATHS BY TYPE OF COMPANY

Who uses the 6 GHz Band

Description of Unlicensed 6 GHz Operations

Wi-Fi Channel Plan


						U-NI	I-5						U	-NII-6					U-N	III-7							U-NII-	-8		
Center Frequency	5935 5955 5975	5995 6015	6035 6055	6075 6095	6115 6125	6155 6175	6195 6215	6235 6255	6275 6295	6315 6335	6355 6375	6395 6415	6435 6455	6475 6495	6515 6525	6555 6555	6575 6595	6635 6635	6675 6695	6715 6735	6755 6775	6795 6815	6835 6855	6875 6895	6915 6935	6955 6975	6995 7015	7035	7075 7095 7115	
20 MHz Channels	20 2	0 20 20	20 20	20 20	20 2	0 20 20	20 20	20 20	20 20	20 20	20 20	20 20	20 20	20 20	20 2	0 20 2	20 20 2	.0 20 20	20 20	0 20 20	20 20	0 20 20	20 20	20 20	20 20	20 20	0 20 20	0 20 20	20 20 2	0
40 MHz Channels	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	
80 MHz Channels		80	8	30		80	ε	30	8	30	ε	30	Ę	30		80		80		80		80	8()		80		80		
160 MHz Channels				160 160 160					160																					
320 MHz Channels	370							320							3:	20														
59	25											6	425		6525	5							6	875						7125

59 x 20 MHz Channels 29 x 40 MHz Channels 14 x 80 MHz Channels 7 x 160 MHz Channels 3 x 320 MHz Channels

Examples of 6 GHz Devices

Low Power Indoor (LPI) AP

- Indoor only
- 1W (30 dBm) max EIRP
- 3 mW/MHz (5 dBm/MHz) max PSD

- Indoor
- Under control of Indoor AP
- 250 mW (24 dBm) max EIRP
- 0.8 mW/MHz (-1 dBm/MHz) max PSD

Very Low Power (VLP)

- Indoor/outdoor
- 25 mW (14 dBm) max EIRP
- 0.3 mW/MHz (-5 dBm/MHz) max PSD

Subordinate

- Indoor
- Under control of Indoor AP
- 1W (30 dBm) max EIRP
- 3 mW/MHz (5 dBm/MHz) max PSD

Standard Power AP (SPAP)

- Fixed indoor/outdoor
- 4W (36 dBm) max EIRP
- 200 mW/MHz (23 dBm/MHz) PSD
- Must use AFC
- Automated geolocation (x,y)

Connected Smart Home

- Indoor/outdoor
- 4X less power than connected AP
- 1W (30 dBm) max EIRP
- 50 mW/MHz (17 dBm/MHz) max PSD

Fixed Client (FCD)

- Indoor/outdoor
- 1W (30 dBm) max EIRP
- 50 mW/MHz (17 dBm/MHz) max PSD
- Must use AFC
- Automated geolocation (x,y)

Examples of Low Power Indoor Devices

Device Type	Max EIRP	Max PSD	Geolocation Required?	AFC Required?	Limitations	Bands
Indoor AP	1W (30 dBm)	3 mW/MHz (5 dBm/MHz)	No	No	 Indoor only Integrated antenna (not external) No weatherized enclosure Wired power (no battery) Must be labeled: "FCC regulations restrict operation of this device to indoor use only" 	U-NII-5 to U-NII-8 5925-7125 MHz
Subordinate	1W (30 dBm)	3 mW/MHz (5 dBm/MHz)	No	No	 Indoor only Under control of Indoor AP Integrated antenna (not external) No weatherized enclosure Wired power (no battery) Can't be used to connect devices between separate buildings or structures Must be labeled: "FCC regulations restrict operation of this device to indoor use only" Must be certified separately 	U-NII-5 to U-NII-8 5925-7125 MHz
Client	250 mW (24 dBm)	0.8 mW/MHz (-1 dBm/MHz)	No	No	 Indoor only Under control of Indoor AP Integrated antenna (not external) No weatherized enclosure Wired power (no battery) Operating power must be 6 dB below associated SP AP transmit power 	U-NII-5 to U-NII-8 5925-7125 MHz

Examples of Standard Power Devices

Device Type	Max EIRP	Max PSD	Geolocation Required?	AFC Required?	Limitations	Bands
Standard Power AP	4W (36 dBm)	200 mW/MHz (23 dBm/MHz)	Yes	Yes	Antenna elevation angle requirements	U-NII-5 & U-NII-7 5924-6425 MHz & 6525-6875 MHz
Fixed Client	4W (36 dBm)	200 mW/MHz (23 dBm/MHz)	Yes	Yes	 Can only connect to a SP AP Client device intended as CPE Permanently attached to a structure Antenna elevation angle/power limitation requirements 	U-NII-5 & U-NII-7 5924-6425 MHz & 6525-6875 MHz
Client	1W (30 dBm)	50 mW/MHz (17 dBm/MHz)	No	No	 Operating power must be 6 dB below associated SP AP transmit power 	U-NII-5 & U-NII-7 5924-6425 MHz & 6525-6875 MHz

Examples of Very Low Power Devices

Device Type	Max EIRP	Max PSD	Geolocation Required?	AFC Required?	Limitations	Bands
	25 mW (14 dBm)	0.3 mW/MHz (-5 dBm/MHz)	No	No	 Integrated antenna (not external) Cannot operate as part of fixed outdoor infrastructure such as poles or buildings Must prioritize spectrum above 6105 MHz 	U-NII-5 to U-NII-8 5925-7125 MHz

SOME VLP APPLICATIONS*

Displays for AR/VR

- Imaging headsets, headphones, game controllers, keyboards, hearing aids

Automotive applications

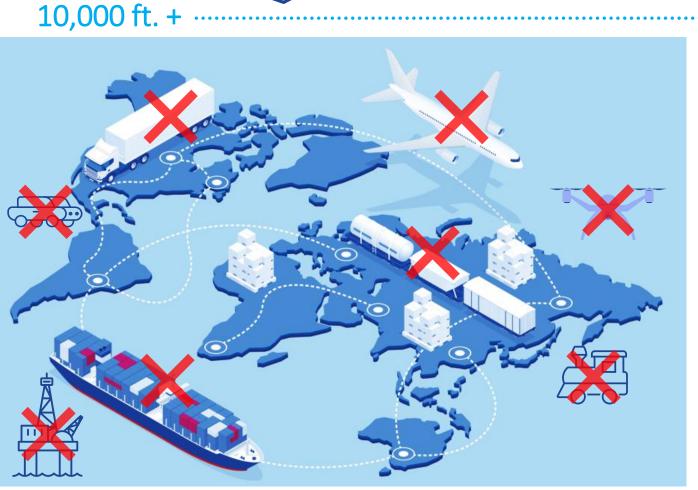
Vehicle infotainment, maintenance, tracking, security and other applications

Screen mirroring & wireless casting

- Smartphones, tablets, TVs, projectors, and many other devices
- Wireless streaming of cloud-based content directly to end-user devices

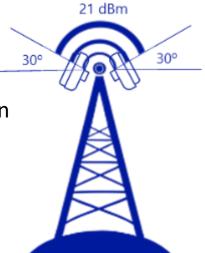
*Apple, Broadcom, Cisco, Facebook, Google, HPE & WFA

Healthcare


- Real time patient monitoring
- Vital signs monitoring
- IV drug delivery control
- AR for surgery and other treatment workflows
- Wearable and on-body uses

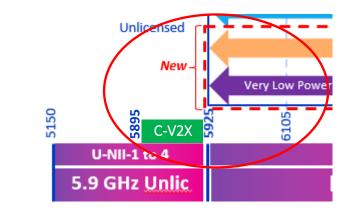
Short-range hotspots

Accurate Wi-Fi indoor location and navigation Automation


Prohibitions & Limitations: LPI & Standard Power


For now, prohibited on oil platforms, cars, trains, boats, and aircraft below 10,000 ft.

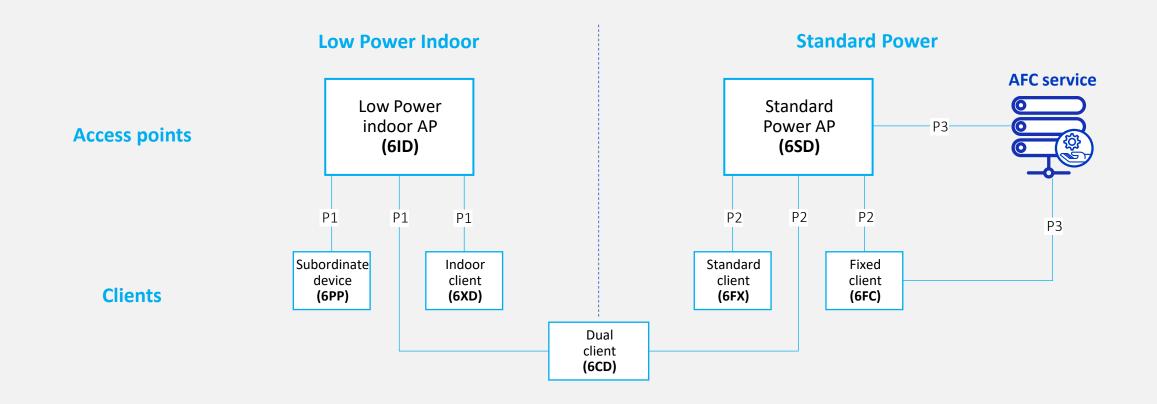
However, APs can operate in the 5925-6425 MHz bands (U-NII-5) in large aircraft while flying above 10,000 feet.



EIRP for outdoor Standard Power device must be **below 125 mW** (21 dBm) for antenna elevation **greater than 30°** above horizon.

Prohibitions & Limitations: VLP

For now, prohibited on oil platforms and aircraft below 10,000 ft.



Must prioritize spectrum above 6105 MHz to ensure that C-V2X safety of life services below the U-NII-5 band are protected from harmful interference.

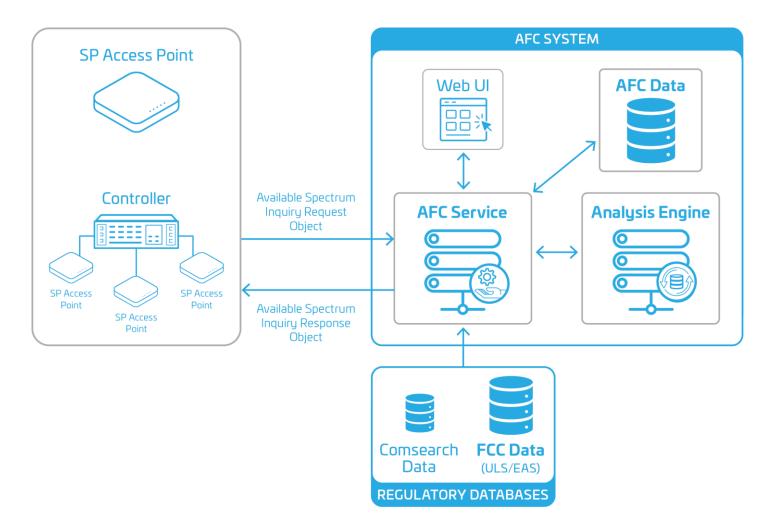
FCC Equipment Classes for Low Power & Standard Power*

	Class ID	Description
	6ID	Low Power indoor access point.
Power	6PP	Subordinate indoor device. These devices are under control of a Low Power indoor access point.
	6XD	Low Power Indoor client. These devices are under control of a Low Power indoor access point.
Low	6CD	Dual client. These devices are under control of either:
		Low Power indoor access point (6ID) or
er		Standard Power access point (6SD)
rd Power	6SD	Standard Power access point. These devices are managed by the Automatic Frequency Coordination (AFC) system.
Standard	6FX	Standard client. These devices are under control of a Standard Power access point.
Sta	6FC	Fixed client. These devices are associated with a Standard Power access point.

FCC Equipment Classes for Low Power & Standard Power*

P1: Client and subordinate devices under control of Low Power indoor access point.

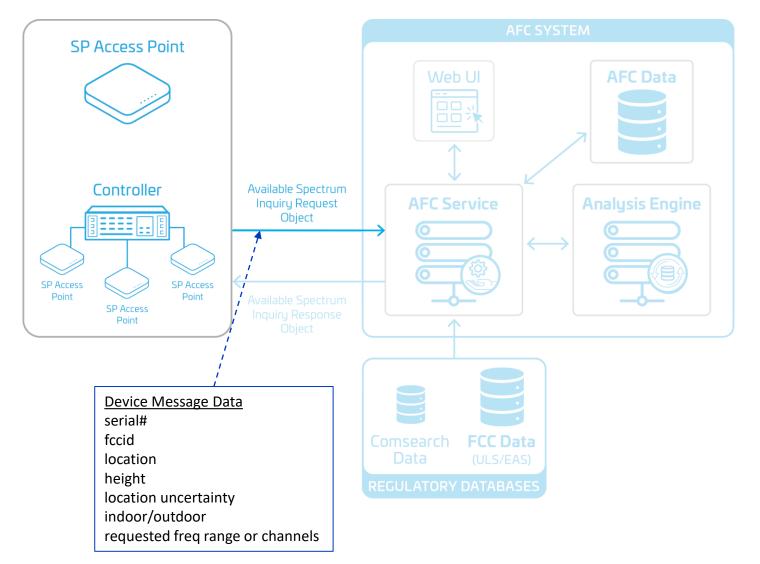
P2: Client devices under control of standard access point.


P3: Standard Power Access Point and fixed client devices managed by the AFC.

*From FCC KDB 987594, 8/7/23, subject to change

Automated Frequency Coordination (AFC) System

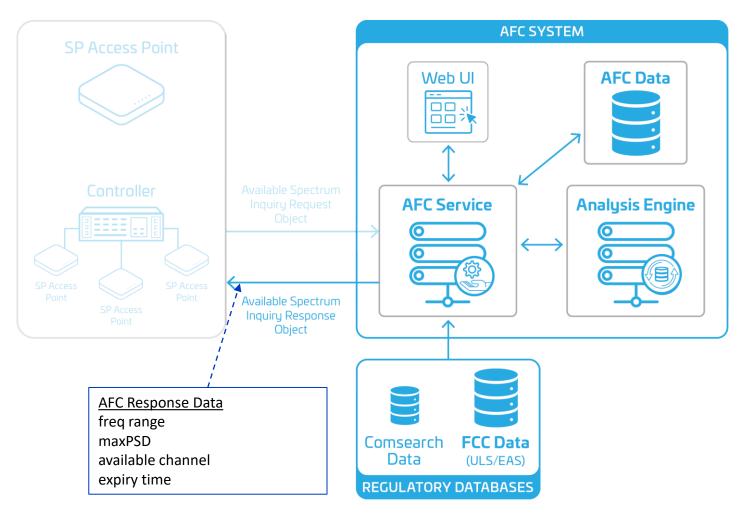
AFC Operation


AFC FUNCTIONAL ARCHITECTURE

AFC Operation: SPAP & FCD Requirements

AFC FUNCTIONAL ARCHITECTURE

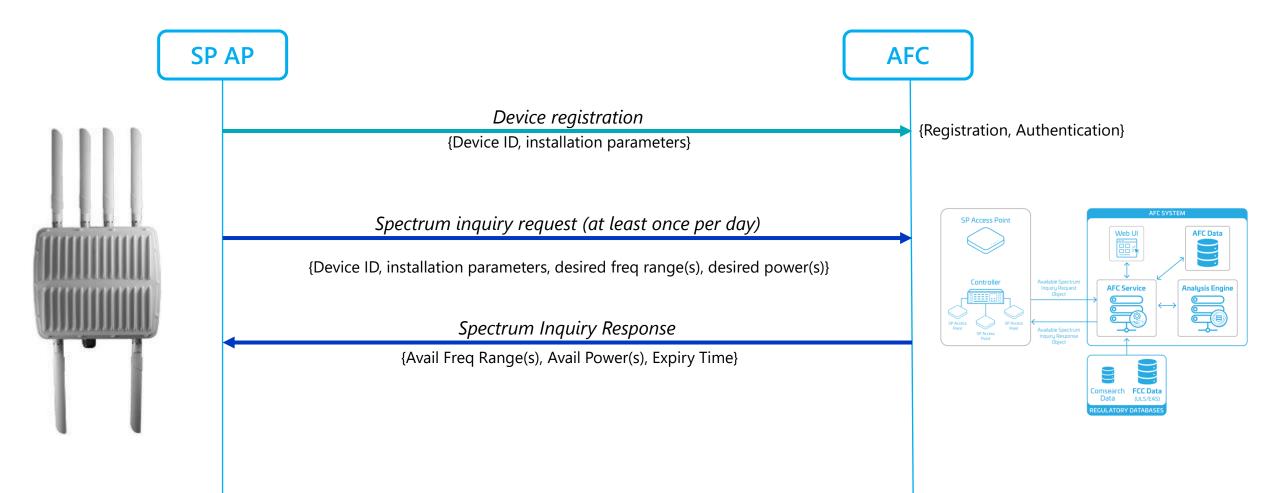
- Standard Power APs (SPAPs) and Fixed Client devices (FCDs) must:
 - Use an AFC to operate in the 6 GHz bands
 - Automatically geolocate
 - Register with AFCs by sending basic information to AFC (including location)
 - Provide updated information to AFC
 - Check in with the AFC every 24 hours
 - If check in fails, device has until 11:59pm of following day to establish contact or it must shut down
 - Use security methods to prevent accessing nonapproved AFC systems and unauthorized modification of device
- Device controllers can act as device proxies when interacting with the AFC

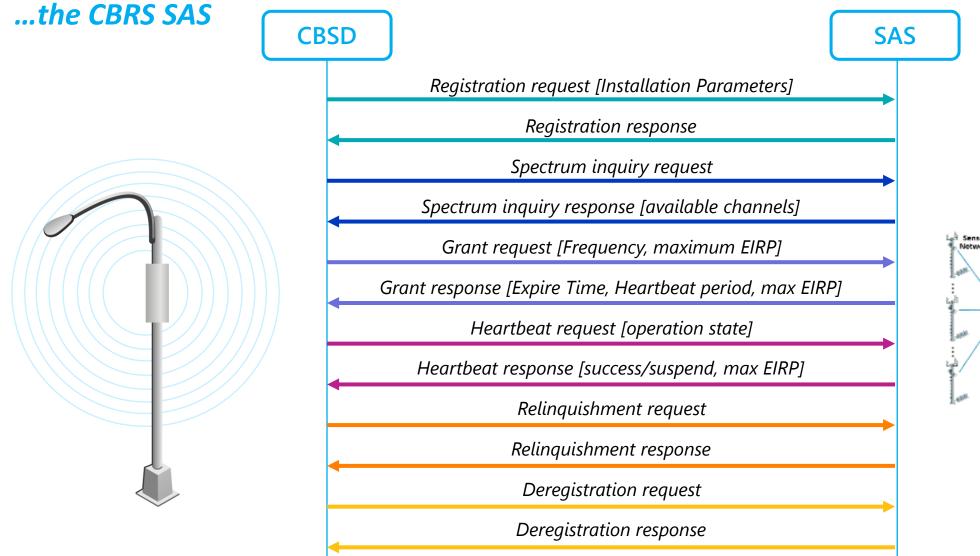


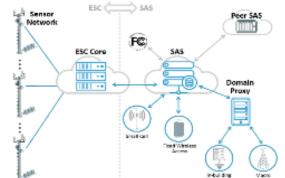
AFC Operation: AFC Requirements

AFC FUNCTIONAL ARCHITECTURE

AFCs must:

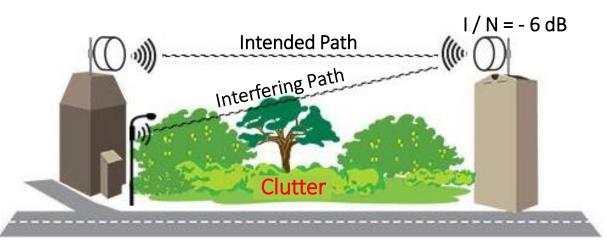

- Use FCC databases (ULS & EAS) for information on protected/licensed incumbent systems
- Verify validity of device FCC ID
- Determine available frequencies and max permissible transmit EIRP using device registration query data
- Return lists of available spectrum/channels and max powers
 - In 3 dB steps between 21 dBm and 36 dBm
- Store registered information in a secure database until an SPAP or FCD ceases operation at a location
- Deregister device if no contact with AFC within 3 months


42


AFC-SP AP Message Protocol

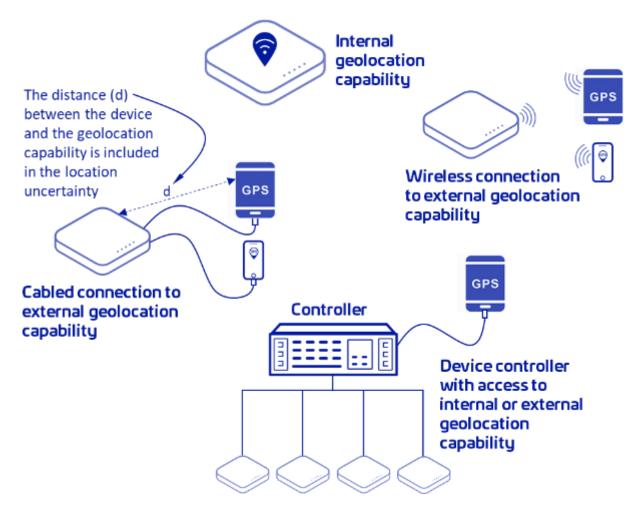
AFC is much simpler than...

SAS-CBSD Message Protocol



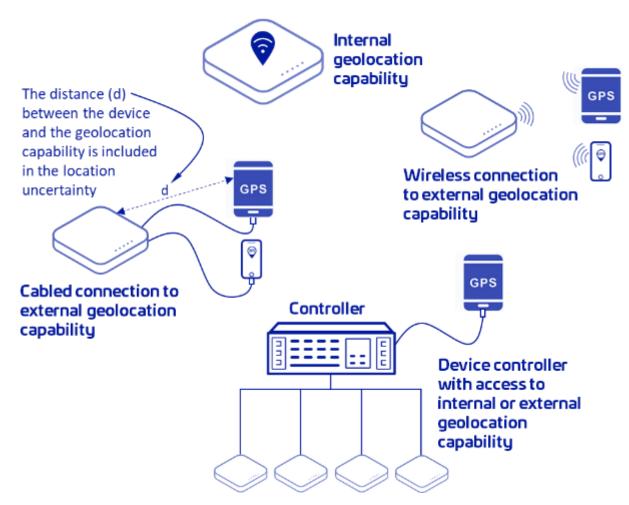
AFC Operation: Calculations

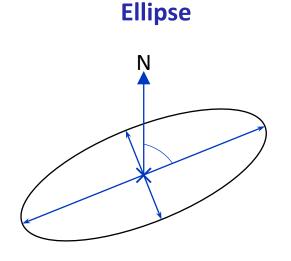
- Propagation models (multi-model approach)
 - FSPL for short distances (>30m)
 - WINNERII for intermediate (30m 1km)
 - ITM for longer (beyond 1 km)
 - Will require site-specific information as available (buildings, terrain)
 - for determining LOS conditions
 - BEL for indoor-only devices: 20.5 dB
- Clutter
 - ITU-R P.2108 for urban/suburban
 - ITU-R P.452 for rural


- IPC: I/N = -6dB
- No power aggregation of RLANs
- Need to protect radio astronomy in 6650.0-6675.2 MHz at certain locations using exclusion zones based on Radio LoS from RLAN to RA site:
 - Arecibo, PR
 - Green Bank, WV
 - Very Large Array, NM
 - Very Long Baseline Array (10 sites)
 - Owens Valley Array, CA
 - Allen Telescope Array, CA

Device Geolocation: Requirements

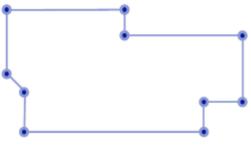
- Device must be able to automatically determine its geographic coordinates (lat, lon) and location uncertainty (in meters) with a 95% confidence by using either:
 - ✓ an internal geolocation capability or
 - an integrated capability to securely connect to an external geolocation device or service
- Device height can be provided automatically or by the installer.
- External geolocation source may be connected through either a secure wired or a secure wireless connection that ensures that only an external geolocation source approved for use with a device provides geographic coordinates to that device.
- An extender cable may be used to connect a remote receive antenna to a geolocation receiver within a device.
- For devices that don't use an internal geolocation capability, the uncertainty must account for the accuracy of the geolocation source and the separation distance between such source and the device.
- A single geolocation source may provide location information to multiple Standard Power access points or fixed client devices.
- The device must report these coordinates and location uncertainty to an AFC system at the time of activation from a power-off condition.
- Applicants for certification of a device must demonstrate the accuracy of the geolocation method used and the location uncertainty.


Examples of Device Geolocation Options

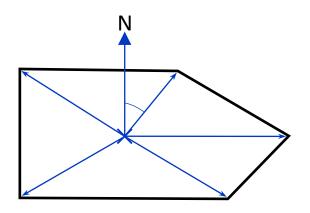

Device Geolocation: FCC Certification

- Must include Persistent Inquiry Approval (PIA) with device certification filing that includes three documents:
 - 1. General description of geolocation methods
 - 2. Details that justify the 95% confidence level claim and demonstration of the testing method and calculations used to verify
 - 3. Description of the method used to determine that the device has not been moved after a power cycle

Examples of Device Geolocation Options

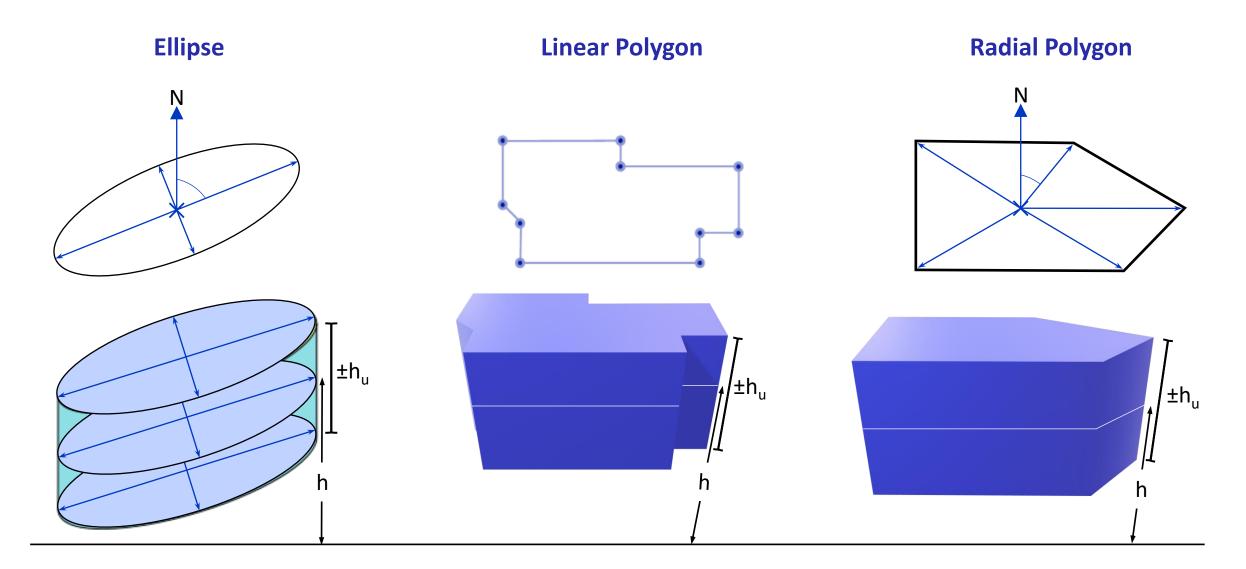


Device Geolocation: AFC Treatment of Location Uncertainty


- Center point (latitude, longitude)
- Uncertainty reflected in major & minor axis (meters)
- Orientation relative to True North

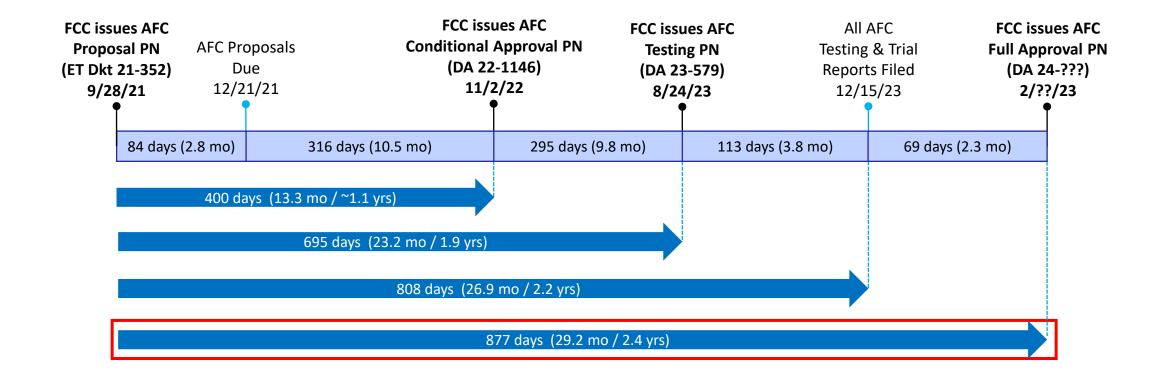
Linear Polygon

• Each point (latitude, longitude)

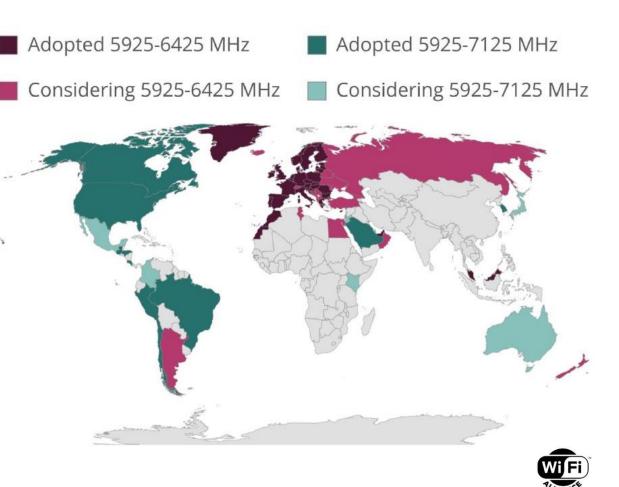

Radial Polygon

- Center point (latitude, longitude)
- Each vector (angle, distance)

- Height of the device antenna in meters (AGL)
- Vertical distance in meters above and below the value of the height field within which the device is located


Device Geolocation: AFC Treatment of Location Uncertainty

AFC Commercialization and Timeline


Broadcom ⁺ *	Plume*	
Comsearch ⁺	Qualcomm ⁺	
Federated Wireless ⁺	Red Technologies	
Google	Sony†	
KeyBridge	Wi-Fi Alliance†*	
Kyrio*	Wireless Broadband Alliance ^{+*}	
Nokia	⁺ Currently in Certification *Using Open AFC	

Conditionally Authorized AFC Operators

AFC Testing & Certification Timeline

COUNTRY	STATUS	S P E C T R U M	A F C
Argentina	Considering	5925-6425 MHz	
Australia	<u>Adopted</u>	5925-6425 MHz	
Australia	Considering	6425-7125 MHz	Х
Brazil	Adopted	5925-7125 MHz	
CEPT	Considering	5925-6425 MHz	
-		(*only considering 5945-6425)	
Canada	Adopted	5925-7125 MHz	Х
Chile	Adopted	5925-7125 MHz	
Colombia	Considering	5925-7125 MHz	
Costa Rica	Adopted	5925-7125 MHz	
Egypt	Considering	5925-6425 MHz	
European Union	Adopted	5925-6425 MHz	
		(*only adopting 5945-6425)	
Guatemala	Adopted	5925-7125 MHz	
Honduras	Adopted	5925-7125 MHz 5925-7125 MHz	
Japan Jordan	<u>Considering</u>		
	<u>Considering</u>	5925-7125 MHz 5925-7125 MHz	
Kenya	Considering		V
Korea	Adopted	5925-7125 MHz	X ?
Malaysia Mexico	Adopted	5925-6425 MHz	r X
	Considering	5925-7125 MHz	*
Morocco New Zealand	Adopted	5925-6425 MHz 5925-6425 MHz	
	Considering		
Norway	Adopted	5925-6425 MHz 5925-6425 MHz	
Oman Peru	Considering Adopted	5925-6425 MHz	
		5925-7125 MHz	
Qatar Saudi Arabia	Considering	5925-7125 MHz	х
South Korea	Adopted	5925-7125 MHz	^
	Adopted		?
Tunisia Turkov	<u>Considering</u>	5925-6425 MHz 5925-6425 MHz	f
Turkey	Considering		
United Arab Emirates	Adopted	5925-6425 MHz	
United Kingdom	Adopted Considering	5925-6425 MHz 6425-7125 MHz	?
United States	Considering		
United States	Adopted	5925-7125 MHz	Х

International use of 6 GHz

Summary

AFC is the 3rd generation of centralized DSM methods

Incumbent use is protected by a combination of device limitations & the AFC

Certification & commercialization of DSM systems is a years-long process

AFC concept is simpler than previous DSM efforts

Unlicensed use of the 6 GHz band presents exciting new opportunities

Device geolocation presents challenges

There is substantial incumbent use of the 6 GHz band

Still more work to be done

Q&A

Mark Gibson Sr. Director, Spectrum Regulatory & Policy mark.gibson@commscope.com